In vitro assessment of α-glucosidase inhibitory activity and compound prediction in Phyllanthus niruri from West Java Indonesia

Idah Rosidah Alfan Danny Arbianto Firdayani Firdayani Agus Supriyono Kurnia Agustini Ngatinem Ngatinem Sri Ningsih   

Open Access   

Published:  Aug 20, 2025

DOI: 10.7324/JAPS.2025.v15.i12.19
Abstract

The aim of this study was to assess the in vitro α-glucosidase inhibitory activity of Phyllanthus niruri fractions (PNFs) and identify the chemicals involved. The ethanolic P. niruri extract was partitioned using medium-pressure liquid chromatography. The PNFs were examined using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS), the α-glucosidase inhibitory activity was assessed using yeast α-glucosidase, and molecular docking simulations were performed via Molegro Virtual Docker version 6.0. The extract had a water-soluble content of 37.26%, ethanol-soluble content of 17.16%, total phenol concentration of 167.65 mg GAE/g extract, total flavonoid concentration of 10.07 mg QE/g extract, water content of 2.72%, loss on drying of 33.39%, total ash content of 4.1%, an acid-insoluble ash content of 0.42%, and an in vitro α-glucosidase inhibitory activity with an IC50 of 1.48 μg/ml. Also, at concentrations of 1 and 3 μg/ml, PNF-1 to PNF-6 had a much stronger inhibitory effect on α-glucosidase than PNF-7 and PNF-8. The UPLC-QTOF/MS analysis of the active fraction identified significant chemicals, notably corilagin (7) and gallic acid dimethyl ester (8). The docking analysis revealed advantageous docking scores of −152 and −81. This indicates that these chemicals may serve as effective α-glucosidase inhibitors. The results of this study support the use of P. niruri as a good natural product for treating diabetes through the α-glucosidase inhibitory mechanism.


Keyword:     α-glucosidase inhibition fractions Phyllanthus niruri molecular docking compound prediction UPLC-QTOF/MS


Citation:

Rosidah I, Arbianto AD, Firdayani F, Supriyono A, Ningsih S, Agustini K, Ngatinem N. In vitro assessment of α-glucosidase inhibitory activity and compound prediction in Phyllanthus niruri from West Java Indonesia. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.v15.i12.19

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Magliano D, Boyko E. IDF diabetes atlas 2021. 10th ed. Brussels, Belgium: International Diabetes Federation; 2021.

2. Bodaghi AB, Ebadi E, Gholami MJ, Azizi R, Shariati A. A decreased level of high-density lipoprotein is a possible risk factor for type 2 diabetes mellitus: a review. Health Sci Rep. 2023;6:e1779. doi: https://doi.org/10.1002/hsr2.1779

3. Kartika R, Wibowo H. Impaired function of regulatory T cells in type 2 diabetes mellitus. Mol Cell Biomed Sci. 2020;4:1. doi: https://doi.org/10.21705/mcbs.v4i1.64

4. Westman EC. Type 2 diabetes mellitus: a athophysiologic perspective Eric C. Westman. Front Nutr. 2021;8:707371. doi: https://doi.org/10.3389/fnut.2021.707371

5. Kashtoh H, Baek K-H. Recent updates on phytoconstituent alpha-glucosidase inhibitors: an approach towards the treatment of type two diabetes. Plants (Basel) 2022;11:2722. doi: https://doi.org/10.3390/plants11202722

6. Ernawati T, Mun’Im A, Hanafi M, Yanuar A. In silico evaluation of molecular interactions between known α-glucosidase inhibitors and homologous α-glucosidase enzymes from Saccharomyces cerevisiae, Rattus norvegicus, and GANC-human. J Pharm Sci. 2018;42:14–20. doi: https://doi.org/10.56808/3027-7922.2389

7. Van de Laar FA, Lucassen P, Akkermans RP, Van de Lisdonk EH, Rutten G, Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005;(2):CD003639. doi: https://doi.org/10.1002/14651858.CD003639.pub2

8. Bagalkotkar G, Sagineedu SR, Saad MS, Stanslas J.Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review. J Pharm Pharmacol. 2006;58:1559–70. doi: https://doi.org/10.1211/jpp.58.12.0001

9. Widiadnyani NKE, Astawa NM, Yasa WPS, Sukrama IDM. View of Phytochemical test and identification of active compounds with LC-MS_MS in green meniran leaf (Phyllanthus niruri Linn). Bali Med. J.2021;10(1):132–6.

