Study on the anti-inflammatory activity of Polyscias scutellaria (Burm. f.) Fosberg leaves extract and its phytochemical components

Alfian Syarifuddin Arief Nurrochmad Nanang Fakhrudin   

Open Access   

Published:  May 12, 2025

DOI: 10.7324/JAPS.2025.218746
Abstract

Polyscias scutellaria (Burm.f) Fosberg has traditionally been used to treat various diseases. However, the study of its in vivo anti-inflammatory effects, mechanism of action, and metabolite profile is limited. This study aimed to investigate the free radical scavenging activity and the anti-inflammatory property of P. scutellaria leaves extract and study its mechanism of action on pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6)]. The leaves of P. scutellaria were macerated in ethanol (90%) to yield ethanol extract of P. scutellaria leaves (EEPS). The rats were divided into 5 groups (n = 5): solvent group, sodium diclofenac group (13.65 mg/kg), and EEPS at the dose of 100, 200, and 400 mg/kg). The rats were pretreated with EEPS and the oedema were induced by carrageenan (1%). The oedema volume (inflammation) was measured and the expression of pro-inflammatory cytokines was assessed using an enzyme-linked immunosorbent assay. In addition, the chemical constituent of EEPS was analyzed using liquid chromatography-orbitrap high-resolution mass spectrometry (LC-HRMS). EEPS at doses of 200 and 400 mg/kg inhibited inflammation in carrageenan-induced rat paw oedema. The same effect was also observed in rats treated with sodium diclofenac. EEPS also significantly decreased the levels of TNF-α and IL-1β, but not IL-6. Phytochemical analysis using LC-HRMS revealed that the extract contains known antioxidant or anti-inflammatory compounds, such as ursolic acid and chlorogenic acid. EEPS demonstrated anti-inflammatory activity in carrageenan-induced paw oedema by suppressing the level of pro-inflammatory cytokines TNF-α and IL-1β.


Keyword:     Polyscias scutellaria herbal medicine inflammation mass spectroscopy TNF-α IL-1β IL-6


Citation:

Syarifuddin A, Nurrochmad A, Fakhrudin N. Study on the anti-inflammatory activity of Polyscias scutellaria (Burm. f.) Fosberg leaves extract and its phytochemical components. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.218746

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Bagad AS, Joseph JA, Bhaskaran N, Agarwal A.. Comparative evaluation of anti-inflammatory activity of curcuminoids, turmerones, and aqueous extract of Curcuma longa. Adv Pharmacol Sci 2013;2013:1–7. doi: https://doi.org/10.1155/2013/805756

2. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell 2010;140(6):771–776. doi: https://doi.org/10.1016/j.cell.2010.03.006

3. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 2007;147(2):227–235. doi: https://doi.org/10.1111/j.1365-2249.2006.03261.x

4. Nathan C, Ding A. Nonresolving inflammation. Cell 2010;140(6):871– 882. doi: https://doi.org/10.1016/j.cell.2010.02.029

5. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010;140(6):805–820. doi: https://doi.org/10.1016/j.cell.2010.01.022

6. Chertov O, Yang D, Howard OMZ, Oppenheim JJ. Leukocyte granule proteins mobilize innate host defenses and adaptive immune responses. Immunol Rev 2000;177(1):68–78. doi: https://doi.org/10.1034/j.1600-065X.2000.17702.x

7. Zhou S, Huang G. The inhibitory activity of natural products to xanthine oxidase. Chem Biodivers 2023;20(5):e202300005. doi: https://doi.org/10.1002/cbdv.202300005

8. Nasution SLR, Awanis, Elsafarindo S. Effect of mangkokan (Polyscias scutellaria) leaf extract on blood sugar levels in alloxan-induced male white rats. Maj Kedokt Bdg. 2021;53(3):132–7. doi: https://doi.org/10.15395/mkb.v53n3.2223

9. Paphassarang S, Raynaud J, Lussignol M, Becchi M. Triterpenic glycosides from Polyscias scutellaria. Phytochemistry 1989;28(5):1539–41. doi: https://doi.org/10.1016/S0031-9422(00)97786-0

