Optimization using response surface methodology and analysis of antimicrobial activity of pink pigmented Fusarium foetens CBS 110286

Bashir Ahmad Aliyu Shashank Garg Sawinder Kaur Ashish Vyas   

Open Access   

Published:  Aug 20, 2025

DOI: 10.7324/JAPS.2025.260601
Abstract

Fusarium is a diverse genus known for its hyaline, cotton-like colonies, with many species acting as pathogens in plants, animals, and humans. However, specific species such as Fusarium oxysporum, Fusarium moniliforme (now Gibberella fujikuroi), and Fusarium solani produce carotenoid pigments valuable to the food, textile, and cosmetic industries. This study reports, probably for the first time, the isolation of pink-pigmented Fusarium foetens CBS 110286 from Punjab, India, optimizes its pigment production via response surface methodology, and evaluates its antimicrobial activity. The Design-Expert® software (version 13, Stat-Ease, USA) was used to ascertain the effects of five independent variables: temperature (25°C–45°C), incubation time (7 days), peptone (0.1–0.3 g/l), fructose (0.1–0.3 g/l), and initial pH (4–8) were analyzed. In addition, high performance liquid chromatography and gas chromatography mass spectrophotometer characterization was carried out to identify and quantify the major metabolites. The optimized conditions yielded significant pigment production, exhibiting a broad-spectrum effect in peptone and fructose, as well as a zone of inhibition (11 mm) against the Gram-positive bacterium Staphylococcus aureus, and approximately 8 mm against Escherichia coli. This result may have potential applications in the textile, pharmaceutical, and biotechnological industries upon complete characterization.


Keyword:     Antimicrobial activity Fusarium foetens response surface methodology optimization


Citation:

Aliyu BA, Garg S, Kaur S, Vyas A. Optimization using response surface methodology and analysis of antimicrobial activity of pink pigmented Fusarium foetens CBS 110286. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.260601

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Ahmad M, Panda BP. Optimization of red pigment production by Monascus purpureus MTCC 369 under solid-state fermentation using response surface methodology. Songklanakarin J Sci Technol. 2014;36(4):439-44.

2. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6(2):71-9. https://doi.org/10.1016/j.jpha.2015.11.005

3. Cavalcante SB, da Silva AF, Pradi L, Lacerda JW, Tizziani T, Sandjo LP, et al. Antarctic fungi produce pigment with antimicrobial and antiparasitic activities. Braz J Microbiol. 2024;55(2):1251-63. https://doi.org/10.1007/s42770-024-01308-y

4. Pokhrel A, Coleman JJ. Inventory of the secondary metabolite biosynthetic potential of members within the terminal clade of the Fusarium solani species complex. J Fungi. 2023;9(8):799. https://doi.org/10.3390/jof9080799

5. Ben -David A, Davidson CE. Estimation method for serial dilution experiments. J Microbiol Methods 2014;107:214-21. https://doi.org/10.1016/j.mimet.2014.08.023

6. Cheng YL, Lee CY, Huang YL, Buckner CA, Lafrenie RM, Dénommée JA, et al. We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1% [Internet]. London, UK: Intech; 2016. Vol. 11 (tourism), p 13.

7. Davydenko K, Nowakowska JA, Kaluski T, Gawlak M, Sadowska K, García JM, et al. A comparative study of the pathogenicity of Fusarium circinatum and other Fusarium species in polish provenances of P. sylvestris L. forests. 2018;9(9):560. https://doi.org/10.3390/f9090560

8. Deveikaite G, Zvirdauskiene R. Isolation and characterisation of pigments from pigment-producing microorganisms isolated from environment and their antibacterial activity. Rural Sustain Res. 2023;49(344):1-7. https://doi.org/10.2478/plua-2023-0001

9. Dufossé L. Microbial production of food grade pigments. Food Technol Biotechnol. 2006;44(3):313-21.

10. Praptiwi P, Ilyas M, Putra AB, Palupi KD, Fathoni A, Lotulung PD, et al. Bioactivity evaluation of compounds produced by Fusarium equiseti from Kaempferia parviflora rhizome from Indonesia. J Appl Pharm Sci. 2025;15(7):179-92. https://doi.org/10.7324/JAPS.2025.221818

11. Geweely NS. Investigation of the optimum condition and antimicrobial activities of pigments from four potent pigment-producing fungal species. J Life Sci. 2011;5(9):201.

