Ethanolic root extract of Bouea macrophylla Griffith improves lipid homeostasis in palmitate-induced lipid accumulation in HepG2 cells

Linda Chularojmontri Jarinyaporn Naowaboot Urarat Nanna Kusuma Jitsaeng Thaweesak Juengwatanatrakul Suvara Wattanapitayakul Wanwisa Suwannaloet   

Open Access   

Published:  Sep 20, 2025

DOI: 10.7324/JAPS.2025.250674
Abstract

The major characteristic of nonalcoholic fatty liver disease (NAFLD) is the excessive triglyceride accumulation in hepatocytes due to an imbalance between lipid intake and removal, which also disrupts other lipid metabolism pathways. Therefore, the present study explored the effect of Bouea macrophylla Griffith root ethanolic extract (BME) on lipid homeostasis in palmitate-induced steatosis in HepG2 cells as well as the phytochemical content of BME. In palmitic acid-induced lipogenesis in HepG2 cells, BME (5–10 μg/ml) could suppress the expression of lipogenic genes, including sterol regulatory element-binding protein 1c, acetyl-CoA carboxylase, fatty acid synthase, and reduced lipid storage. Interestingly, the expression of the fatty acid oxidation gene, peroxisome proliferator-activated receptor α, was upregulated, while that of cytochrome P450 2E1 was downregulated by BME. The screening of phytochemicals showed the presence of amines, flavonoids, and phenolics, and high-performance liquid chromatography analysis revealed gallic acid as the major bioactive component of BME. These findings indicate that BME may be useful for improving abnormal lipid homeostasis in metabolic disease-related NAFLD.


Keyword:     Bouea macrophylla Griffith lipid homeostasis lipogenesis nonalcoholic fatty liver disease


Citation:

Chularojmontri L, Naowaboot J, Nanna U, Jitsaeng K, Juengwatanatrakul T, Wattanapitayakul S, Suwannaloet W. Ethanolic root extract of Bouea macrophylla Griffith improves lipid homeostasis in palmitate-induced lipid accumulation in HepG2 cells. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.250674

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Pei K, Gui T, Kan D, Feng H, Jin Y, Yang Y, et al. An overview of lipid metabolism and nonalcoholic fatty liver disease. BioMed Res Int. 2020;2020(1):4020249. doi: https://doi.org/10.1155/2020/4020249

2. Wainwright P, Byrne CD. Bidirectional relationships and disconnects between NAFLD and features of the metabolic syndrome. Int J Mol Sci. 2016;17(3):367. doi: https://doi.org/10.3390/ijms17030367

3. Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring, Md). 2009;17(10):1872−7. doi: https://doi.org/10.1038/oby.2009.224

4. Song Z, Song M, Lee DY, Liu Y, Deaciuc IV, McClain CJ. Silymarin prevents palmitate-induced lipotoxicity in HepG2 cells: involvement of maintenance of Akt kinase activation. Basic Clin Pharmacol Toxicol. 2007;101(4):262−68. doi: https://doi.org/10.1111/j.1742-7843.2007.00116.x

5. Henderson GC. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease. Nutrients 2021;13(8):2590. doi: https://doi.org/10.3390/nu13082590

6. Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014;146(3):726−35. doi: https://doi.org/10.1053/j.gastro.2013.11.049

7. Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes Metab. 2010;12(2):83−92. doi: https://doi.org/10.1111/j.1463-1326.2010.01275.x

8. Todisco S, Santarsiero A, Convertini P, De Stefano G, Gilio M, Iacobazzi V, et al. PPAR alpha as a metabolic modulator of the liver: role in the pathogenesis of nonalcoholic steatohepatitis (NASH). Biology 2022;11(5):792. doi: https://doi.org/10.3390/biology11050792

9. Zhang Y, Yan T, Wang T, Liu X, Hamada K, Sun D, et al. Crosstalk between CYP2E1 and PPARα substrates and agonists modulate adipose browning and obesity. Acta Pharm Sin B. 2022;12(5):2224−38. doi: https://doi.org/10.1016/j.apsb.2022.02.004

10. Hardwick JP, Garcia V. The synergistic and opposing roles of ω-fatty acid hydroxylase (CYP4A11) and ω-1 fatty acid hydroxylase (CYP2E1) in chronic liver disease. Genome Biol Mol Genet. 2024;1(1):015−26. doi: https://doi.org/10.17352/gbmg.000003

11. Harjumäki R, Pridgeon CS, Ingelman-Sundberg M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci. 2021;22(15):8221. doi: https://doi.org/10.3390/ijms22158221

12. Huang L, Lin J-s, Aris IM, Yang G, Chen W-Q, Li L-J. Circulating saturated fatty acids and incident type 2 diabetes: a systematic review and meta-analysis. Nutrients 2019;11(5):998. doi: https://doi.org/10.3390/nu11050998

13. Li YM, Zhao SY, Zhao HH, Wang BH, Li SM. Procyanidin B2 alleviates palmitic acid-induced injury in HepG2 cells via endoplasmic reticulum stress pathway. Evid Based Complement Altern Med. 2021;2021:8920757. doi: https://doi.org/10.1155/2021/8920757

