The aim of the present study was to evaluate the anti-leishmanial activity of Betula utilis D. Don ethanolic extract, isolated betulin (VA1), and its semisynthetic derivative (VA2) against Leishmania donovani. The ethanolic extract was obtained by Soxhlet extraction, and betulin was isolated by column chromatography. In-silico studies identified potential interaction sites between amphotericin B (standard drug), betulin, its semisynthetic derivative, and the active sites of pteridine reductase 1. VA2 exhibited important interactions with amino acid residues compared to betulin. Anti-promastigote activity and cytotoxicity tests were conducted using the (3-(4,5- dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) cell viability method on modified THP-1 cells infected with L. donovani. Promastigotes were treated with varying concentrations of VA1, VA2, and Betula utilis ethanolic extract (EEBU) for 72 hours. In-vitro studies showed that EEBU, VA1, and VA2 significantly reduced viable L. donovani promastigotes, with IC50 values of (58.26 μM) EEBU, (58.39μM) VA1, and (25.50 μM) VA2. They also inhibited amastigote forms with low macrophage cytotoxicity. The significant anti-leishmanial activity exhibited by VA2 suggested it could serve as a lead agent against leishmaniasis.
Loshali A, Beg MA, Bawa S, Selvapandiyan A, Aeri V. Anti-leishmanial potential of Betula utilis D. Don ethanolic extract, isolated betulin and its ester derivative on THP-1cells against Leishmania donovani. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.241438
1. Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vect. 2017;10:1-7. https://doi.org/10.1186/s13071-017-2204-7 | |
2. Lockard RD, Wilson ME, Rodríguez NE. Sex-related differences in immune response and symptomatic manifestations to infection with Leishmania species. J Immunol Res. 2019;(1):4103819. https://doi.org/10.1155/2019/4103819 | |
3. Ahuja K, Beg MA, Sharma R, Saxena A, Naqvi N, Puri N, et al. A novel signal sequence negative multimeric glycosomal protein required for cell cycle progression of Leishmania donovani parasites. BBA Adv. 2018;1865(8):1148-59. https://doi.org/10.1016/j.bbamcr.2018.05.012 | |
4. World Health Organization. Health sector bulletin. Geneva, Switzerland: World Health rganization; 2020. [cited 2023 December 29]. Available from: https://healthcluster.who.int/docs/librariesprovider16/meeting-reports/syria-health-sector- bulletinjan-2020.pdf? | |
5. Scarpini S, Dondi A, Totaro C, Biagi C, Melchionda F, Zama D, et al. Visceral leishmaniasis: epidemiology, diagnosis, and treatment regimens in different geographical areas with a focus on pediatrics. Microorganisms. 2022;10(10):1887. https://doi.org/10.3390/microorganisms10101887 | |
6. Leta S, Dao TH, Mesele F, Alemayehu G. Visceral leishmaniasis in Ethiopia: an evolving disease. PLoS Negl Trop Dis. 2014;8(9):e3131. https://doi.org/10.1371/journal.pntd.0003131 | |
7. Selvapandiyan A, Croft SL, Rijal S, Nakhasi HL, Ganguly NK. Innovations for the elimination and control of visceral leishmaniasis. PLoS Negl Trop Dis. 2019;13(9):e0007616. https://doi.org/10.1371/journal.pntd.0007616 | |
8. Rastogi S, Pandey MM, Rawat AK. Medicinal plants of the genus Betula-Traditional uses and a phytochemical-pharmacological review. J Ethnopharmacol. 2015;159:62-83. https://doi.org/10.1016/j.jep.2014.11.010 | |
9. Verma D, Ajgaonkar S, Sahu N, Rane M, Teli N. Pharmacological and phytochemical properties of Betula utilis: an overview. Res J Pharm Biol Chem Sci. 2014;5:284-8. | |