12. Ammar MS, Gerber NN, McDaniel LE. New antibiotic pigments related to fusarubin from Fusarium solani (Mart.) Sacc. I. Fermentation, isolation, and antimicrobial activities. J Antibiot. 1979;32(7):679-84. https://doi.org/10.7164/antibiotics.32.679

13. Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LR. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol. 2024;24(1):84. https://doi.org/10.1186/s12896-024-00909-7

14. Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry-challenges and the way forward. Front Nutr. 2019;6:1-14. https://doi.org/10.3389/fnut.2019.00007

15. Sonkar V, Shukla S, Pandey A. Production optimization of EPS and photosynthetic pigment (chlorophyll-a, chlorophyll-b, carotenoids) production from chlorella using BBD matrix for RSM. In Pandey A, Kumar R, Pandey A, editors. Technologies and innovations for sustainable development 2025. Boca Raton, FL: CRC Press; 2025. pp 134-53. https://doi.org/10.1201/9781003487012-14

16. Anshi, Kaur H, Goswami L, Kapil S, Sharma V. Isolation, optimization and characterization of Rhodotorula alborubescens for dietary pigment β-carotene production. Appl Microbiol. 2025;5(2):54. https://doi.org/10.3390/applmicrobiol5020054

17. Fariq A, Yasmin A, Jamil M. Production, characterization and antimicrobial activities of bio-pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 isolated from Khewra Salt Range, Pakistan. Extremophiles 2019;23:435-49. https://doi.org/10.1007/s00792-019-01095-7

18. Gomaa FA, Selim HM, Alshahrani MY, Aboshanab KM. Central composite design for optimizing istamycin production by Streptomyces tenjimariensis. World J Microbiol Biotechnol. 2024;40(10):316. https://doi.org/10.1007/s11274-024-04118-4

19. Said FM, Hamid NF. Optimization of red pigment production by Monascus purpureus FTC 5356 using response surface methodology. IIUM Eng J. 2018;19(1):34-47. https://doi.org/10.31436/iiumej.v19i1.814

20. Keekan KK, Hallur S, Modi PK, Shastry RP. Antioxidant activity and role of culture condition in the optimization of red pigment production by Talaromyces purpureogenus KKP through response surface methodology. Curr Microbiol. 2020;77(8):1780-9. https://doi.org/10.1007/s00284-020-01995-4

21. Watanabe M, Yonezawa T, Lee KI, Kumagai S, Sugita-Konishi Y, Goto K, et al. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol Biol. 2011;11(1):322. https://doi.org/10.1186/1471-2148-11-322

22. Pandey N, Jain R, Pandey A, Tamta S. Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 2018;9(2):81-92. https://doi.org/10.1080/21501203.2017.1423127

23. Lebeau J, Venkatachalam M, Fouillaud M, Petit T, Vinale F, Dufossé L, et al. Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J Fungi 2017;3(3):34. https://doi.org/10.3390/jof3030034

24. Zhu HH, Guo J, Yao Q, Yang SZ, Deng MR, Li TH. Streptomyces caeruleatus sp. nov., with dark blue diffusible pigment. Int J Syst Evol Microbiol. 2011;61(3):507-11. https://doi.org/10.1099/ijs.0.017392-0

25. Narendrababu BN, Shishupala S. Spectrophotometric detection of pigments from Aspergillus and Penicillium isolates. J Appl Biol Biotechnol. 2017;5:53-8. https://doi.org/10.7324/JABB.2017.50109

26. Patki JM, Singh S, Singh S, Padmadas N, Dasgupta D. Analysis of the applicative potential of pigments extracted from bacterial isolates of mangrove soil as topical UV protectants. Braz J Pharm Sci. 2021;57:e19127. https://doi.org/10.1590/s2175-97902020000419127

27. Salehi Bakhtiyari A, Etemadifar Z, Borhani MS. Use of response surface methodology to enhance carotenoid pigment production from Cellulosimicrobium strain AZ. SN Appl Sci. 2020;2(12):2096. https://doi.org/10.1007/s42452-020-03549-6

28. Santos-Ebinuma VC, Roberto IC, Simas Teixeira MF, Pessoa Jr A. Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol Prog. 2013;29(3):778-85. https://doi.org/10.1002/btpr.1720

29. Sehrawat R, Panesar PS, Swer TL, Kumar A. Response surface methodology (RSM) mediated interaction of media concentration and process parameters for the pigment production by Monascus purpureus MTCC 369 under solid state fermentation. Pigm Resin Technol. 2017;46(1):14-20. https://doi.org/10.1108/PRT-08-2015-0077