14. Ogino N, Miyagawa K, Nagaoka K, Matsuura-Harada Y, Ogino S, Kusanaga M, et al. Role of HO-1 against saturated fatty acid-induced oxidative stress in hepatocytes. Nutrients 2021;13(3):993. doi: https://doi.org/10.3390/nu13030993

15. Ricchi M, Odoardi MR, Carulli L, Anzivino C, Ballestri S, Pinetti A, et al. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. J Gastroenterol Hepatol. 2009;24(5):830−40. doi: https://doi.org/10.1111/j.1440-1746.2008.05733.x

16. Park JY, Kim Y, Im JA, Lee H. Oligonol suppresses lipid accumulation and improves insulin resistance in a palmitate-induced in HepG2 hepatocytes as a cellular steatosis model. BMC Complement Altern Med. 2015;15:185. doi: https://doi.org/10.1186/s12906-015-0709-1

17. Zhao NQ, Li XY, Wang L, Feng ZL, Li XF, Wen YF, et al. Palmitate induces fat accumulation by activating C/EBPβ- mediated G0S2 expression in HepG2 cells. World J Gastroenterol. 2017;23(43):7705−15. doi: https://doi.org/10.3748/wjg.v23.i43.7705

18. Fu’adah IT, Sumiwi SA, Wilar G. The evolution of pharmacological activities Bouea macrophylla Griffith in vivo and in vitro study: a review. Pharmaceuticals 2022;15(2):238. doi: https://doi.org/10.3390/ph15020238

19. Rudiana T, Suryani N, Indriatmoko DD, Amelia A, Hadi S. Characterization of antioxidative fraction of plant stem Bouea macrophylla Griff. J Phys Conf Ser. 2019;1341(7):072008. doi: https://doi.org/10.1088/1742-6596/1341/7/072008

20. Wanicharat W, Wanachantararak P, Poomanee W, Leelapornpisid P, Leelapornpisid W. Potential of Bouea macrophylla kernel extract as an intracanal medicament against mixed-species bacterial-fungal biofilm. An in vitro and ex vivo study. Arch Oral Biol. 2022;143:105539. doi: https://doi.org/10.1016/j.archoralbio.2022.105539

21. Sukalingam K. Preliminary phytochemical analysis and in vitro antioxidant properties of Malaysian ‘Kundang’ (Bouea macrophylla Griffith). Trends Phytochem Res. 2018;2(4):261−66.

22. Kantapan J, Dechsupa N, Tippanya D, Nobnop W, Chitapanarux I. Gallotannin from Bouea macrophylla seed extract suppresses cancer stem-like cells and radiosensitizes head and neck cancer. Int J Mol Sci. 2021;22(17):9253. doi: https://doi.org/10.3390/ijms22179253

23. Dechsupa N, Kantapan J, Tungjai M, Intorasoot S. Maprang “Bouea macrophylla Griffith” seeds: proximate composition, HPLC fingerprint, and antioxidation, anticancer and antimicrobial properties of ethanolic seed extracts. Heliyon 2019;5(7):e02052. doi: https://doi.org/10.1016/j.heliyon.2019.e02052

24. Nguyen NH, Nguyen TT, Ma PC, Ta QTH, Duong TH, Vo VG. Potential antimicrobial and anticancer activities of an ethanol extract from Bouea macrophylla. Molecules 2020;25(8):1996. doi: https://doi.org/10.3390/molecules25081996

25. Wahyuni LET, Hardinsyah H, Setiawan B. In-vitro alpha amylase inhibition and antioxidant activities of leaves extract of Sundanese traditional salad (lalapan) from Indonesia. J Gizi Pangan. 2020;15(2):109−18. doi: https://doi.org/10.25182/jgp.15.2.109-118

26. Zainah A, Hazlina Ahmad H, Rosniza R. Phytochemicals content, antioxidant and α-glucosidase inhibition activity of Bouea macrophylla Griff seed extract. R&D Seminar 2016. 2016;48(24):S60.

27. Archana TM, Soumya K, James J, Sudhakaran S. Root extracts of Anacardium occidentale reduce hyperglycemia and oxidative stress in vitro. Clini Phytosci. 2021;7(1):57. doi: https://doi.org/10.1186/s40816-021-00293-1

28. Udem G, Dahiru D, Etteh C. In vitro antioxidant activities of aqueous and ethanol extracts of Mangifera indica leaf, stem-bark and root-bark. Phcog Commn. 2018;8(3):119−24. doi: https://doi.org/10.5530/pc.2018.3.25

29. Pigeot I, Ahrens W. Epidemiology of metabolic syndrome. Pflug Arch Eur J Physiol. 2025;477(5):669−80. doi: https://doi.org/10.1007/s00424-024-03051-7

30. Mansoori A, Singh N, Dubey SK, Thakur TK, Alkan N, Das SN, et al. Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity. Front Agron. 2020;2:582268. doi: https://doi.org/10.3389/fagro.2020.582268

