Network pharmacology is utilized to leverage computational power and big data to elucidate molecular function and biological processes, describing the potential mechanism of medicinal plants in certain diseases. In this study, a network pharmacology approach was used to analyze unbiased potential mechanisms of Centella asiatica in aging. From the analysis, 28 core protein targets were predicted, showing potential mechanisms of action in the cellular senescence pathway. Key protein targets associated with aging biological processes include PTEN, TP53, MAPK3, AKT1, MYC, IL6, and SIRT1. These proteins contribute to aging modulation by regulating cell proliferation, survival, and repair mechanisms: MYC, AKT1, and MAPK3 promote controlled cell growth; PTEN and TP53 prevent abnormal proliferation and ensure damaged cells undergo repair or apoptosis; while SIRT1 activation supports longevity through DNA repair, and IL-6 inhibition helps reduce inflammation. These interconnected activities suggest that C. asiatica has broad targets and the ability to integrate various biological pathways, making it an ideal anti-aging candidate. Bioactive compounds of C. asiatica, including Quercetin, Apigenin, Rutin, and Ursolic Acid, show high binding activity toward associated protein targets. Molecular docking with cavity-based blind docking indicates binding affinity lower than −5, suggesting strong potential for these compounds to exert their anti-aging effects in vivo.
Safira CS, Tjandrawinata RR, Yulandi A. Mechanistic insights into the anti-aging potential of Centella asiatica via network pharmacology and molecular docking. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.240042
1. Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16(4):624–33. doi: https://doi.org/10.111/acel.12601
2. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: https://doi.org/10.1016/j.cell.2013.05.039
3. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(7):2433– 61. doi: https://doi.org/10.1016/j.cell.2022.11.001
4. United Nations. World Social Report 2023: Leaving no one behind in an ageing world. New York, NY: United Nations Department of Economic and Social Affairs; 2023 [cited 2023 Sep 23]. Available from: https://desapublications.un.org/publications/world-social-report-2023-leaving-no-one-behind-ageing-world
5. Komatsu H, Yagasaki K, Kida H, Eguchi Y, Niimura H. Preparing for a paradigm shift in aging populations: listen to the oldest old. Int J Qual Stud Health Well-being. 2018;19(5):443–8. doi: https://doi.org /10.1080/17482631.2018.1511768
6. Sakaniwa R, Noguchi M, Imano H, Shirai K, Tamakoshi A, Iso H, et al. Impact of modifiable healthy lifestyle adoption on lifetime gain from middle to older age. Age Ageing. 2022;51(7):afac080. doi: https://doi.org/10.1093/ageing/afac080
7. Cho SY, Lee HG, Kwon S, Park SU, Jung WS, Moon SK, et al. A systematic review of in vivo studies of the efficacy of herbal medicines for anti-aging in the last five years. Pharmaceutics. 2023;16(3):448. doi: https://doi.org/10.3390/ph16030448
8. Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep. 2013;30(11):1412. doi: https://doi.org/10.1039/c3np70031c
9. Zainol MK, Abd-Hamid A, Yusof S, Muse R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003;81(4):575–81. doi: https://doi.org/10.1016/s0308-8146(02)00498-3
10. Park KS. Pharmacological effects of Centella asiatica on skin diseases: evidence and possible mechanisms. Evid Based Complement Alternat Med. 2021;2021:5462633. doi: https://doi.org/10.1155/2021/5462633
11. Karsono AH, Tandrasasmita OM, Berlian G, Tjandrawinata RR. Potential antiaging effects of DLBS1649, a Centella asiatica bioactive extract. Exp Pharmacol. 2021;13:299547. doi: https://doi.org/10.2147/JEP.S299547
12. Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network pharmacology. In: Chaguturu R, editor. Innovative approaches in drug discovery. Amsterdam, The Netherlands: Elsevier; 2017. pp. 127–64. doi: https://doi.org/10.1016/B978-0-12- 801814-9.00005-2
13. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):1–6. doi: https://doi.org/10.1186/1758- 2946-6-13
14. Kong X, Liu C, Zhang Z, Cheng M, Mei Z, Li X, et al. BATMAN-TCM 2.0: an enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2023;52:D1110–20. doi: https://doi.org/10.1093/nar/gkad926
15. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi: https://doi.org/10.1038/srep42717
16. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23. doi: https://doi.org/10.1021/jm020017n
17. Tan S, Yulandi A, Tjandrawinata RR. Network pharmacology study of Phyllanthus niruri: potential target proteins and their hepatoprotective activities. J Appl Pharm Sci. 2023;0(00):001–11. doi: https://doi.org/10.7324/JAPS.19-1679301613
18. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357–65. doi: https://doi.org/10.1093/nar/gkz382
19. Liu X, Ouyang S, Yu B, Huang K, Liu Y, Gong J, et al. PharmMapper server: a web server for potential drug target identification via mapping approach. Nucleic Acids Res. 2010;38:W609–14. doi: https://doi.org/10.1093/nar/gkq300
20. Wang X, Pan C, Gong J, Liu X, Li H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model. 2016;56:1175–83. doi: https://doi.org/10.1021/acs.jcim.5b00541
21. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, et al. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017;45:W356–60. doi: https://doi.org/10.1093/nar/gkx374
22. Yan D, Zheng G, Wang C, Chen Z, Mao T, Gao J, et al. HIT 2.0: an enahanced platform for Herbal Ingredients’ Targets. Nucleic Acids Res. 2022;50(D1):D1238–43. doi: https://doi.org/10.1093/nar/gkab1011
23. UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–31. doi: https://doi.org/110.1093/nar/gkac1052
24. Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.1–33. doi: https://doi.org/10.1002/cpbi.5
25. Randhawa V, Kumar M. Analysis of aging-related protein interactome and cross-network module comparisons across tissues provide new insights into aging. Comput Biol Chem. 2021;92:107506. doi: https://doi.org/10.106/j.compbiolchem.2021.107506
26. Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualozation of proteomics data. J Proteome Res. 2019;18(2):623–32. doi: https://doi.org/10.1021/acs.jproteome.8b00702
27. Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a Cytoscape plugin for centrality analysis and evaluation of biological networks. BMC Bioinformatics. 2014;4:2. doi: https://doi.org/10.1186/1471-2105-4- 2
28. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2. doi: https://doi.org/10.1186/1471-2105-4-2
29. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;128(14). doi: https://doi.org/10.1186/1471-2105-14-128
30. Kuleshov MV, Jones MR, Roillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:(Web Server issue):W90–7. doi: https://doi.org/10.1093/nar/gkw377
31. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with Enrichr. Current Protocols. 2021;1:e90. doi: https://doi.org/10.1002/cpz1.90
32. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: https://doi.org/10.1093/nar/28.1.27
33. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35. doi: https://doi.org/10.1002/pro.3711
34. Kanehisa M, Sato Y, Kawashima M. KEGG Mapper for inferring tools for uncovering hidden features in biological data. Protein Sci. 2022;31(1):47–53. doi: https://doi.org/10.1002/pro.4172
35. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. doi: https://doi.org/10.1093/bioinformatics/btp101
36. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. doi: https://doi.org/10.1093/nar/28.1.235
