Biological prospecting of endophytic fungi from the stem bark of Oroxylum indicum (L.) Kurz with antioxidant efficacy

Sushma Apoorva Kenjar Juliet Roshini Mohan Raj Vishakh Radhakrishna Kedilaya Tamizh Selvan Gnanasekaran Pavan Gollapalli Sharmila Kameyanda Poonacha   

Open Access   

Published:  Sep 20, 2025

DOI: 10.7324/JAPS.2025.247093
Abstract

Reactive oxygen species (ROS) require careful regulation in living organisms, as growing scientific evidence suggests their continuous production occurs even during typical cellular processes. Excessive production of ROS can lead to systemic oxidative stress, harming biological macromolecules and accelerating the aging process, diabetes, cancer, and other severe illnesses. This study investigated the presence of fungal endophytes associated with the stem bark of Oroxylum indicum (OI), and their phytochemical profile and antioxidant efficacy. We identified three fungal endophytes from two distinct genera. Three fungal endophytes namely, Simplicillium obclavatum (SC), Neopestalotiopsis clavispora (NC), and Trametes polyzona (TP) are the first to be documented from OI stem bark. The ethyl acetate extract of NC shown notable antioxidant activity against superoxide anion radical and (2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) free radical among the identified endophytes with the scavenging percentage value of 33.54 ± 0.4, 57.03 ± 0.69, and 37.41 ± 0.32, respectively, at the concentration of 100 μg/ml of the extract. The significant antioxidant activity of 24.07 ± 0.88 ascorbic acid equivalents was observed for NC extract. The mean total phenolic and total flavonoid content of NC extract was found to be 33.33 ± 0.22 and 38.90 ±1.17 gallic acid and quercetin equivalents, respectively, which was significantly higher compared to SC and TP isolates. Our study has provided insights on the presence of phytochemicals and their antioxidative potency in the isolated endophytic fungi from the stem bark of OI.


Keyword:     Oroxylum indicum endophytic fungi phytochemicals antioxidant secondary metabolites


Citation:

Sushma, Kenjar A, Raj JRM, Kedilaya VR, Gnanasekaran TS, Gollapalli P, Poonacha SK. Biological prospecting of endophytic fungi from the stem bark of Oroxylum indicum (L.) Kurz with antioxidant efficacy. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.247093

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Gangwar M, Gautam MK, Sharma AK, Tripathi YB, Goel RK, Nath G. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippensis fruit extract on human erythrocytes: an in vitro study. Sci World J [Internet]. 2014; 2014:279451. doi: https://doi.org/10.1155/2014/279451

2. Hosseinzadeh S, Jafarikukhdan A, Hosseini A. The application of medicinal plants in traditional and modern medicine: a review of Thymus vulgaris. Int J Clin Med. 2015;6:635–42. https://doi.org/10.4236/ijcm.2015.69084

3. Jagetia GC. A review on the medicinal and pharmacological properties of traditional ethnomedicinal plant Sonapatha, Oroxylum indicum. Sinusitis 2021;5:71–89. doi: https://doi.org/10.3390/sinusitis5010009

4. Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Phytochemical and TLC profiling of Oroxylum indicum and Milletia pachycarpa. J Plant Biochem Physiol. 2015;3:1–8. https://doi.org/10.4172/2329-9029.1000152

5. Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Topical application of stem bark ethanol extract of Sonapatha, Oroxylum indicum (L.) Kurz accelerates healing of deep dermal excision wound in Swiss albino mice. J Ethnopharmacol. 2018;227:290–9. https://doi.org/10.1016/j.jep.2018.08.018

6. Gaur RD, Sharma J. Indigenous knowledge on the utilization of medicinal plant diversity in the Siwalik region of Garhwal Himalaya, Uttarakhand. J Environ Sci. 2011;27:23–31.