10. Domínguez-Perles R, García-Viguera C, Medina S. New anti-α- glucosidase and antioxidant ingredients from winery byproducts: contribution of alkyl gallates. J Agric Food Chem. 2023;71:14615–25. doi: https://doi.org/10.1021/acs.jafc.3c03759

11. Trinh BTD, Staerk D, Jäger AK. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J Ethnopharmacol. 2016;186:189–95. doi: https://doi.org/10.1016/j.jep.2016.03.060

12. Okoli CO, Obidike IC, Ezike AC, Akah PA, Salawu OA. Studies on the possible mechanisms of antidiabetic activity of extract of aerial parts of Phyllanthus niruri. Pharm Biol. 2011;49:248–55. doi: https://doi.org/10.3109/13880209.2010.501456

13. Bavarva JH, Narasimhacharya AVRL. Comparative antidiabetic, hypolipidemic, and antioxidant properties of Phyllanthus niruri. in normal and diabetic rats. Pharm Biol. 2007;45:569–74. doi: https://doi.org/10.1080/13880200701499034

14. Najari Beidokhti M, Andersen MV, Eid HM, Sanchez Villavicencio ML, Staerk D, Haddad PS, et al. Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for α-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem Biophys Res Commun. 2017;493:869–74. doi: https://doi.org/10.1016/j.bbrc.2017.09.080

15. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al. Relationship between metabolites composition and biological activities of Phyllanthus niruri extracts prepared by different drying methods and solvents extraction. Plant Foods Hum Nutr. 2015;70:184–92. doi: https://doi.org/10.1007/s11130-015-0478-5

16. Pieters L, Vlietinck AJ.Bioguided isolation of pharmacologically active plant components, still a valuable strategy for the finding of new lead compounds? J Ethnopharmacol. 2005;100:57–60. doi: https://doi.org/10.1016/j.jep.2005.05.029

17. Sousa AD, Maia IV, Ribeiro PRV, Canuto KM, Zocolo GJ, Sousa de Brito E. UPLC-QTOF-MS E -based chemometric approach driving the choice of the best extraction process for Phyllanthus niruri. Sep Sci Technol. 2017;52:1696–706. doi: https://doi.org/10.1080/014963 95.2017.1298612

18. Ministry of Health Republic of Indonesia. Farmakope herbal Indonesia. Jakarta, Indonesia: Ministry of Health Republic of Indonesia; 2017.

19. Rosidah I, Zainuddin Z, Agustini K, Bunga O, Pudjiastuti L. Standardization of 70% ethanol extract chayote fruit (Sechium edule (Jacq.) Sw.). Farmasains 2020;7:13–20. doi: https://doi.org/10.22236/farmasains.v7i1.4175

20. Abd Ghafar MF, Nagendra Prasad K, Kin Weng K, Ismail A. Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. Afr J Biotechnol. 2010;9:326–30.