37. Kim S, Chen J, Cheng T, Gindulyte A, He S, Li Q, et al. PubChem 2023 update. Nuceic Acids Res. 2023;51(D1):D1373–80. doi: https://doi.org/10.1093/nar.gkac956
38. Yang X, Liu Y, Gan J, Xiao ZX, Cao Y. FitDock: protein-ligand docking by template fitting. Brief Bioinform. 2022;23(3):bbac087. doi: https://doi.org/10.1093/bib/bbac087
39. Liu Y, Yang X, Gan J, Chen S, Xiao ZX, Cao Y. CB-Dock2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022;50(W1):W159–64. doi: https://doi.org/10.1093/nar/gkac934
40. Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceutics. 2022;15:572. doi: https://doi.org/10.3390/ph15050572
41. Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic oppoetunities. Nat Rev Mol Cell Biol. 2021;22(2):75–95. doi: https://doi.org/10.1038/s41580-020-00314-w
42. Desai A, Grolleau-Julius A, Yung R. Leukocyte function in the aging immune system. J Leukoc Biol. 2010;87(6):1001–9. doi: https://doi.org/10.1189/jlb.0809542
43. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8. doi: https://doi.org/10.1038/nature02118
44. Beck J, Turnquist C, Horikawa I, Harris C. Targeting cellular senescence in cancer and aging: roles of p53 and its isoforms. Carcinogenesis. 2020;41(8):1017–29. doi: https://doi.org/10.1093/carcin/bgaa071
45. Tait IS, Li Y, Lu J. PTEN, longevity and age related diseases. Biomedicines. 2013;1(91):17–48. doi: https://doi.org/10.3390/biomedicines1010017
46. Rea IM, Gibson DS, McGilligan C, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines, Front Immunol. 2018;9:586. doi: https://doi.org/10.3389/fimmu.2018.00586
47. Lopez-Muguruza E, Matute C. Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis. Int J Mol Sci. 2023;24(16):12912. doi: https://doi.org/10.3390/ijms241612912
48. Graciani AL, Gutierre MU, Coppi AA, Arida RM, Gutierre RC. Myelin, aging, and physical exercise. Neurobiol Aging. 2023;127:70– 81. doi: https://doi.org/10.1016/j.neurobiolaging.2023.03.009
49. Murray CJ, Vecchiarelli HA, Tremblay ME. Enhancing axonal myelination in seniors: a review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci. 2023;15:1119552. doi: https://doi.org/10.3389/fnagi.2023.1119552
50. Gray NE, Hack W, Brandes MW, Zweig JA, Yang L, Marney L, et al. Amelioration of age-related cognitive decline and anxiety in mice by Centella asiatica extract varies by sex, dose and mode of administration. Front Aging. 2024;5:1357922. doi: https://doi.org/10.3389/fragi.2024.1357922
51. Srivastava S. The mitochondria basis of aging and age-related disorders. Genes. 2017;8(12):398. doi: https://doi.org/10.3390/genes8120398
52. Itoh K, Weis S, Mehrein P, Muller-Hocker J. Cytochrome c oxidase defects of the human substantia nigra in normal aging. Neurobiol Aging. 1996;17(6):843–8. doi: https://doi.org/10.1016/s0197-4580(96)00168-6
53. Netala VR, Teertam SK, Li H, Zhang Z. A comprehensive review of cardiovascular disease management: cardiac biomarkers, imaging modalities, pharmacotherapy, surgical interventions, and herbal remedies. Cells. 2024;13(17):1471. doi: https://doi.org/10.3390/cells13171471
54. Zhao M, Wu F, Tang Z, Yang X, Liu Y, Wang F, et al. Anti-inflammatory and antioxidant activity of ursolic acid: a systematic review and meta-analysis. Front Pharmacol. 2023;14:1256946. doi: https://doi.org/10.3389/fphar.2023.1256946
55. Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 activation by natural phytochemicals: an overview. Front Pharmacol. 2020;11:1225. doi: https://doi.org/10.3389/fphar.2020.01225
56. Christaki S, Spanidi E, Panagiotidou E, Athanasopoulou S, Kyriakoudi A, Mourtzinos I, et al. Cyclodextrins for the delivery of bioactive compounds from natural sources: medicinal, food and cosmetics applications. Pharmaceuticals. 2023;16(9):1274. doi: https://doi.org/10.3390/ph16091274
Year
Month