10. Esseh K, Afanyibo YG, Ahama-Esseh KY, Idoh K, Koudouvo K, Agbonon A, et al. Screening phytochimique, etude toxicologique, evaluation des activités antiplasmodiale et antiradicalaire de la tige feuillée de senna occidentalis linn (Fabaceae). Eur Sci J ESJ 2019;15(6):411. doi: https://doi.org/10.19044/esj.2019.v15n6p411

11. Saleem A, Saleem M, Akhtar MF. Antioxidant, anti-inflammatory and antiarthritic potential of Moringa oleifera Lam: an ethnomedicinal plant of Moringaceae family. South Afr J Bot. 2020;128:246–56. doi: https://doi.org/10.1016/j.sajb.2019.11.023

12. Nur S , Mus S, Fadri A, Marwati M, Nursamsiar N, Sami FJ, et al. Determination of total phenolic and flavonoid levels of Mangkokan leaf extract (Polyscias scutellaria). J Pharm Med Sci. 2020;5.

13. Muhar AM, Velaro AJ, Prananda AT, Nugraha SE, Çamlik G, Wasnik S, et al. Polyscias scutellaria: an emerging source of natural antioxidants and anti-inflammatory compounds for health. Pharmacia. 2023;70(4):1463–70. doi: https://doi.org/10.3897/pharmacia.70.e112502

14. Islam MA, Zilani MNH, Biswas P, Khan DA, Rahman MH, Nahid R, et al. Evaluation of in vitro and in silico anti-inflammatory potential of some selected medicinal plants of Bangladesh against cyclooxygenase-II enzyme. J Ethnopharmacol. 2022;285:1–14. doi: https://doi.org/10.1016/j.jep.2021.114900

15. Wulandari W, Jamarun N, Wellia DV, Emriadi E. Green precipitation method using Polyscias scutellaria extract in the synthesis of hydroxyapatite/alginate/copper (II) oxide composites as a drug carrier. J Appl Pharm Sci. 2024;14(6):147–53. doi: https://doi. org/10.7324/JAPS.2024.169961

16. Suharsanti R, Wahyuono S, Astuti P, Yuniarti N. Isolation and characterization of curcumenotone, a sesquiterpene from Curcuma aeruginosa roxb as antioxidant. Indones J Pharm. 2023;34(4):593– 602. doi: https://doi.org/10.22146/ijp.7799

17. Triastuti A, Pradana DA, Setiawan ID, Fakhrudin N, Himmi SK, Widyarini S, et al. In vivo anti-inflammatory activities of Plantago major extract and fractions and analysis of their phytochemical components using a high-resolution mass spectrometry. Res Pharm Sci. 2022;17(6):665–76. doi: https://doi.org/10.4103/1735- 5362.359433

18. Waheed I, Ahmad M, Syed NH, Ashraf R. Investigation of phytochemical and antioxidant properties of methanol extract and fractions of ballota limbata (Lamiaceae). Indian J Pharm Sci. 2014;76(3):251–6.

19. Grazul M, Budzisz E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev. 2009;253(21– 22):2588–98. doi: https://doi.org/10.1016/j.ccr.2009.06.015s

20. Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5(57):45853–77. doi: https://doi.org/10.1039/C5RA05069C

21. Mucha P, Skoczy?ska A, Ma?ecka M, Hikisz P, Budzisz E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021;26(16):4886. doi: https://doi.org/10.3390/molecules26164886

22. Al Owaisi M, Al Hadiwi N, Khan SA. GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves. Asian Pac J Trop Biomed. 2014;4(12):964–70. doi: https://doi.org/10.12980/APJTB.4.201414B295

23. Osorio JS. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. J Dairy Sci. 2014;97(12):7437–50. doi: https://doi.org/10.3168/ jds.2013-7679

