The need for new antimicrobial agents is driven by the worldwide health crisis caused by bacteria resistant to existing ones. Jatropha multifida L. is an ethnomedicinal plant widely used in West Sumatra, Indonesia. This research examines the antibacterial properties of compounds extracted from the endophytic fungi isolated from the plant’s roots, barks, and leaves, including identifying proficient fungi and their secondary metabolites’ LC/MS-MS profiles. Fourteen endophytic fungi were successfully isolated from different parts using direct planting and pouring methods. Following 4–6 weeks of cultivation in rice medium, the fungus isolate was extracted using ethyl acetate. The antibacterial activity of each ethyl acetate extract of the fungus was evaluated using the Kirby–Bauer diffusion method against Staphylococcus aureus, Escherichia coli, and methicillin-resistant S. aureus. The JMB4 and JMD3 isolates of endophytic fungi showed promise as an antibacterial agent and showed notable inhibitory diameters, according to the inhibition zone measurement results. At a concentration of 5%, JMB4 and JMD3 exhibited inhibition zones measuring 21.79 ± 0.31 mm and 23.19 ± 0.58 mm against S. aureus and 22.55 ± 0.7 mm and 13.37 ± 0.77 mm against MRSA, respectively. The fungi JMB4 and JMD3 have been classified as Fusarium incarnatum and Fusarium oxysporum through macroscopic, microscopic, and molecular identification methods. Liquid chromatography–mass spectrometry/mass spectrometry analysis of the JMD3 extract revealed that the predominant peak corresponded to the molecular formula C22H31NO4 and was tentatively identified as equisetin. The findings demonstrate that J. multifida L. plants harbor endophytic fungi that can synthesize antibacterial compounds. Additional research is required to determine the antibacterial compounds responsible. Those compounds will promote the advancement of novel antibacterial agents.
Masri RS, Syafni N, Rustini R, Supriyono A, Kuo PC, Handayani D. Isolation of endophytic fungi with antibacterial activity from medicinal plant Jatropha multifida L. J Appl Pharm Sci. 2025;15(07):261–271. http://doi.org/10.7324/JAPS.2025.230085
1. Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillinresistant: Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019;10(8):1231-41. https://doi.org/10.1039/C9MD00044E | |
2. Vieira DS, de Oliveira FT, Suarez JAG, da Silva DP, Bernardo THL, de Bastos MLA. Biological activities: anti-infectious, antioxidant and healing of the vegetable species Jatropha multifida. Rev Bras Enferm. 2021;74(2):1-9. https://doi.org/10.1590/0034-7167-2020-0451 | |
3. Das B, Reddy KR, Ravikanth B, Raju TV, Sridhar B, Khan PU, et al. Multifidone: a novel cytotoxic lathyrane-type diterpene having an unusual six-membered A ring from Jatropha multifida. Bioorganic Med Chem Lett [Internet]. 2009;19(1):77-9. https://doi.org/10.1016/j.bmcl.2008.11.014 | |
4. Dah-Nouvlessounon D, Chokki M, Agossou EA, Houédanou JB, Nounagnon M, Sina H, et al. Polyphenol analysis via LC-MS-ESI and potent antioxidant, anti-inflammatory, and antimicrobial activities of Jatropha multifida L. extracts used in benin pharmacopoeia. Life. 2023;13(9):1898. https://doi.org/10.3390/life13091898 | |
5. Han T, Miao G. Strategies, achievements, and potential challenges of plant and microbial chassis in the biosynthesis of plant secondary metabolites. Molecules. 2024;29(9):2106. https://doi.org/10.3390/molecules29092106 | |
6. Wang Y, Dai CC. Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol. 2011;61(2):207-15. https://doi.org/10.1007/s13213-010-0120-6 | |
7. Handayani D, Sari HC, Julianti E, Artasasta MA. Endophytic fungus isolated from Zingiber officinale Linn. var. rubrum as a source of antimicrobial compounds. J Appl Pharm Sci. 2023;13(9):115-20. https://doi.org/10.7324/JAPS.2023.134154 | |
8. Handayani D, Hafiza H, Rustini R, Putra PP, Syafni N. Isolation of endophytic fungi with antimicrobial activity from medicinal plant Rhodomyrtus tomentosa (Aiton) Hassk. J Appl Pharm Sci. 2023;13(9):190-6. https://doi.org/10.7324/JAPS.2023.143365 | |
9. Yulianis Y, Rustini, Supriyono A, Sandrawati N, Handayani D. Ethyl acetate extracts endophytic fungi from the medicinal tree fern cyathea contaminans (Hook) copel with antimicrobial activity. Trends Sci. 2024;21(10):1-10. https://doi.org/10.48048/tis.2024.8232 | |
10. Handayani D, Muslim RI, Syafni N, Artasasta MA, Riga R. Endophytic fungi from medicinal plant Garcinia cowa Roxb. ex Choisy and their antibacterial activity. J Appl Pharm Sci. 2024;14(9):182-8. https://doi.org/10.7324/JAPS.2024.180510 | |
11. Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc. 2010;5(3):479-90. https://doi.org/10.1038/nprot.2009.233 | |
