Home >Current Issue

Volume: 9, Issue: 7, July, 2019
DOI: 10.7324/JAPS.2019.90716



Review Article

Drug eluting sutures: A recent update

Anureet Arora1, Geeta Aggarwal2, Janita Chander1, Paramjot Maman3, Manju Nagpal1

  Author Affiliations


Abstract

The main use of surgical sutures is to assist closure and healing of trauma-induced as well as surgical wounds. This is done by upholding wound tissues together in order to facilitate the healing process. A huge variety of sutures are available for the medical purposes, e.g., bio active sutures, knot-less sutures, electronic sutures, drug-eluting sutures, anti-microbial sutures, and stem cells containing sutures. Sutures increase the capabilities to improve tissue approximation and wound healing. Sutures with drug eluting property are the advanced type of sutures being used for surgical purpose via delivery of drug to the specified area. Various new strategies develop the effectiveness of sutures to be used as physical entity to get better biologically active component which enables the delivery of various desirable drugs and cells to the affected site. Ideal modified sutures should not only retain its mechanical integrity during the healing process, but should also deliver the drugs loaded in it, in a controlled manner. These nano-structured fibers, produced by electrospinning and electrospraying techniques, offer tuneable release kinetics applicable to diverse biomedical applications. Drug eluting sutures lead to reduced surgical site infections, accelerated wound healing, reduced post-operative complications, and the most important thing is it reduces the need for supplement drugs. It will be the biggest achievement if we get the desired concentration and effect of the loaded drug in these sutures without affecting its mechanical properties. This can be achieved by enhancing/modifying the control release approaches. The current review gives updated information on recent advances in drug eluting sutures.

Keywords:

Surgical, smart sutures, ophthalmics, electrospinning, antibacterial.



Citation: Anureet AA, Geeta GA, Janita JC, Param PM, Manju MN. Drug eluting sutures: A recent update. J Appl Pharm Sci, 2019; 9(07):111–123.


Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Blaker JJ, Nazhat SN, Boccaccini AR. Development and characterisation of silver-doped bioactive glass-coated sutures for tissue engineering and wound healing applications. Biomaterials, 2004; 25(7-8):1319-29. https://doi.org/10.1016/j.biomaterials.2003.08.007

Blakney AK, Krogstad EA, Jiang YH, Woodrow KA. Delivery of multipurpose prevention drug combinations from electrospun nanofibers using composite microarchitectures. Int J Nanomed, 2014; 9:2967. https://doi.org/10.2147/IJN.S61664

Blanco MG, Franco L, Puiggali J, Rodríguez˗Galán A. Incorporation of triclosan into polydioxanone monofilaments and evaluation of the corresponding release. J Appl Polym Sci, 2009; 114(6): 3440-51. https://doi.org/10.1002/app.30651

Bölgen N, Vargel I, Korkusuz P, Menceloğlu YZ, Pişkin E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J Biomed Mat Res B Appl Biomater, 2007; 81(2):530-43. https://doi.org/10.1002/jbm.b.30694

Casalini T, Masi M, Perale G. Drug eluting sutures: a model for in vivo estimations. Int J Pharm, 2012; 429(1-2):148-57. https://doi.org/10.1016/j.ijpharm.2012.03.024

Catanzano O, Acierno S, Russo P, Cervasio M, De Caro MD, Bolognese A, Sammartino G, Califano L, Marenzi G, Calignano A, Acierno D. Melt-spun bioactive sutures containing nanohybrids for local delivery of anti-inflammatory drugs. Mater Sci Eng C, 2014; 43:300-9. https://doi.org/10.1016/j.msec.2014.07.012

Champeau M, Thomassin JM, Tassaing T, Jérôme C. Drug loading of polymer implants by supercritical CO2 assisted impregnation: a review. J Control Rel, 2015; 209:248-59. https://doi.org/10.1016/j.jconrel.2015.05.002

Champeau M, Thomassin JM, Tassaing T, Jérôme C. Current manufacturing processes of drug-eluting sutures. Expert Opin Drug Del, 2017; 14(11):1293-303. https://doi.org/10.1080/17425247.2017.1289173