24. Heldin CH, Lu B, Evans R, Gutkind JS. Signals and receptors. Cold Spring Harb Perspect Biol. 2016;8(4):a005900. doi: https://doi.org/10.1101/cshperspect.a005900

25. Prakash V. Terpenoids as source of anti-inflammatory compounds. Asian J Pharm Clin Res. 2017;10(3):68. doi: https://doi.org/10.22159/ ajpcr.2017.v10i3.16435

26. Raker VK, Becker C, Steinbrink K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol. 2016;7:123. doi: https://doi.org/10.3389/fimmu.2016.00123

27. Purnomo Y, Tilaqza A. Analgesic and anti-inflammatory activities of Urena lobata L. leaf extracts. Indones J Pharm. 2022;33:566–74. doi: https://doi.org/10.22146/ijp.2145

28. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 2020;6(36):1–22. doi: https://doi.org/10.1038/s41421- 020-0167-x

29. Lopes AH, Silva RL, Fonseca MD, Gomes FI, Maganin AG, Ribeiro LS, et al. Molecular basis of carrageenan-induced cytokines production in macrophages. Cell Commun Signal. 2020;18(1):141. doi: https://doi.org/10.1186/s12964-020-00621-x

30. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta BBA - Mol Cell Res. 2014;1843(11):2563–82. doi: https://doi.org/10.1016/j.bbamcr.2014.05.014

31. Cabal-Hierro L, Lazo PS. Signal transduction by tumor necrosis factor receptors. Cell Signal. 2012;24(6):1297–305. doi: https://doi.org/10.1016/j.cellsig.2012.02.006

32. Bradley J. TNF-mediated inflammatory disease. J Pathol. 2008;214(2):149–60. doi: https://doi.org/10.1002/path.2287

33. Khoury T, Ilan Y. Introducing patterns of variability for overcoming compensatory adaptation of the immune system to immunomodulatory agents: a novel method for improving clinical response to anti-TNF therapies. Front Immunol. 2019;10:2726. doi: https://doi.org/10.3389/fimmu.2019.02726

34. Jang D, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;22(5):2719. doi: https://doi.org/10.3390/ijms22052719

35. Barale C, Russo I. Influence of cardiometabolic risk factors on platelet function. Int J Mol Sci. 2020;21(2):623. doi: https://doi.org/10.3390/ijms21020623

36. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019;20(23):6008. doi: https://doi.org/10.3390/ijms20236008

https://doi.org/10.3390/ijms20236008

37. Mattson MP. Hormesis defined. Ageing Res Rev. 2008;7(1):1–7. doi: https://doi.org/10.1016/j.arr.2007.08.007

38. Gabryšová L, Nicolson KS, Streeter HB, Verhagen J, Sabatos-Peyton CA, Morgan DJ, et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10–secreting Th1 cells. J Exp Med. 2009;206(8):1755–67. doi: https://doi.org/10.1084/jem.20082118

39. Wen H, Ting JP, O’Neill LAJ. A role for the NLRP3 inflammasome in metabolic diseases—did warburg miss inflammation? Nat Immunol. 2012;13(4):352–7. doi: https://doi.org/10.1038/ni.2228

40. Li H, Qian F, Liu H, Zhang Z. Elevated uric acid levels promote vascular smooth muscle cells (VSMC) proliferation via an nod-like receptor protein 3 (NLRP3)-inflammasome-dependent mechanism. Med Sci Monit. 2019;25:8457–64. doi: https://doi.org/10.12659/ MSM.916667

41. Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–53. doi: https://doi.org/10.1111/imr.12499

42. Yi C, Liang H, Huang D, Yu H, Xue C, Gu J, et al. Phenylalanine plays important roles in regulating the capacity of intestinal immunity, antioxidants and apoptosis in largemouth bass (Micropterus salmoides). Animals. 2023;13(18):2980. doi: https://doi.org/10.3390/ani13182980

43. Zhang Q, Chen S, Guo Y, He F, Fu J, Ren W. Phenylalanine diminishes M1 macrophage inflammation. Sci China Life Sci. 2023;66(12):2862–76. doi: https://doi.org/10.1007/s11427-022-2296-0