10. Alakurtti S, Mäkelä T, Koskimies S, Yli-Kauhaluoma J. Pharmacological properties of the ubiquitous natural product betulin. Eur J Pharm Sci. 2006;29(1):1-3. https://doi.org/10.1016/j.ejps.2006.04.006 | |
11. Cichewicz RH, Kouzi SA. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev. 2004;24(1):90-114. https://doi.org/10.1002/med.10053 | |
12. Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020;38:107409. https://doi.org/10.1016/j.biotechadv.2019.06.008 | |
13. Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Betulin and betulinic acid: triterpenoids derivatives with a powerful biological potential. Phytochem Rev. 2019;18:929-51. https://doi.org/10.1007/s11101-019-09623-1 | |
14. Siman P, Filipova A, Ticha A, Niang M, Bezrouk A, Havelek R. Effective method of purification of betulin from birch bark: the importance of its purity for scientific and medicinal use. PLoS One. 2016;11(5):e0154933. https://doi.org/10.1371/journal.pone.0154933 | |
15. Chrobak E, Jastrz?bska M, B?benek E, Kadela-Tomanek M, Marciniec K, Latocha M, et al. Molecular structure, in vitro anticancer study and molecular docking of new phosphate derivatives of betulin. Molecules. 2021;26(3):737. https://doi.org/10.3390/molecules26030737 | |
16. Wang J, Wu J, Han Y, Zhang J, Lin Y, Wang H, et al. Synthesis and biological evaluation of novel betulin derivatives with aromatic hydrazone side chain as potential anticancer agents. J Braz Chem Soc. 2022;33(03):227-37. https://doi.org/10.21577/0103-5053.20210140 | |
17. Bebenek E, Chodurek E, Orchel A, Dzierzewicz Z, Boryczka S. Antiproliferative activity of novel acetylenic derivatives of betulin against G-361 human melanoma cells. Acta Pol Pharm. 2015;72(4):699-703. | |
18. Santos RC, Salvador JA, Marin S, Cascante M, Moreira JN, Dinis C. Synthesis and structure-activity relationship study of novel cytotoxic carbamate and N-acylheterocyclic bearing derivatives of betulin and betulinic acid. Bioorg Med Chem. 2010;18(12):4385-96. https://doi.org/10.1016/j.bmc.2010.04.085 | |
19. Tang J, Jones SA, Jeffery JL, Miranda SR, Galardi CM, Irlbeck DM, et al. Synthesis and biological evaluation of macrocyclized botulin derivatives as a novel class of anti-HIV-1 maturation inhibitors. Open J Med Chem. 2014;8:23. https://doi.org/10.2174/1874104501408010023 | |
20. Krol SK, Kie?bus M, Rivero-Müller A, Stepulak A. Comprehensive review on betulin as a potent anticancer agent. Biomed Res Int. 2015;(1):584189. https://doi.org/10.1155/2015/584189 | |
21. Alakurtti S, Heiska T, Kiriazis A, Sacerdoti-Sierra N, Jaffe CL, Yli-Kauhaluoma J. Synthesis and anti-leishmanial activity of heterocyclic betulin derivatives. Bioorg Med Chem. 2010;18(4):1573-82. https://doi.org/10.1016/j.bmc.2010.01.003 | |
22. Sousa MC, Varandas R, Santos RC, Santos-Rosa M, Alves V, Salvador JA. Antileishmanial activity of semisynthetic lupine triterpenoids betulin and betulinic acid derivatives: synergistic effects with miltefosine. PLoS One 2014;9(3):e89939. https://doi.org/10.1371/journal.pone.0089939 | |
23. Chowdhury S, Mukherjee T, Sengupta S, Chowdhury SR, Mukhopadhyay S, Majumder HK. Novel betulin derivatives as antileishmanial agents with mode of action targeting type IB DNA topoisomerase. Mol Pharmacol. 2011;80(4):694-703. https://doi.org/10.1124/mol.111.072785 | |
24. Zhang Y, Xhaard H, Ghemtio L. Predictive classification models and targets identification for betulin derivatives as Leishmania donovani inhibitors. J Cheminf. 2018;10:1-6. https://doi.org/10.1186/s13321-018-0291-x | |
