Parkinson’s disease (PD) is amongst the most common hypokinetic conditions, which is manifested via the gradual deterioration of nigral dopamine-expressing neurons, causing a reduction in the content of dopamine. Ang (1–7), a vasoprotective heptapeptide of the renin-angiotensin system, exerts neuroprotection against PD in various experimental conditions. Additionally, Ang (1–7) ameliorates the oxidative stress in Parkinson’s models. The study aimed to investigate how Ang (1–7) prevents rotenone-induced PD-like symptoms in rats and to evaluate the contribution of the Mas receptor and Nrf2 signaling pathways using A779, a Mas receptor antagonist, and Trigonelline, an Nrf2 inhibitor, respectively. Daily administration of Ang (1–7) was conducted for fourteen days, with or without A779 and Trigonelline. Behavioral analysis was performed on the last day. Biochemical parameters related to dopamine and mitochondrial functions were assessed. Ang (1–7) alleviated the effects of rotenone-induced alterations in behavioral functions, measured by narrow beam walk, open field, rotarod, bar catalepsy, grip strength, footprint, and actophotometer tests. Parameters such as dopamine levels and mitochondrial functions were restored after treatment with Ang (1–7) in rotenone-challenged rodents. The compounds A779 and Trigonelline counteracted the therapeutic benefits of Ang (1–7) in rats exposed to the neurotoxin rotenone. Following Ang (1–7) administration, both behavioral and biochemical assessments improved in rotenone-induced Parkinson-like symptoms. Therefore, Ang (1–7)/MasR/Nrf2 signaling could serve as an adjunct in the pharmacotherapy of PD.
Bhadauriya P, Goyal A, Varshney V. Angiotensin (1–7) attenuates rotenone-induced Parkinsonism via Mas receptor and Nrf2 pathway in rats. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.247748
1. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27–42. doi: https://doi.org/10.1111/ENE.14108
2. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nature reviews. Disease primers. 2017;3:1–21. doi: https://doi.org/10.1038/NRDP.2017.13
3. Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3–8. doi: https://doi.org/10.3233/JPD-181474
4. Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139 Suppl 1:318–24. doi: https://doi.org/10.1111/JNC.13691
5. Jellinger KA. Morphological characteristics differentiate dementia with Lewy bodies from Parkinson disease with and without dementia. J Neural Transm. 2023;130(7):891–904. doi: https://doi.org/10.1007/S00702-023-02660-3
6. Henchcliffe C, Beal FM. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008;4(11):600–9. doi: https://doi.org/10.1038/NCPNEURO0924
7. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11–17. doi: https://doi.org/10.5607/en.2013.22.1.11
8. Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47(2):495–508. doi: https://doi.org/10.1007/s12035-012-8280-y
9. Friedman JH. Dementia with lewy bodies and parkinson disease dementia: it is the same disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S6–9. doi: https://doi.org/10.1016/j.parkreldis.2017.07.013
10. Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038–62. doi:https://doi.org/10.1038/EMBOJ.2012.170
11. Choi WS, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol. 2011;192(5):873–82. doi: https://doi.org/10.1083/JCB.201009132
12. Sterky FH, Hoffman AF, Milenkovic D, Bao B, Paganelli A, Edgar D, et al. Altered dopamine metabolism and increased vulnerability to MPTP in mice with partial deficiency of mitochondrial complex I in dopamine neurons. Hum Mol Genet. 2012;21(5):1078–89. doi: https://doi.org/10.1093/HMG/DDR537
13. Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta. 2018;1865(5):721–33. doi: https://doi.org/10.1016/J.BBAMCR.2018.02.010
14. Ammal Kaidery N, Ahuja M, Thomas B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci. 2019;101:103413. doi: https://doi.org/10.1016/J.MCN.2019.103413
15. Rojo AI, Innamorato NG, Martín-Moreno AM, De Ceballos ML, Yamamoto M, Cuadrado A. Nrf2 regulates microglial dynamics and neuroinflammation in experimental Parkinson’s disease. Glia. 2010;58(5):588–98. doi: https://doi.org/10.1002/GLIA.20947