44. Tang Y, Yu Y, Li R, Tao Z, Zhang L, Wang X, et al. Phenylalanine promotes alveolar macrophage pyroptosis via the activation of CaSR in ARDS. Front Immunol. 2023;14:1114129. doi: https://doi.org/10.3389/fimmu.2023.1114129

45. Darabi P, Khazali H, Mehrabani Natanzi M. Therapeutic potentials of the natural plant flavonoid apigenin in polycystic ovary syndrome in rat model: via modulation of pro-inflammatory cytokines and antioxidant activity. Gynecol Endocrinol. 2020;36(7):582–7. doi: https://doi.org/10.1080/09513590.2019.1706084

46. Guazelli CFS, Fattori V, Ferraz CR, Borghi SM, Casagrande R, Baracat MM, et al. Antioxidant and anti-inflammatory effects of hesperidin methyl chalcone in experimental ulcerative colitis. Chem Biol Interact. 2021;333:109315. doi: https://doi.org/10.1016/j.cbi.2020.109315

47. He X, Li W, Xie Y, Zhao Y. Long-term inhibition of dipeptidyl-peptidase 4 reduces islet infiltration and downregulates IL-1β and IL-12 in NOD mice. Int Immunopharmacol. 2020;88:106945. doi: https://doi.org/10.1016/j.intimp.2020.106945

48. Stringham NT, Holmes PV, Stringham JM. Effects of macular xanthophyll supplementation on brain-derived neurotrophic factor, pro-inflammatory cytokines, and cognitive performance. Physiol Behav. 2019;211:112650. doi: https://doi.org/10.1016/j.physbeh.2019.112650

49. Taherkhani S, Suzuki K, Castell L. A Short overview of changes in inflammatory cytokines and oxidative stress in response to physical activity and antioxidant supplementation. Antioxidants. 2020;9(9):886. doi: https://doi.org/10.3390/antiox9090886

50. Windarsih A, Suratno, Warmiko HD, Indrianingsih AW, Rohman A, Ulumuddin YI. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 2022;386:132856. doi: https://doi.org/10.1016/j.foodchem.2022.132856

51. Singh A, Yau YF, Leung KS, El-Nezami H, Lee JC. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain–liver–gut axis. Antioxidants. 2020;9(8):669. doi: https://doi.org/10.3390/antiox9080669

52. Xu Y, Chen F. Antioxidant, anti-inflammatory and anti-apoptotic activities of Nesfatin-1: a review. J Inflamm Res. 2020;Volume 13:607–17. doi: https://doi.org/10.2147/JIR.S273446

53. Armutcu F, Akyol S, Ustunsoy S, Turan FF. Therapeutic potential of caffeic acid phenethyl ester and its anti-inflammatory and immunomodulatory effects (Review). Exp Ther Med. 2015;9(5):1582–8. doi: https://doi.org/10.3892/etm.2015.2346

54. Zhao M, Wu F, Tang Z, Yang X, Liu Y, Wang F, et al. Anti-inflammatory and antioxidant activity of ursolic acid: a systematic review and meta-analysis. Front Pharmacol. 2023;14:1256946. doi: https://doi.org/10.3389/fphar.2023.1256946

55. La Rosa G, Sozio C, Pipicelli L, Raia M, Palmiero A, Santillo M, et al. Antioxidant, anti-inflammatory and pro-differentiative effects of chlorogenic acid on M03-13 human oligodendrocyte-like cells. Int J Mol Sci. 2023;24(23):16731. doi: https://doi.org/10.3390/ ijms242316731

https://doi.org/10.3390/ijms242316731

56. Ontawong A, Duangjai A, Vaddhanaphuti CS, Amornlerdpison D, Pengnet S, Kamkaew N. Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon. 2023;9(3):e13917. doi: https://doi.org/10.1016/j.heliyon.2023.e13917

Article Metrics
39 Views 24 Downloads 63 Total

Year

Month

Related Search

By author names