21. Singh M, Thrimawithana T, Shukla R, Adhikari B. Extraction and characterization of polyphenolic compounds and potassium hydroxycitrate from Hibiscus sabdariffa. Future Foods 2021;4:100087. doi: https://doi.org/10.1016/j.fufo.2021.100087

22. Hou X, Cheng Z, Wang J.Preparative purification of corilagin from Phyllanthus by combining ionic liquid extraction, prep-HPLC, and precipitation. Anal Methods 2020;12:3382–9. doi: https://doi.org/10.1039/D0AY00860E

23. Ni M, Pan J, Hu X, Gong D, Zhang G. Inhibitory effect of corosolic acid on α -glucosidase: kinetics, interaction mechanism, and molecular simulation. J Sci Food Agric. 2019;99:5881–9. doi: https://doi.org/10.1002/jsfa.9862

24. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, et al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49:444– 60. doi: https://doi.org/10.1021/ci800293n

25. Jayani NIE, Krisnawan AH, Oktaviyanti ND, Kartini. Standardization of Phyllanthus niruri and Sonchus arvensis as components of scientific Jamu. Maj Obat Tradis. 2020;25:7–14. doi: https://doi.org/10.22146/mot.45955

26. WHO. Quality control methods for medicinal plant materials. Geneva, Switzerland World Health Organization; 1998.

27. Rusmana D, Wahyudianingsih R, Elisabeth M, Balqis B, Maesaroh M, Widowati W. Antioxidant activity of Phyllanthus niruri extract, rutin and quercetin. Indones Biomed J.2017;9:84. doi: https://doi.org/10.18585/inabj.v9i2.281

28. Carmagnani HJ, Bucciarelli Mansano G, Sobreira F. Otimização do processo extrativo de Phyllanthus niruri L. Mundo Saúde 2020;44: 134–43. doi: https://doi.org/10.15343/0104-7809.202044134143

29. Shoeb M, Islam MdN, Nahar N. Biological activity studies of the aerial parts of Phyllanthus niruri L. Curr Res Biosci Biotechnol. 2022;4:251–5. doi: https://doi.org/10.5614/crbb.2022.4.1/U7GMG56E

30. Luliana S, Desnita R, Martien R, Nurrochmad A. Total flavonoid contents and in silico study of flavonoid compounds from Meniran (Phyllanthus niruri L.) towards alpha-amylase and alpha-glucosidase enzyme. Pharmaciana 2019;9:1–10. doi: https://doi.org/10.12928/pharmaciana.v%vi%i.10416

31. Artanti N, Dewijanti ID, Muzdalifah D, Windarsih A, Suratno S, Handayani S. Alpha-glucosidase inhibitory activity of the combination of Caesalpinia sappan L. and Garcinia mangostana extract. J Appl Pharm Sci. 2023;13(5):189–98. doi: https://doi.org/10.7324/JAPS.2023.117478

32. Indrianingsi AW, Prihantini AI, Tachibana S. α-Glucosidase inhibitor and antioxidant activity of procyanidin, an isolated compound from Quercus gilva Blume leaves. J Appl Pharm Sci. 2022;12(5):213–8. doi: https://doi.org/10.7324/JAPS.2022.120520

33. Adera KT, Inami YM, Akamatsu KT, Atsuoka TM. Inhibition of α-glucosidase and α-amylase by flavonoids. J Nutr Sci Vitaminol. 2006;52(2):149–53.

34. Limcharoen T, Chaniad P, Chonsut P, Punsawad C, Juckmeta T, Konyanee A, et al. Alpha-glucosidase inhibition, antioxidant activities, and molecular docking study of krom luang chumphon khet udomsak, a Thai traditional remedy. Adv Pharmacol Pharm Sci. 2024;2024:1–18. doi: https://doi.org/10.1155/2024/1322310

35. Beidokhti M, Andersen M, Eid HM, Sanchez Villavicencio ML, Staerk D, Haddad PS, et al. Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for alpha-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem Biophys Res Commun. 2017;493:869–74. doi: https://doi.org/10.1016/j.bbrc.2017.09.080

36. Sabuhom P, Subin P, Luecha P, Nualkaew S, Nualkaew N. Effects of plant part substitution in a Thai traditional recipe on α-glucosidase inhibition. Trop J Nat Prod Res. 2023;7:2919–25. doi: https://doi.org/10.26538/tjnpr/v7i5.12

