Combination nanopatterns-based Bluray discs and spidroin for directing chondrogenesis of human mesenchymal stem cells

Acep Hendra Punja Unggara Damar Rastri Adhika Anggraini Barlian   

Open Access   

Published:  May 12, 2025

DOI: 10.7324/JAPS.2025.238337
Abstract

Human Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs) have been widely used as a cell source for the development of cartilage tissue engineering. This study aims to test the effect of nanopattern-based nanotopography with a combination of Argiope appensa spider webs extract protein (Spidroin) to induce the differentiation of hWJ-MSCs into chondrocytes. Nanopattern fabrication was obtained by printed nanogrid patterns on the surface of polycarbonate Bluray-disc Recordable using Polydimethylsiloxane. The accomplishment of fabrication was confirmed through scanning electron microscopy and atomic force microscopy to determine the size of nanopatterns. Spidroin was characterized by specifying several parameters such as zeta potential, viscosity, Raman spectroscopy, water contact angle, and cytotoxicity test. The proliferation and differentiation of hWJ-MSCs cells were analyzed using 3 [4,5 - dymethylthiazol-2y1] - 2,5 - dyphenylthiazolium bromide) (MTT), Alcian Blue, and Immunocytochemistry (ICC) assays on days 7, 14, and 21. Nanopatterns were fabricated with ridge, groove, and depth pattern sizes of 145 ± 2.67, 234 ± 8.92, and 15 ± 0.782 nm, respectively. Spidroin characterization shows the presence of Arginine-Glycine-Aspartic Acid (a peptide sequence) sequences. The markers of chondrogenesis, glycosaminoglycans, and ICC for Collagen II and SOX9, were detected starting on day 7 and continued to increase until day 21. In conclusion, a combination of nanopattern and spidroin could accelerate the differentiation process of hWJ-MSCs into chondrocytes as a new method in developing cartilage tissue engineering.


Keyword:     Cartilage human Wharton’s Jelly-derived mesenchymal stem cells nanopattern spidroin and cartilage tissue engineering (CTE)


Citation:

Unggara AHP, Adhika DR, Barlian A. Combination nanopatterns-based Bluray discs and spidroin for directing chondrogenesis of human mesenchymal stem cells. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.238337

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Khalisha A, Puspitasari RL, Moegni KF, Rosadi I, Rosliana I. Profil Mesenchymal Stem Cell (MSC) Pasien Klinik Hayandra Pada Media Kultur Bersuplemen Menggunakan Flow Cytometry. Jurnal Al- Azhar Indonesia Seri Sains Dan Teknologi. 2018;4(4):195. https://doi.org/10.36722/sst.v4i4.310

2. de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol. 2001;13(6):721-8. https://doi.org/10.1016/S0955-0674(00)00276-3

3. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014;20(6):596-608. https://doi.org/10.1089/ten.teb.2013.0771

4. Ma Y, Ji Y, Huang G, Ling K, Zhang X, Xu F. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix. Biofabrication. 2015;7(4):044105. https://doi.org/10.1088/1758-5090/7/4/044105

5. Cun X, Hosta-Rigau L. Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials. 2020;10:1-41. https://doi.org/10.3390/nano10102070

6. Wu C, Chin CSM, Huang Q, Chan HY, Yu X, Roy VAL, et al. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. Microsyst Nanoeng. 2021 Dec 1;7(1):89. https://doi.org/10.1038/s41378-021-00316-4

7. Barlian A, Judawisastra H, Ridwan A, Wahyuni AR, Lingga ME. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma. Sci Rep. 2020 Dec 1;10(1):19449. https://doi.org/10.1038/s41598-020-76466-8

8. Kim J, Bae W, Kim YJ, Seonwoo H, Choung H, Jang K, et al. Directional matrix nanotopography with varied sizes for engineering wound healing. Adv Healthc Mater. 2017;6(19):1700297. https://doi.org/10.1002/adhm.201700297

9. Anene-Nzelu CG, Choudhury D, Li H, Fraiszudeen A, Peh KY, Toh YC, et al. Scalable cell alignment on optical media substrates. Biomaterials. 2013 Jul;34(21):5078-87. https://doi.org/10.1016/j.biomaterials.2013.03.070

10. Wu C, Lin TG, Zhan Z, Li Y, Tung SCH, Tang WC, et al. Fabrication of all-transparent polymer-based and encapsulated nanofluidic devices using nano-indentation lithography. Microsyst Nanoeng. 2017;3(1):1-9. https://doi.org/10.1038/micronano.2016.84

11. Tan J, Chan ZY, Lim PE, Koh JKH, Yong HS. A multigene approach to determine the molecular phylogeography of Argiope mangal and Argiope dang (Araneae: Araneidae) and their genetic relationships with the Argiope aetherea species group. Biochem Syst Ecol. 2016;69:115-23. https://doi.org/10.1016/j.bse.2016.08.013