30. Indra Arulselvi P, Umamaheswari S, Ranandkumar Sharma G, Karthik C, Jayakrishna C. Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. J Food Process Technol. 2014;5(292):2. https://doi.org/10.4172/2157-7110.1000292

31. Menezes BS, Solidade LS, Conceição AA, Santos Junior MN, Leal PL, de Brito ES, et al. Pigment production by Fusarium solani BRM054066 and determination of antioxidant and anti-inflammatory properties. AMB Express 2020;10:1-2. https://doi.org/10.1186/s13568-020-01054-y

32. Venkatachalam M, Shum-Chéong-Sing A, Caro Y, Dufossé L, Fouillaud M. OVAT analysis and response surface methodology based on nutrient sources for optimization of pigment production in the marine-derived fungus Talaromyces albobiverticillius 30548 submerged fermentation. Mar Drugs 2021;19(5):248. https://doi.org/10.3390/md19050248

33. Wang E, Dong C, Park RF, Roberts TH. Carotenoid pigments in rust fungi: extraction, separation, quantification and characterisation. Fungal Biol Rev. 2018;32(3):166-80. https://doi.org/10.1016/j.fbr.2018.02.002

34. Keivani H, Jahadi M, Ghasemisepero N. Optimizing submerged cultivation for the production of red pigments by Monascus purpureus on soybean meals using response surface methodology. Appl Food Biotechnol. 2020;7(3):143-52.

35. Chaves-González LE, Jaikel-Víquez D, Lozada-Alvarado S, Granados-Chinchilla F. Unveiling the fungal color palette: pigment analysis of Fusarium solani species complex and Curvularia verruculosa clinical isolates. Can J Microbiol. 2024;70(4):135-49. https://doi.org/10.1139/cjm-2023-0181

36. Zhang Y, Wu X, Huang C, Zhang Z, Gao W. Isolation and identification of pigments from oyster mushrooms with black, yellow and pink caps. Food Chem. 2022;372:131171. https://doi.org/10.1016/j.foodchem.2021.131171

37. Yadav RP, Huo C, Budhathoki R, Budthapa P, Bhattarai BR, Rana M, et al. Antibacterial, antifungal, and cytotoxic effects of endophytic Streptomyces species isolated from the Himalayan regions of Nepal and their metabolite study. Biomedicines 2024;12(10):2192. https://doi.org/10.3390/biomedicines12102192

38. Biswas S, Sarojini S. Fungal endophytic species Fusarium annulatum and Fusarium solani: identification, molecular characterization, and study of plant growth promotion properties. Plant Sci Today 2024;11:466-72. https://doi.org/10.14719/pst.2688

39. Patel N, Dwivedi M, Jadeja S, Begum R. Antibacterial activity of marine bacterial pigments obtained from arabian sea water samples. J Pure Appl Microbiol. 2020;14(1):517-26. https://doi.org/10.22207/JPAM.14.1.54

40. Singh HM, Tyagi VV, Ahmad S, Kothari R. Optimization of flocculation efficiency of Chlorella pyrenoidosa with CaCl2 using the Box-Behnken design of response surface methodology: a cost effective statistical investigation. Biomass Convers Biorefin. 2024;14(3):3261-73. https://doi.org/10.1007/s13399-022-02491-4

41. Xu BL, Wang YY, Dong CM. Study on marine actinomycetes and analysis of their secondary metabolites. Life Res. 2023;6(4):18. https://doi.org/10.53388/LR20230018

42. Dag T, Sahal G, Bilkay IS. Antimicrobial pigment from Fusarium graminearum: optimizing conditions and utilizing agro-industrial residues. J Microbiol Biotechnol Food Sci. 2023;13(2):e9757. https://doi.org/10.55251/jmbfs.9757

43. Poornamath BP, Sarojini S, Jayaram S, Biswas S, Kaloor A, Umesh M. Solid-state fermentation of pigment producing endophytic fungus Fusarium solani from Madiwala lake and its toxicity studies. J App Biol Biotech. 2024;12(2):264-72. https://doi.org/10.7324/JABB.2024.143030

44. Lu W, Shi Y, Wang R, Su D, Tang M, Liu Y, et al. Antioxidant activity and healthy benefits of natural pigments in fruits: a review. Int J Mol Sci. 2021;22(9):4945. https://doi.org/10.3390/ijms22094945

45. Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta - Mol Basis Dis. 2005;1740(2):101-7. https://doi.org/10.1016/j.bbadis.2004.12.006

Article Metrics
56 Views 17 Downloads 73 Total

Year

Month

Related Search

By author names