37. Chao IC, Chen Y, Gao MH, Lin LG, Zhang XQ, Ye WC, et al. Simultaneous determination of alpha-glucosidase inhibitory triterpenoids in Psidium guajava using HPLC-DAD-ELSD and pressurized liquid extraction. Molecules 2020;25:1278. doi: https://doi.org/10.3390/molecules25061278

38. Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, et al. Triterpene acids isolated from Lagerstroemia speciosa leaves as alpha-glucosidase inhibitors. Phytother Res. 2009;23:614–8. doi: https://doi.org/10.1002/ptr.2661

39. Siddiqui Z, Khan MI, Badruddeen B, Mohammad Ahmad, MA, Manvi M, Fatima G. Isolation and characterization of α-glucosidase inhibitors from Phyllanthus acidus (L.) Skeels stem bark. Ann Phytomed. 2024;13:1100–10. doi: https://doi.org/10.54085/ap.2024.13.1.118

40. Mugaranja KP, Kulal A. Alpha glucosidase inhibition activity of phenolic fraction from Simarouba glauca: an in-vitro, in-silico and kinetic study. Heliyon 2020;6:e04392. doi: https://doi.org/10.1016/j.heliyon.2020.e04392

41. Tan Y, Chang SKC. Digestive enzyme inhibition activity of the phenolic substances in selected fruits, vegetables and tea as compared to black legumes. J Funct Foods 2017;38:644–55. doi: https://doi.org/10.1016/j.jff.2017.04.005

42. Suzlin Sulaiman NA, Syakir Nor Azman MF, Fasihi Mohd Aluwi MF, Zakaria ZA, Mohammad Ridhwana MJ, Salim F. Stereospecific α-glucosidase inhibition, kinetics, and molecular docking studies on isolated diastereomeric alkaloids from Uncaria longiflora. Results Chem. 2025;13:101926. doi: https://doi.org/10.1016/j.rechem.2024.101926

43. Rahayu I, Heng PH, Timotius KH. In vitro antioxidant properties and α-glucosidase inhibition of combined leaf infusions from Psidium guajava L., Syzygium polyanthum L., and Annona muricata L. Pharmacog J.2019;11:1269–77. doi: https://doi.org/10.5530/pj.2019.11.197

44. Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep. 2019;36:869– 88. doi: https://doi.org/10.1039/c9np00011a

45. Li DQ, Zhao J, Xie J, Li SP. A novel sample preparation and on-line HPLC–DAD–MS/MS–BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: case study of α-glucosidase. J Pharm Biomed Anal. 2014;88:130–5. doi: https://doi.org/10.1016/j.jpba.2013.08.029

46. Widowati W, Maesaroh M, Fauziah N, Erawijantari PP, Sandra F. Free radical scavenging and alpha/beta-glucosidases inhibitory activities of rambutan (Nephelium lappaceum L.) peel extract. Indones Biomed J.2015;7:157. doi: https://doi.org/10.18585/inabj.v7i3.180

47. Anuar N, Markom M, Khairedin S, Johari NA. Production and extraction of quercetin and (+)-catechin from Phyllanthus niruri callus culture. Int J Biol Sci. 2012;6:1240–3.

48. Yang Y, Zhang L, Fan X, Qin C, Liu J.Antiviral effect of geraniin on human enterovirus 71 in vitro and in vivo. Bioorg Med Chem Lett. 2012;22:2209–11. doi: https://doi.org/10.1016/j.bmcl.2012.01.102

49. Palanisamy UD, Ling LT, Manaharan T, Appleton D. Rapid isolation of geraniin from Nephelium lappaceum rind waste and its anti-hyperglycemic activity. Food Chem. 2011;127:21–7. doi: https://doi.org/10.1016/j.foodchem.2010.12.070