7. Rout SD, Panda T, Mishra N. Ethno-medicinal plants used to cure different diseases by tribals of Mayurbhanj district of north Orissa. Stud Ethno-Med. 2009;3:27–32. https://doi.org/10.1080/09735070.2009.11886333

8. Das S, Dutta Choudhury M, Mandal SC, Talukdar A. Traditional knowledge of ethnomedicinal hepatoprotective plants used by certain ethnic communities of Tripura state. Indian J Fundam Appl Life Sci. 2012;2:84–97.

9. Khare C. Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, botany. 4th ed. Berlin/Heidelberg, Germany; New York, NY: Springer; 2004. https://doi.org/10.1007/978-3-642-18659-2

10. Nadkarni K. Indian materia medica. 3rd ed. Bombay, India: Popular Prakashan; 1982.

11. Dinda B, Silsarma I, Dinda M, Rudrapaul P. Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol. 2015;161:255–78. https://doi.org/10.1016/j.jep.2014.12.027

12. Drury CH. Ayurvedic useful plants of India. Delhi, India: Asiatic Publishing House; 2010.

13. Patil G, Mali P, Bhadane V. Folk remedies used against respiratory disorders in Jalgaon district, Maharashtra. Nat Prod Radiance. 2008;7:354–8.

14. Panghal M, Arya V, Yadav S, Kumar S, Yadav JP. Indigenous knowledge of medicinal plants used by Saperas community of Khetawas, Jhajjar District, Haryana, India. J Ethnobiol Ethnomed. 2010;6:1–11. https://doi.org/10.1186/1746-4269-6-4

15. Neelu J, Alok S, Tapan KN. Taxonomic and phytomedicinal properties of Oroxylum indicum (L.) Vent: a wonderful gift of nature. J Med Plant Res. 2014;8:1148–55. doi: https://doi.org/10.5897/jmpr2013.5178

16. Chepkirui C, Stadler M. The genus Diaporthe: a rich source of diverse and bioactive metabolites. Mycol Prog [Internet]. 2017;16(5):477– 94. doi: https://doi.org/10.1007/s11557-017-1288-y

17. Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology [Internet]. 2020;11(1):1– 21. doi: https://doi.org/10.1080/21501203.2019.1645053

18. Schulz B, Boyle C. The endophytic continuum. Mycol Res [Internet]. 2005;109(Pt 6):661–86. doi: https://doi.org/10.1017/s095375620500273x

19. Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 1995;73:274–6.

20. Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol [Internet]. 2011;90(6):1829–45. doi: https://doi.org/10.1007/s00253- 011-3270-y

21. Shah S, Chaple D, Arora S, Yende S, Moharir K, Lohiya G. Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method. Netw Model Anal Health Inform Bioinform [Internet]. 2021;10(1):8. doi: https://doi.org/10.1007/s13721-020-00279-y

22. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD. Kursar TA. Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PloS One [Internet]. 2013;8(9):e73192. doi: https://doi.org/10.1371/journal.pone.0073192

23. Cappuccino JG, Sherman N. Microbiology, a laboratory manual. San Francisco, CA: Benjamin-Cummings; 1996.

24. Dugan FM. The identification of fungi: an illustrated introduction with keys, glossary, and guide to literature. St. Paul, MN: The American Phytopathological Society Press; 2006.

25. Fredricks DN, Smith C, Meier A. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol [Internet]. 2005;43(10):5122–8. doi: https://doi.org/10.1128/JCM.43.10.5122-5128.20054.

26. Kenjar A, M Raj JR, Bhandary J, Girisha BS, Chakraborty G, Karunasagar I. Development of a rapid and low-cost method for the extraction of dermatophyte DNA. Indian J Dermatol [Internet]. 2021;66(6):668–73. doi: https://doi.org/10.4103/ijd.ijd_19_21

27. Pharamat T, Palaga T, Piapukiew J. Antimicrobial and anticancer activities of endophytic fungi from Mitragyna javanica Korth and Val. Afr J Microbiol Res. 2013;7:5565–72.