31. Zahoor M, Shafiq S, Ullah H, Sadiq A, Ullah F. Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem. 2018;19(1):5. doi: https://doi.org/10.1186/s12858-018-0095-7

32. Nanna U, Naowaboot J, Chularojmontri L, Kaewamatawong R, Homhual S, Wattanapitayakul S, et al. Effects of Citrus aurantifolia root ethanolic extract on lipogenesis in palmitate-induced lipid accumulation in HepG2 cells. Pharmacog J. 2025;17(1):77−83. doi: https://doi.org/10.5530/pj.2025.17.10

33. Zang Y, Fan L, Chen J, Huang R, Qin H. Improvement of lipid and glucose metabolism by capsiate in palmitic acid-treated HepG2 cells via activation of the AMPK/SIRT1 signaling pathway. J Agric Food Chem. 2018;66(26):6772−81. doi: https://doi.org/10.1021/acs.jafc.8b01831

34. Qin H, Liu Y, Lu N, Li Y, Sun C-H. cis-9,trans-11-conjugated linoleic acid activates AMP-activated protein kinase in attenuation of insulin resistance in C2C12 myotubes. J Agric Food Chem. 2009;57(10):4452−58. doi: https://doi.org/10.1021/jf900534w

35. Bort A, Sánchez BG, Mateos-Gómez PA, Díaz-Laviada I, Rodríguez- Henche N. Capsaicin targets lipogenesis in HepG2 cells through AMPK activation, AKT inhibition and PPARs regulation. Int J Mol Sci. 2019;20(7):1660. doi: https://doi.org/10.3390/ijms20071660

36. Liu X, Hu M, Ye C, Liao L, Ding C, Sun L, et al. Isosilybin regulates lipogenesis and fatty acid oxidation via the AMPK/SREBP-1c/PPARα pathway. Chem Biol Interact. 2022;368:110250. doi: https://doi.org/10.1016/j.cbi.2022.110250

37. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125−31. doi: https://doi.org/10.1172/jci15593

38. Li N, Li X, Ding Y, Liu X, Diggle K, Kisseleva T, et al. SREBP regulation of lipid metabolism in liver disease, and therapeutic strategies. Biomedicines 2023;11(12):3280. doi: https://doi.org/10.3390/biomedicines11123280

39. Liang Y, Zhang P, Li F, Lai H, Qi T, Wang Y. Advances in the study of marketed antibody-drug Conjugates (ADCs) for the treatment of breast cancer. Front Pharmacol. 2023;14:1332539. doi: https://doi.org/10.3389/fphar.2023.1332539

40. Tailleux A, Wouters K, Staels B. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta. 2012;1821(5):809−18. doi: https://doi.org/10.1016/j.bbalip.2011.10.016

41. Tanaka M, Sato A, Kishimoto Y, Mabashi-Asazuma H, Kondo K, Iida K. Gallic acid inhibits lipid accumulation via AMPK pathway and suppresses apoptosis and macrophage-mediated inflammation in hepatocytes. Nutrients 2020;12(5):1479. doi: https://doi.org/10.3390/nu12051479

42. Gao J, Hu J, Hu D, Yang X. A role of gallic acid in oxidative damage diseases: a comprehensive review. Nat Prod Commun. 2019;14(8):1−9. doi: https://doi.org/10.1177/1934578x19874174

43. Xiang Z, Guan H, Zhao X, Xie Q, Xie Z, Cai F, et al. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res Int. 2024;180:114068. doi: https://doi.org/10.1016/j.foodres.2024.114068

44. Li K, Gong Q, Lu B, Huang K, Tong Y, Mutsvene TE, et al. Anti-inflammatory and antioxidative effects of gallic acid on experimental dry eye: in vitro and in vivo studies. Eye Vis. 2023;10(1):17. doi: https://doi.org/10.1186/s40662-023-00334-5

45. Lin Y, Luo T, Weng A, Huang X, Yao Y, Fu Z, et al. Gallic acid alleviates gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis through enhancing Nrf2 signaling. Front Immunol. 2020;11:580593. doi: https://doi.org/10.3389/fimmu.2020.580593

46. Liu S, Li J, Feng L-h. Gallic acid regulates immune response in a mouse model of rheumatoid arthritis. Immu Inflamm Dis. 2023;11(2):e782. doi: https://doi.org/10.1002/iid3.782

47. Pandey A, Bani S, Lal Sangwan P. Anti-obesity potential of gallic acid from Labisia pumila, through augmentation of adipokines in high fat diet induced obesity in C57BL/6 mice. Adv Res. 2014;2(10):556−70. doi: https://doi.org/10.9734/AIR/2014/10182

48. Zhang D, Zhou Q, Yang X, Zhang Z, Wang D, Hu D, et al. Gallic acid can promote low-density lipoprotein uptake in HepG2 cells via increasing low-density lipoprotein receptor accumulation. Molecules 2024;29(9):1999. doi: https://doi.org/10.3390/molecules29091999

Article Metrics
7 Views 3 Downloads 10 Total

Year

Month

Similar Articles

Related Search

By author names