50. Agyare C, Lechtenberg M, Deters A, Petereit F, Hensel A. Ellagitannins from Phyllanthus muellerianus (Kuntze) Exell.: geraniin and furosin stimulate cellular activity, differentiation and collagen synthesis of human skin keratinocytes and dermal fibroblasts. Phytomedicine 2011;18:617–24. doi: https://doi.org/10.1016/j.phymed.2010.08.020

51. Thitilertdecha N, Teerawutgulrag A, Kilburn JD, Rakariyatham N. Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities. Molecules 2010;15:1453–65. doi: https://doi.org/10.3390/molecules15031453

52. Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, et al. Corilagin, a promising medicinal herbal agent. Biomed Pharm. 2018;99:43–50. doi: https://doi.org/10.1016/j.biopha.2018.01.030

53. Notka F, Meier G, Wagner R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res. 2004;64:93–102. doi: https://doi.org/10.1016/j.antiviral.2004.06.010

54. Zheng ZZ, Chen LH, Liu SS, Deng Y, Zheng GH, Gu Y, et al. Bioguided fraction and isolation of the antitumor components from Phyllanthus niruri L. Biomed Res Int. 2016;2016:9729275. doi: https://doi.org/10.1155/2016/9729275

55. Gunawan-Puteri MDPT, Kawabata J.Novel α-glucosidase inhibitors from Macaranga tanarius leaves. Food Chem. 2010;123:384–9. doi: https://doi.org/10.1016/j.foodchem.2010.04.050

56. Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural gallic acid and methyl gallate induces apoptosis in hela cells through regulation of intrinsic and extrinsic protein expression. Int J Mol Sci. 2023;24:8495. doi: https://doi.org/10.3390/ijms24108495

57. Kumar S, Singh A, Kumar B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J Pharm Anal. 2017;7:214– 22. doi: https://doi.org/10.1016/j.jpha.2017.01.005

58. Kumar S, Chandra P, Bajpai V, Singh A, Srivastava M, Mishra DK, et al. Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Ind Crops Prod. 2015;69:143–52. doi: https://doi.org/10.1016/j.indcrop.2015.02.012

59. Lee C, Chiu T, Tsai S. Quantitative HPLC methods for gallic acids of Phyllanthus (Euphorbiaceae). J Liq Chromatogr Relat Technol. 2005;28:2965–77. doi: https://doi.org/10.1080/10826070500274604

60. Saliu JA, Oyeleye SI, Olasehinde TA, Oboh G. Modulatory effects of stonebreaker (Phyllanthus amarus) and bitter gourd (Momordica charantia) on enzymes linked with cardiac function in heart tissue of doxorubicin-stressed rats. Drug Chem Toxicol. 2022;45:331–9. doi: https://doi.org/10.1080/01480545.2019.1700271

61. Wang X, Hou Y, Li Q, Li X, Wang W, Ai X, et al. Rhodiola crenulata attenuates apoptosis and mitochondrial energy metabolism disorder in rats with hypobaric hypoxia-induced brain injury by regulating the HIF-1alpha/microRNA 210/ISCU1/2(COX10) signaling pathway. J Ethnopharmacol. 2019;241:111801. doi: https://doi.org/10.1016/j.jep.2019.03.028

62. Türkan F, Atalar MN, Aras A, Gülçin ?, Bursal E. ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn. Bioorg Chem. 2020;94:103333. doi: https://doi.org/10.1016/j.bioorg.2019.103333

63. Dominguez-Perles R, Garcia-Viguera C, Medina S. New anti-alpha-glucosidase and antioxidant ingredients from winery byproducts: contribution of alkyl gallates. J Agric Food Chem. 2023;71:14615– 25. doi: https://doi.org/10.1021/acs.jafc.3c03759

64. Nor I, Wirasutisna KR, Hartati R, Insanu M. The α-glucosidase inhibitory activity of avicularin and 4-O-methyl gallic acid isolated from Syzygium myrtifolium leaves. Saudi Pharm J.2023;31:101677. doi: https://doi.org/10.1016/j.jsps.2023.06.010

65. Sofa F, Akhmad D, Megawati M, Muhammad H. Isolation and identification of quercetin derivatives and their α-glucosidase inhibitory acitivities from Bryophyllum pinnatum. Res J Chem Environ. 2018;22:114–9.