12. Hernando A, Saputri DHA, Tan MI, Barlian A. Directing the chondrogenic differentiation of human Wharton's jelly mesenchymal stem cells using spider silk-based micropattern. AIP Conference Proceedings, American Institute of Physics Inc.; 2021. https://doi.org/10.1063/5.0048014

13. Hofmann S, Knecht S, Langer R, Kaplan DL, Vunjak-Novakovic G, Merkle HP, et al. Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells. Tissue Eng. 2006;12(10):2729-38. https://doi.org/10.1089/ten.2006.12.2729

14. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082-94. https://doi.org/10.1016/j.biomaterials.2005.05.022

15. Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol. 2008;26(5):244-51. https://doi.org/10.1016/j.tibtech.2008.02.006

16. Barlian A, Saputri DHA, Hernando A, Khoirinaya C, Prajatelistia E, Tanoto H. Spidroin striped micropattern promotes chondrogenic differentiation of human Wharton's jelly mesenchymal stem cells. Sci Rep. 2022 Dec 1;12(1):4837. https://doi.org/10.1038/s41598-022-08982-8

17. Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol. 1996;12:697-715. https://doi.org/10.1146/annurev.cellbio.12.1.697

18. Secunda R, Vennila R, Mohanashankar AM, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 2015 Oct 24;67(5):793-807. https://doi.org/10.1007/s10616-014-9718-z

19. Pham LH, Vu NB, Van Pham P. The subpopulation of CD105 negative mesenchymal stem cells show strong immunomodulation capacity compared to CD105 positive mesenchymal stem cells. Biomed Res Ther. 2019 Apr 30;6(4):3131-40. https://doi.org/10.15419/bmrat.v6i4.538

20. Widowati W, Gunanegara RF, Rizal R, Widodo WS, Amalia A, Wibowo SHB, et al. Comparative analysis of Wharton's Jelly mesenchymal stem cell (WJ-MSCs) isolated using explant and enzymatic methods. J Phys Conf Ser. 2019;1374:012024. https://doi.org/10.1088/1742-6596/1374/1/012024

21. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006 Aug;8(4):315-7. https://doi.org/10.1080/14653240600855905

22. Samimi S, Maghsoudnia N, Eftekhari RB, Dorkoosh F. Lipid-based nanoparticles for drug delivery systems. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Characterization and biology of nanomaterials for drug delivery: nanoscience and nanotechnology in drug delivery. Amsterdam, The Netherlands: Elsevier; 2018. pp. 47-76. https://doi.org/10.1016/B978-0-12-814031-4.00003-9

23. Matusiak J, Grz?dka E. Stability of colloidal systems-a review of the stability measurements methods. Ann Univ Mariae Curie- Sklodowska Sect AA Chem. 2017 Dec 8;72(1):33. https://doi.org/10.17951/aa.2017.72.1.33

24. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res. 2013;12(2):255-64. https://doi.org/10.4314/tjpr.v12i2.19

25. Hack R. Viscosity. In: Bobrowsky PT, Marker B, editors. Encyclopedia of engineering geology. encyclopedia of earth sciences series. Cham, Switzerland: Springer; 2018. pp. 926-9. Available from: http://link.springer.com/10.1007/978-3-319-73568-9_308 https://doi.org/10.1007/978-3-319-73568-9_308

26. Wen C, Yu C, Thirumalaivasan N, Hiramatsu H. 532-nm-excited hyper-Raman spectroscopy of amino acids. J Raman Spectrosc. 2021 Mar;52(3):641-54. https://doi.org/10.1002/jrs.6039

27. Xiao L, Wang H, Schultz ZD. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal Chem. 2016 Jun 21;88(12):6547-53. https://doi.org/10.1021/acs.analchem.6b01344

28. Zhu G, Zhu X, Fan Q, Wan X. Raman spectra of amino acids and their aqueous solutions. Spectrochim Acta A Mol Biomol Spectrosc. 2011 Mar;78(3):1187-95. https://doi.org/10.1016/j.saa.2010.12.079

29. Pflüger F, Hernández B, Ghomi M. Vibrational analysis of amino acids and short peptides in hydrated media. VII. Energy landscapes, energetic and geometrical features of l -histidine with protonated and neutral side chains. J Phys Chem B. 2010 Jul 15;114(27):9072-83. https://doi.org/10.1021/jp103348y

30. Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 2013;44:1061-76. https://doi.org/10.1002/jrs.4335

31. Altomare L, Riehle M, Gadegaard N, Tanzi M, Farè S. Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs. 2010;33(8):535- 43. https://doi.org/10.1177/039139881003300804

32. McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng. 2010;1(1):120623. https://doi.org/10.4061/2010/120623

33. Keung AJ, Kumar S, Schaffer D V. Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol. 2010;26:533-56. https://doi.org/10.1146/annurev-cellbio-100109-104042

34. Cigognini D, Lomas A, Kumar P, Satyam A, English A, Azeem A, et al. Engineering in vitro microenvironments for cell based therapies and drug discovery. Drug Discov Today. 2013;18:1099-108. https://doi.org/10.1016/j.drudis.2013.06.007