28. Cui J-L, Guo S-X, Xiao P-G. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B [Internet]. 2011;12(5):385–92. doi: https://doi.org/10.1631/jzus.B1000330

29. Raaman N. Phytochemical techniques. New Delhi, India: New India Publishing Agency; 2006. https://doi.org/10.59317/9789390083404

30. Harborne JB. Phytochemicals methods. New Delhi, India: Springer (India) Pvt. Ltd.; 2005.

31. Du X, Vuong D. Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. In: Advances in Materials science and engineering. 2019. https://doi.org/10.1155/2019/8781013

32. Lalhminghlui K, Jagetia GC. Evaluation of the free-radical scavenging and antioxidant activities of Chilauni, Schima wallichii Korth in vitro. Future Sci OA [Internet]. 2018;4(2):FSO272. doi: https://doi.org/10.4155/fsoa-2017-0086

33. Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:307–15.

34. Sharmila KP, Kumar SBB, Kumari SN, Kumar MH, Salins PC. Phytochemical profile and in-vitro antioxidant potencies of Oroxylum indicum stem bark extract. Int J Pharm Sci Res. 2021;12(7):1000–8. doi: https://doi.org/10.13040/IJPSR.0975-8232.12(7).1000-08

35. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem [Internet]. 1999;269(2):337–41. doi: https://doi.org/10.1006/abio.1999.4019

36. Yadav M, Yadav A, Yadav JP. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac J Trop Med [Internet]. 2014;7S1:S256– 61. doi: https://doi.org/10.1016/S1995-7645(14)60242-X

37. Qui M, Xie R, Shi Y. Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba. Ann Microbiol. 2010;60:143–50.

38. Wang N, Fan X, Zhang S, Liu B, He M, Chen X, et al. Identification of a hyperparasitic Simplicillium obclavatum strain affecting the infection dynamics of Puccinia striiformis f. sp. tritici on wheat. Front Microbiol [Internet]. 2020;11:1277. doi: https://doi.org/10.3389/fmicb.2020.01277

39. Daengsuwan W, Wonglom P, Arikit S, Sunpapao A. Morphological and molecular identification of Neopestalotiopsis clavispora causing flower blight on Anthurium andraeanum in Thailand. Hortic Plant J [Internet]. 2021;7(6):573–8. doi: https://doi.org/10.1016/j.hpj.2020.10.004

40. Lueangjaroenkit P, Teerapatsakul C, Sakka K, Sakka M, Kimura T, Kunitake E, et al. Two manganese peroxidases and a laccase of Trametes polyzona KU-RNW027 with novel properties for dye and pharmaceutical product degradation in redox mediator-free system. Mycobiology [Internet]. 2019;47(2):217–29. doi: https://doi.org/10. 1080/12298093.2019.1589900

41. Porter CH, Collins FH. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera:Culicidae). Am J Trop Med Hyg. 1991;45(2):271–9. doi: https://doi.org/10.4269/ajtmh.1991.45.271

42. Bisht R, Sharma D, Agrawal PK. Antagonistic and antibacterial activity of endophytic fungi isolated from needle of cupressus torulosa D.Don. Asian J Pharm Clin Res. 2016;9:282–8.

43. Selim S. Susceptibility of imipenem-resistant Pseudomonas aeruginosa to flavonoid glycosides of date palm (Phoenix dactylifera L.) tamar growing in Al Madinah, Saudi Arabia. Afr J Biotechnol. 2011;11:416–22. doi: https://doi.org/10.5897/ajb11.1412

44. Strobel GA. Endophytes as sources of bioactive products. Microbes Infect [Internet]. 2003;5(6):535–44. doi: https://doi.org/10.1016/s1286-4579(03)00073-x

45. Nath A, Pathak J, Joshi S. Bioactivity assessment of endophytic fungi associated with Centella asiatica and Murraya koengii. J Appl Biol Biotechnol. 2014;2(5):6–11.