25. Joshi H, Saxena GK, Singh V, Arya E, Singh RP. Phytochemical investigation, isolation and characterization of betulin from bark of Betula utilis. J Pharmacogn Phytochem. 2013;2(1):145-51. | |
26. Li TS, Wang JX, Zheng XJ. Simple synthesis of allobetulin, 28-oxyallobetulin and related biomarkers from betulin and betulinic acid catalysed by solid acids. J Chem Soc Perkin Transactions 1. 1998;23:3957-66. https://doi.org/10.1039/a806735j | |
27. Patil SR, Asrondkar A, Patil V, Sangshetti JN, Kalam Khan FA, Damale MG, et al. Antileishmanial potential of fused 5-(pyrazin-2-yl)-4H-1, 2, 4-triazole-3-thiols: synthesis, biological evaluations and computational studies. Bioorg Med Chem Lett. 2017;27(16):3845-50. https://doi.org/10.1016/j.bmcl.2017.06.053 | |
28. Gao J, Liang L, Zhu Y, Qiu S, Wang T, Zhang L. Ligand and structurebased approaches for the identification of peptide deformylase inhibitors as antibacterial drugs. Int J Mol Sci. 2016;17(7):1141. https://doi.org/10.3390/ijms17071141 | |
29. Reddy KP, Singh AB, Puri A, Srivastava AK, Narender T. Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg Med Chem Lett. 2009;19(15):4463-6. https://doi.org/10.1016/j.bmcl.2009.05.034 | |
30. P?cak P, Orzechowska B, Chrobak E, Boryczka S. Novel botulin dicarboxylic acid ester derivatives as potent antiviral agents: design, synthesis, biological evaluation, structure-activity relationship and in-silico study. Eur J Med Chem 2021;225:113738. https://doi.org/10.1016/j.ejmech.2021.113738 | |
31. Joshi M, Dwyer DM, Nakhasi HL. Cloning and characterization of differentially expressed genes from in vitro-grown 'amastigotes' of Leishmania donovani. Mol Biochem Parasitol. 1993;58(2):345-54. https://doi.org/10.1016/0166-6851(93)90057-5 | |
32. Ahuja K, Arora G, Khare P, Selvapandiyan A. Selective elimination of Leptomonas from the in vitro co-culture with Leishmania, Parasitol Int. 2015;64:1-5. https://doi.org/10.1016/j.parint.2015.01.003 | |
33. Fumarola L, Spinelli R, Brandonisio O. In vitro assays for evaluation of drug activity against Leishmania spp. Res Microbiol. 2004;155(4):224-30. https://doi.org/10.1016/j.resmic.2004.01.001 | |
34. Sharma S, Anjaneyulu Yakkala P, Beg MA, Tanwar S, Latief I, Khan A, et al. 5-Arylidene-2, 4-thiazolidinediones as cysteine protease inhibitors against Leishmania donovani. Chem Select. 2023;8(29):e202302415. https://doi.org/10.1002/slct.202302415 | |
35. Das R, Roy A, Dutta N, Majumder HK. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis. 2008;13:867-82. https://doi.org/10.1007/s10495-008-0224-7 | |
36. Comandolli-Wyrepkowski CD, Jensen BB, Grafova I, Santos PA, Barros AM, Soares FV, et al. Antileishmanial activity of extracts from Libidibia ferrea: development of in vitro and in vivo tests. Acta Amazonica. 2017;47:331-40. https://doi.org/10.1590/1809-4392201700871 | |
37. Vats K, Tandon R, Beg MA, Corrales RM, Yagoubat A, Reyaz E, et al. Interaction of novel proteins, centrin4 and protein of centriole in Leishmania parasite and their effects on the parasite growth. Biochim Biophys Acta, Mol Cell Res. 2023;1870(3):119416. https://doi.org/10.1016/j.bbamcr.2022.119416 | |
38. Alakurtti S, Bergström P, Sacerdoti-Sierra N, Jaffe CL, Yli-Kauhaluoma J. Anti-leishmanial activity of betulin derivatives. J Antibiot. 2010;63(3):123-6. https://doi.org/10.1038/ja.2010.2 | |
39. Domínguez-Carmona DB, Escalante-Erosa F, García-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, et al. Antiprotozoalactivity of betulinic acid derivatives. Pytoey. 2010;17(5):379-82. https://doi.org/10.1016/j.phymed.2009.08.002 |
Year
Month