12. Handayani D, Rasyid W, Rustini, Zainudin EN, Hertiani T. Cytotoxic activity screening of fungal extracts derived from the West Sumatran marine sponge Haliclona fascia to several human cell lines: Hela, WiDr, T47D, and Vero. J Appl Pharm Sci. 2018;8(1):55-8. | |
13. Bauer AW, Perry DM, Kirby WMM. Single-disk antibiotic-sensitivity testing of Staphylococci: an analysis of technique and results. AMA Arch Intern Med. 1959;104(2):208-16. https://doi.org/10.1001/archinte.1959.00270080034004 | |
14. Tiwari P, Bimlesh K, Kaur M, Kaur G, Kaur H. Phytochemical screening and extraction: a review. Int Pharm Sci. 2011;1(6):98-106. | |
15. Handayani D, Artasasta MA. Antibacterial and cytotoxic activities screening of symbiotic fungi extracts isolated from marine sponge Neopetrosia chaliniformis AR-01. J Appl Pharm Sci. 2017;7(5):66-9. | |
16. Jeyasree J, Devasena T, Sukumaran V, Women T. Phytochemical techniques-a review. World J Sci Res. 2016;1(3):67-76. | |
17. Sandrawati N, Hati SP, Yunita F, Putra AE, Ismed F, Tallei TE, et al. Antimicrobial and cytotoxic activities of marine sponge-derived fungal extracts isolated from Dactylospongia sp. J Appl Pharm Sci. 2020;10(4):28-33. https://doi.org/10.7324/JAPS.2020.104005 | |
18. Handayani D, Artasasta MA, Safirna N, Ayuni DF, Tallei TE, Hertiani T. Fungal isolates from marine sponge Chelonaplysilla sp .: diversity, antimicrobial and cytotoxic activities. Biodiversitas. 2020;21(5):1954-60. https://doi.org/10.13057/biodiv/d210523 | |
19. Handayani D, Artasasta MA, Mutia D, Atikah N, Tallei TE. cx Antimicrobial and cytotoxic activities screening of fungal secondary metabolites isolated from marine sponge Callyspongia sp. AACL Bioflux. 2021;14(1):249-58. | |
20. Handayani D, Aminah I. Antibacterial and cytotoxic activities of ethyl acetate extract of symbiotic fungi from West Sumatra marine sponge Acanthrongylophora ingens. J Appl Pharm Sci. 2017;7(2):237-40. | |
21. Suleiman WB. A multi-aspect analysis of two analogous Aspergillus spp. belonging to section Flavi: Aspergillus flavus and Aspergillus oryzae. BMC Microbiol. 2023;23(1):1-9. https://doi.org/10.1186/s12866-023-02813-0 | |
22. Singh VK, Kumar A. Secondary metabolites from endophytic fungi: production, methods of analysis, and diverse pharmaceutical potential. Symbiosis [Internet]. 2023;90(2):111-25. https://doi.org/10.1007/s13199-023-00925-9 | |
23. Hirota BCK, Miyazaki CMS, Mercali CA, Verdan MC, Kalegari M, Gemin C, et al. C-glycosyl flavones and a comparative study of the antioxidant, hemolytic and toxic potential of Jatropha multifida leaves and bark. Int J Phytomed. 2012;4(1):1-5. | |
24. Rampadarath S, Puchooa D, Ranghoo-Sanmukhiya VM. Antimicrobial, phytochemical and larvicidal properties of Jatropha multifida Linn. Asian Pac J Trop Med. 2014;7(S1):S380-3. https://doi.org/10.1016/S1995-7645(14)60262-5 | |
25. Leslie JF, Summerell BA. The fusarium laboratory manual. J Chem Inf Model [Internet]. 2013;53(9):388. Available from: https://www.researchgate.net/publication/321385629_The_Fusarium_Laboratory_Manual | |
26. McMaster MC. GC/MS a practical user’ s guide. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc; 2008, pp. 1-6. https://doi.org/10.1002/9780470228357 | |
27. Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW. Antibiotic produced by Fusarium equiseti NRRL 5537. Antimicrob Agents Chemother. 1974;5(6):634-9. https://doi.org/10.1128/AAC.5.6.634 | |
28. Vesonder RF, Tjarks LW, Rohwedder WK, Burmeister HR, Laugal JA. Equisetin, an antibiotic from Fusarium equiseti NRRL 5537, was identified as a derivative of N-methyl-2,4-pyrollidone. J Antibiot. 1979;32(7):759-61. https://doi.org/10.7164/antibiotics.32.759 | |
29. Zhang Q, Chen S, Liu X, Lin W, Zhu K. Equisetin restores colistin sensitivity against multi-drug resistant gram-negative bacteria. Antibiotics. 2021;10(10):1263. https://doi.org/10.3390/antibiotics10101263 | |
30. Zhang M, Wang M, Zhu X, Yu W, Gong Q. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnol Lett [Internet]. 2018;40(5):865-70. https://doi.org/10.1007/s10529-018-2527-2 | |
31. Tian J, Chen S, Liu F, Zhu Q, Shen J, Lin W, et al. Equisetin targets intracellular Staphylococcus aureus through a host acting strategy. Mar Drugs. 2022;20(11):1-11. https://doi.org/10.3390/md20110656 |
Year
Month
Phytochemical investigations and antibacterial activity of some medicinal plants against pathogenic bacteria
B. Jayalakshmi, K. A. Raveesha, K. N. AmrutheshAntimicrobial activity of endophytic fungi from marine Sponge Haliclona fascigera
In silico and in vitro assay of Hexagamavunon-6 analogs, Dibenzilyden-N-Methyl-4-piperidone as antibacterial agents
Tesia Aisyah Rahmania, Ritmaleni Ritmaleni, Erna Prawita SetyowatiPathogenicity and biological control of Bayoud disease by Trichoderma longibrachiatum and Artemisia herba-alba essential oil