16. Costa-Besada MA, Valenzuela R, Garrido-Gil P, Villar-Cheda B, Parga JA, Lanciego JL, et al. Paracrine and intracrine angiotensin 1-7/Mas receptor axis in the substantia nigra of rodents, monkeys, and humans. Mol Neurobiol. 2018;55(7):5847–67. doi: https://doi.org/10.1007/S12035-017-0805-Y
17. Labandeira-García JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodríguez-Perez AI. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat. 2014;8:67. doi: https://doi.org/10.3389/FNANA.2014.00067
18. Labandeira-Garcia JL, Rodriguez-Pallares J, Dominguez-Meijide A, Valenzuela R, Villar-Cheda B, Rodríguez-Perez AI. Dopamine-angiotensin interactions in the basal ganglia and their relevance for Parkinson’s disease. Mov Disord. 2013;28(10):1337–42. doi: https://doi.org/10.1002/MDS.25614
19. Rodriguez-Pallares J, Rey P, Parga JA, Muñoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis. 2008;31(1):58–73. doi: https://doi.org/10.1016/J.NBD.2008.03.003
20. Mertens B, Vanderheyden P, Michotte Y, Sarre S. The role of the central renin-angiotensin system in Parkinson’s disease. J Renin Angiotensin Aldosterone Syst. 2010;11(1):49–56. doi: https://doi.org/10.1177/1470320309347789
21. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance, and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584–96. doi: https://doi.org/10.1038/NM.3407
22. Rabie MA, Abd El Fattah MA, Nassar NN, Abdallah DM, El-Abhar HS. Correlation between angiotensin 1-7-mediated Mas receptor expression with motor improvement, activated STAT3/SOCS3 cascade, and suppressed HMGB-1/RAGE/NF-κB signaling in 6-hydroxydopamine hemiparkinsonian rats. Biochem Pharmacol. 2020;171:113681. doi: https://doi.org/10.1016/J.BCP.2019.113681
23. De Mello WC, Gerena Y, Ayala-Peña S. Angiotensins and Huntington’s disease: a study on immortalized progenitor striatal cell lines. Front Endocrinol. 2017;8:108. doi: https://doi.org/10.3389/FENDO.2017.00108
24. Zhou Y, Li M, Zhu DL, Jiang T, Gao Q, Tang XH, et al. Neuroprotective effect of angiotensin-(1-7) against rotenone-induced oxidative damage in CATH. a neurons. Toxicol In Vitro. 2018;50:373–82. doi: https://doi.org/10.1016/J.TIV.2018.04.005
25. Varshney V, Garabadu D. Ang (1-7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents. Mol Biol Rep. 2021;48(5):4319–31. doi: https://doi.org/10.1007/S11033-021-06447-1
26. Rocha NP, Scalzo PL, Barbosa IG, de Campos-Carli SM, Tavares LD, de Souza MS, et al. Peripheral levels of angiotensin are associated with depressive symptoms in Parkinson’s disease. J Neurol Sci. 2016;368:235–9. doi: https://doi.org/10.1016/J.JNS.2016.07.031
27. Passos-Silva DG, Verano-Braga T, Santos RA. Angiotensin-(1-7): beyond the cardio-renal actions. Clin Sci (Lond). 2013;124(7):443– 56. doi: https://doi.org/10.1042/CS20120461
28. Mustafa AM, Rabie MA, Zaki HF, Shaheen AM. Inhibition of brain GTP cyclohydrolase I attenuates 3-nitropropionic acid-induced striatal toxicity: involvement of Mas Receptor/PI3k/Akt/CREB/BDNF axis. Front Pharmacol. 2021;12:740966. doi: https://doi.org/10.3389/fphar.2021.740966
29. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18(4):295–317. doi: https://doi.org/10.1038/s41573-018-0008-x
30. Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem. 2012;19(21):3523–31. doi: https://doi.org/10.2174/092986712801323171
31. Nguyen V, Taine EG, Meng D, Cui T, Tan W. Pharmacological activities, therapeutic effects, and mechanistic actions of trigonelline. Int J Mol Sci. 2024;25(6):3385. doi: https://doi.org/10.3390/IJMS25063385
32. Mathis V, Wegman-Points L, Pope B, Lee CJ, Mohamed M, Rhodes JS, et al. Estrogen-mediated individual differences in female rat voluntary running behavior. J Appl Physiol. 2024 Mar 1;136(3):592– 605. doi: https://doi.org/10.1152/japplphysiol.00611.2023
33. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011. Guide for the Care and Use of Laboratory Animals, 8th ed. Washington, DC: National Academies Press. doi: https://doi.org/10.17226/12910
34. Paxinos G. Watson C. 1998. The rat brain in stereotaxic coordinates. San Diego: Acadamic Press. 4 pp.
35. Pawlik MW, Kwiecien S, Ptak-Belowska A, Pajdo R, Olszanecki R, Suski M, et al. The renin-angiotensin system and its vasoactive metabolite angiotensin-(1-7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of Mas receptors, nitric oxide, prostaglandins and proinflammatory cytokines. J Physiol Pharmacol. 2016;67(1):75–91.
36. Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM. Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother. 2018;101:379– 90. doi: https://doi.org/10.1016/J.BIOPHA.2018.02.052
37. Schulz D, Mirrione MM, Henn FA. Cognitive aspects of congenital learned helplessness and its reversal by the monoamine oxidase (MAO)-B inhibitor deprenyl. Neurobiol Learn Mem. 2010;93(2):291– 301. doi: https://doi.org/10.1016/J.NLM.2009.11.003
38. Garabadu D, Agrawal N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med. 2020;22(2):314–30. doi: https://doi.org/10.1007/S12017-019-08590-2
39. Henderson JM, Stanic D, Tomas D, Patch J, Horne MK, Bourke D, et al. Postural changes after lesions of the substantia nigra pars reticulata in hemi parkinsonian monkeys. Behav Brain Res. 2005;160(2):267– 76. doi: https://doi.org/10.1016/J.BBR.2004.12.008
40. Rozas G, Guerra MJ, Labandeira-García JL. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res Brain Res Protoc. 1997;2(1):75–84. doi: https://doi.org/10.1016/S1385-299X(97)00034-2
41. Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C. Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Methods. 2005;148(1):78–87. doi: https://doi.org/10.1016/J.JNEUMETH.2005.04.005
42. Moran PM, Higgins LS, Cordell B, Moser PC. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A. 1995;92(12):5341–5. doi: https://doi.org/10.1073/PNAS.92.12.5341
43. Reddy DS, Kulkarni SK. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res. 1998;799(2):215–29. doi: https://doi.org/10.1016/S0006-8993(98)00419-3
44. Klapdor K, Dulfer BG, Hammann A, Van der Staay FJ. A low-cost method to analyse footprint patterns. J Neurosci Methods. 1997;75(1):49–54. doi: https://doi.org/10.1016/S0165-0270(97)00042-3
45. Verma A, Goyal A. Reformative effect of daidzein on motor dysfunction following rotenone injection in ovariectomized rats. Rev Bras Farmacogn. 2022;32:563–74. doi: https://doi.org/10.1007/S43450-022-00277-3
46. Kim C, Speisky MB, Kharouba SN. Rapid and sensitive method for measuring norepinephrine, dopamine, 5-hydroxytryptamine and their major metabolites in rat brain by high-performance liquid chromatography. Differential effect of probenecid, haloperidol and yohimbine on the concentrations of biogenic amines and metabolites in various regions of rat brain. J Chromatogr. 1987;386:25–35. doi: https://doi.org/10.1016/S0021-9673(01)94581-9
47. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
48. Pedersen PL, Greenawalt JW, Reynafarje B, Hullihen J, Decker GL, Soper JW, et al. Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol. 1978;20:411–81. doi: https://doi.org/10.1016/S0091-679X(08)62030-0
49. Kamboj SS, Kumar V, Kamboj A, Sandhir R. Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol. 2008;28(7):961–9. doi: https://doi.org/10.1007/S10571-008-9270-5
50. Rabie MA, Abd El Fattah MA, Nassar NN, El-Abhar HS, Abdallah DM. Angiotensin 1-7 ameliorates 6-hydroxydopamine lesions in hemi parkinsonian rats through activation of MAS receptor/PI3K/Akt/BDNF pathway and inhibition of angiotensin II type-1 receptor/NF-κB axis. Biochem Pharmacol. 2018;151:126–34. doi: https://doi.org/10.1016/J.BCP.2018.01.047
51. Fernández BE, Domínguez AE. Angiotensin II increases MAO activity in rat central nervous system. Rev Esp Fisiol. 1991;47(1):37– 40.
52. Sumners C, Shalit SL, Kalberg CJ, Raizada MK. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II. Am J Physiol. 1987;252(6 Pt 1):C650–6. doi: https://doi.org/10.1152/AJPCELL.1987.252.6.C650
Year
Month