35. Jansen KA, Atherton P, Ballestrem C. Mechanotransduction at the cell-matrix interface. Semin Cell Dev Biol. 2017;71:75-83. https://doi.org/10.1016/j.semcdb.2017.07.027

36. Rodríguez-Pereira C, Lagunas A, Casanellas I, Vida Y, Pérez- Inestrosa E, Andrades JA, et al. RGD-dendrimer-poly(L-lactic) acid nanopatterned substrates for the early chondrogenesis of human mesenchymal stromal cells derived from osteoarthritic and healthy donors. Materials. 2020 May 1;13(10):2247. https://doi.org/10.3390/ma13102247

37. Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of pdms for droplet microfluidics using a simple, quick, and robust method via pva deposition. Microsyst Nanoeng. 2017;3:16091. https://doi.org/10.1038/micronano.2016.91

38. Jahangiri F, Hakala T, Jokinen V. Long-term hydrophilization of polydimethylsiloxane (PDMS) for capillary filling microfluidic chips. Microfluid Nanofluidics. 2020 Jan 1;24(1):2. https://doi.org/10.1007/s10404-019-2302-2

39. Paddillaya N, Mishra A, Kondaiah P, Pullarkat P, Menon GI, Gundiah N. Biophysics of cell-substrate interactions under shear. Front Cell Dev Biol. 2019;7:251. https://doi.org/10.3389/fcell.2019.00251

40. Tsimbouri P, Gadegaard N, Burgess K, White K, Reynolds P, Herzyk P, et al. Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J Cell Biochem. 2014 Feb;115(2):380- 90. https://doi.org/10.1002/jcb.24673

41. Luo J, Walker M, Xiao Y, Donnelly H, Dalby MJ, Salmeron-Sanchez M. The influence of nanotopography on cell behaviour through interactions with the extracellular matrix-a review. Bioact Mater. 2022;15:145-59. https://doi.org/10.1016/j.bioactmat.2021.11.024

42. Dexheimer V, Frank S, Richter W. Proliferation as a requirement for in vitro chondrogenesis of human mesenchymal stem cells. Stem Cells Dev. 2012 Aug 10;21(12):2160-9. https://doi.org/10.1089/scd.2011.0670

43. Zhu L, Skoultchi AI. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev. 2001;11(1):91-7. https://doi.org/10.1016/S0959-437X(00)00162-3

44. Nazempour A, Quisenberry CR, Abu-Lail NI, Van Wie BJ. Enhancing adipose stem cell chondrogenesis: a study on the roles of dexamethasone, transforming growth factor β3 and ascorbate supplements and their combination. J Stem Cell Therapy Transplant. 2017;1:28-51. https://doi.org/10.29328/journal.jsctt.1001004

45. Lagunas A, Tsintzou I, Vida Y, Collado D, Pérez-Inestrosa E, Rodríguez Pereira C, et al. Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment. Nano Res. 2017 Jun 1;10(6):1959-71. https://doi.org/10.1007/s12274-016-1382-5

46. Tew SR, Hardingham TE. Regulation of SOX9 mRNA in human articular chondrocytes involving p38 MAPK activation and mRNA stabilization. J Biol Chem. 2006;281(51):39471-9. https://doi.org/10.1074/jbc.M604322200

47. Lefèvre T, Auger M. Spider silk as a blueprint for greener materials: a review. Int Mater Rev. 2016;61(2):127-53. https://doi.org/10.1080/09506608.2016.1148894

48. Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dynam. 1997;209(4):377-86. https://doi.org/10.1002/(SICI)1097-0177(199708)209:4<377::AID-AJA5>3.0.CO;2-F

49. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: from tension to function. Front Physiol. 2018;9:824. https://doi.org/10.3389/fphys.2018.00824

50. Ross TD, Coon BG, Yun S, Baeyens N, Tanaka K, Ouyang M, et al. Integrins in mechanotransduction. Curr Opin Cell Biol. 2013;25(5):613-8. https://doi.org/10.1016/j.ceb.2013.05.006

51. Biggs MJP, Dalby MJ. Focal adhesions in osteoneogenesis. Proc Inst Mech Eng H. 2010;224(12):1441-53. https://doi.org/10.1243/09544119JEIM775

52. Tsimbouri P. Adult stem cell responses to nanostimuli. J Funct Biomater. 2015 Jul 16;6(3):598-622. https://doi.org/10.3390/jfb6030598

53. Miller CJ, Harris D, Weaver R, Ermentrout GB, Davidson LA. Emergent mechanics of actomyosin drive punctuated contractions and shape network morphology in the cell cortex. PLoS Comput Biol. 2018;14(9):e1006344. https://doi.org/10.1371/journal.pcbi.1006344

54. Barlian A, Vanya K. Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: potency and future perspective. Future Sci OA. 2022;8(1):FSO765. https://doi.org/10.2144/fsoa-2021-0097

Article Metrics
80 Views 33 Downloads 113 Total

Year

Month

Related Search

By author names