46. Tang Z, Wang Y, Yang J, Xiao Y, Cai Y, Wan Y, et al. Isolation and identification of flavonoid-producing endophytic fungi from medicinal plant Conyza blinii H. Lév that exhibit higher antioxidant and antibacterial activities. PeerJ [Internet]. 2020;8(e8978):e8978. doi: https://doi.org/10.7717/peerj.8978

47. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact [Internet]. 2014;224:164– 75. doi: https://doi.org/10.1016/j.cbi.2014.10.016

48. Gandhimathi C. Nutritional evaluation, in vitro free radical scavenging and in vivo anti-inflammatory effects of Gisekia pharnacioides and identification of Kaempferol as a nutraceutical agent. Br Biotechnol J [Internet]. 2011;1(3):113–35. doi: https://doi.org/10.9734/bbj/2011/597

49. Lalrinzuali K, Vabeiryureilai M, Jagetia GC. Lalawmpuii PC. Free radical scavenging and antioxidant potential of different extracts of Oroxylum indicum in vitro. Adv Biomed Pharm. 2015;2:120–30.

50. Jagetia GC, Venkatesh P, Baliga MS. Evaluation of the radioprotective effect of Aegle marmelos (L.) Correa in cultured human peripheral blood lymphocytes exposed to different doses of gamma-radiation: a micronucleus study. Mutagenesis [Internet]. 2003;18(4):387–93. doi: https://doi.org/10.1093/mutage/geg011

51. Kaur N, Arora DS, Kalia N, Kaur M. Bioactive potential of endophytic fungus Chaetomium globosum and GC-MS analysis of its responsible components. Sci Rep. 2020;10(1):18792. doi: https://doi.org/10.1038/s41598-020-75722-1

52. Jagetia GC, Shetty PC, Vidyasagar MS. Inhibition of radiation-induced DNA damage by jamun, Syzygium cumini, in the cultured splenocytes of mice exposed to different doses of γ-radiation. Integr Cancer Ther [Internet]. 2012;11(2):141–53. doi: https://doi.org/10.1177/1534735411413261

53. Aparadh VT, Naik VV, Karadge BA. Antioxidative properties (TPC, DPPH, FRAP, Metal chelating ability, reducing power and TAC) within some Cleome species. Ann Bot. 2012;2:49–56.

54. Rice-Evans CN, Miller P, Bolwell PM, Bramley J. The relative antioxidant activities of plant derived polyphenolic flavonoids. Free Radic Res. 1995;22:375–83. https://doi.org/10.3109/10715769509145649

55. Aliyu AB, Ibrahim MA, Musa AM. Phenolics content and antioxidant capacity of extracts and fractions of Verninia blumeoides (Asteraceae). Int J Biol Chem. 2011;5:352–9. https://doi.org/10.3923/ijbc.2011.352.359

56. Palanichamy P, Krishnamoorthy G, Kannan S, Marudhamuthu M. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egypt J Basic Appl Sci [Internet]. 2018;5(4):303– 12. doi: https://doi.org/10.1016/j.ejbas.2018.07.002

57. Hidalgo M, Moreno S, Teresa P. Flavonoid-flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010;12:691–6. Doi: https://doi.org/10.1016/j.foodchem.2009.12.097

58. Freeman BL, Eggett DL, Parker TL. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J Food Sci [Internet]. 2010;75(6):C570–6. doi: https://doi.org/10.1111/j.1750-3841.2010.01717.x

59. Szabó É, Marosvölgyi T, Szilágyi G, K?rösi L, Schmidt J, Csepregi K, et al. Correlations between total antioxidant capacity, polyphenol and fatty acid content of native grape seed and pomace of four different grape varieties in hungary. Antiox (Basel). 2021;10(7):1101. doi: https://doi.org/10.3390/antiox10071101

60. Hazra B, Biswas S, Mandal N. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement Altern Med 2008;8:63. doi: https://doi.org/10.1186/1472-6882-8-63

61. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15:71. doi: https://doi.org/10.1186/s12937-016-0186-5

62. Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med. 2010;14(4):840–60. doi: https://doi.org/10.1111/j.1582-4934.2009.00897.x

63. Liang N, Kitts DD. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 2014;19(11):19180–208. doi: https://doi.org/10.3390/molecules191119180

Article Metrics
14 Views 10 Downloads 24 Total

Year

Month

Related Search

By author names