66. Ren Z, Zou W, Cui J, Liu L, Qing Y, Li Y. Geraniin suppresses tumor cell growth and triggers apoptosis in human glioma via inhibition of STAT3 signaling. Cytotechnology 2017;69:765–73. doi: https://doi.org/10.1007/s10616-017-0085-4

67. Abd Ghafar SZ, Mediani A, Maulidiani, Ramli NS, Abas F. Antioxidant, α-glucosidase, and nitric oxide inhibitory activities of Phyllanthus acidus and LC–MS/MS profile of the active extract. Food Biosci. 2018;25:134–40. doi: https://doi.org/10.1016/j.fbio.2018.08.009

68. Chawansuntati K, Hongjaisee S, Sirita K, Kingkaew K, Rattanathammethee K, Kumrapich B, et al. Effects of quercetin and extracts from Phyllanthus emblica, Morus alba, and Ginkgo biloba on platelet recovery in a rat model of chemotherapy-induced thrombocytopenia. Heliyon 2024;10:e25013. doi: https://doi.org/10.1016/j.heliyon.2024.e25013

69. Li YQ, Zhou FC, Gao F, Bian JS, Shan F. Comparative evaluation of quercetin, isoquercetin and rutin as inhibitors of alpha-glucosidase. J Agric Food Chem. 2009;57:11463–8. doi: https://doi.org/10.1021/jf903083h

70. Firdayani, Arsianti A, Churiyah, Yanuar A. Molecular docking and dynamic simulation studies of benzoylated emodin into HBV core protein. J Young Pharm. 2018;10:s20–4. doi: https://doi.org/10.5530/jyp.2018.2s.5

71. Zhang B, Zari? SD, Zrili? SS, Gofman I, Heck B, Reiter G. London dispersion forces and steric effects within nanocomposites tune interaction energies and chain conformation. Commun Chem. 2025;8:21. doi: https://doi.org/10.1038/s42004-025-01414-4

72. Olennikov DN, Kashchenko NI, Schwabl H, Vennos C, Loepfe C. New mucic acid gallates from Phyllanthus emblica. Chem Nat Compd. 2015;51:666–70. doi: https://doi.org/10.1007/s10600-015-1380-y

73. Londhe JS, Devasagayam TP, Foo LY, Shastry P, Ghaskadbi SS. Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia 2012;83:1562–8. doi: https://doi.org/10.1016/j.fitote.2012.09.003

74. Matou M, Bercion S, Marianne-Pepin T, Haddad P, Merciris P. Phenolic profiles and biological properties of traditional Phyllanthus amarus aqueous extracts used for diabetes. J Funct Foods 2021;83:104571. doi: https://doi.org/10.1016/j.jff.2021.104571

75. Xu M, Zha ZJ, Qin XL, Zhang XL, Yang CR, Zhang YJ.Phenolic antioxidants from the whole plant of Phyllanthus urinaria. Chem Biodivers. 2007;4:2246–52.

76. Husnunnisa H, Hartati R, Mauludin R, Insanu M. A review of the Phyllanthus genus plants: their phytochemistry, traditional uses, and potential inhibition of xanthine oxidase. Pharmacia 2022;69:681–7. doi: https://doi.org/10.3897/pharmacia.69.e87013

77. Huang YL, Chen CC, Hsu FL, Chen CF. Tannins, flavonol sulfonates, and a norlignan from Phyllanthus virgatus. J Nat Prod 1998;61:1194–7. doi: https://doi.org/10.1021/np970336v

Article Metrics
31 Views 22 Downloads 53 Total

Year

Month

Related Search

By author names