Chen DW, Hsu YH, Liao JY, Liu SJ, Chen JK, Ueng SW. Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. Int J Pharm, 2012; 430(1-2):335-41. https://doi.org/10.1016/j.ijpharm.2012.04.010

Chen X, Hou D, Tang X, Wang L. Quantitative physical and handling characteristics of novel antibacterial braided silk suture materials. J Mech Behav Biomed Mat, 2015a; 50:160-70. https://doi.org/10.1016/j.jmbbm.2015.06.013

Chen X, Hou D, Wang L, Zhang Q, Zou J, Sun G. Antibacterial surgical silk sutures using a high-performance slow-release carrier coating system. ACS Appl Mat Interfaces, 2015b; 7(40):22394-403. https://doi.org/10.1021/acsami.5b06239

Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Rel, 2015; 220:584-91. https://doi.org/10.1016/j.jconrel.2015.09.008

Cichocki Jr FR. Fluid emitting suture needle. United State Patent US 20050070959 A1, 2005.

Cohen M. Antimicrobial sutures and methods of making them. United State Patent US 20070010856A1, 2007.

Colombo G, Padera R, Langer R, Kohane DS. Prolonged duration local anesthesia with lipid-protein-sugar particles containing bupivacaine and dexamethasone. J Biomed Mat Res B Appl Biomater, 2005; 75(2):458-64. https://doi.org/10.1002/jbm.a.30443

Cummings SH, Grande DA, Hee CK, Kestler HK, Roden CM, Shah NV, Razzano P, Dines DM, Chahine NO, Dines JS. Effect of recombinant human platelet-derived growth factor-BB-coated sutures on Achilles tendon healing in a rat model: a histological and biomechanical study. J Tissue Eng, 2012; 3(1):2041731412453577. https://doi.org/10.1177/2041731412453577

Dennis C, Sethu S, Nayak S, Mohan L, Morsi Y, Manivasagam G. Suture materials-current and emerging trends. J Biomed Mat Res A, 2016; 104(6):1544-59. https://doi.org/10.1002/jbm.a.35683

Elsner JJ, Zilberman M. Antibiotic-eluting bioresorbable composite fibers for wound healing applications: microstructure, drug delivery and mechanical properties. Acta Biomaterialia, 2009; 5(8): 2872-83. https://doi.org/10.1016/j.actbio.2009.04.007

García-Vargas M, González-Chomón C, Magariños B, Concheiro A, Alvarez-Lorenzo C, Bucio E. Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin. Int J Pharm, 2014; 461(1-2):286-95. https://doi.org/10.1016/j.ijpharm.2013.11.060

Gariepy TP. The introduction and acceptance of Listerian antisepsis in the United States. J History Med Allied Sci, 1994; 49(2): 167-206. https://doi.org/10.1093/jhmas/49.2.167

Geiger BC, Nelson MT, Munj HR, Tomasko DL, Lannutti JJ. Dual drug release from CO2-infused nanofibers via hydrophobic and hydrophilic interactions. J Appl Polym Sci, 2015; 132 (38):42571. https://doi.org/10.1002/app.42571

Greenberg JA, Goldman RH. Barbed suture: a review of the technology and clinical uses in obstetrics and gynecology. Rev Obstet Gynec, 2013; 6(3-4):107.

Gross JM, Drubetsky L, Naimagon A, Avelar R, D'agostino WL, Nelson KD, Crow BB, Griffin NB, inventors; Ethicon Inc, Ethicon LLC, assignee. Drug-eluting self-retaining sutures and methods relating thereto. United States patent US 20130317545A1, November 2013.

He CL, Huang ZM, Han XJ. Fabrication of drug˗loaded electrospun aligned fibrous threads for suture applications. J Biomed Mat Res A, 2009; 89(1):80-95. https://doi.org/10.1002/jbm.a.32004

Hu W, Huang ZM, Liu XY. Development of braided drug-loaded nanofiber sutures. Nanotechnol, 2010; 21(31):315104. https://doi.org/10.1088/0957-4484/21/31/315104

Huh BK, Kim BH, Kim SN, Park CG, Lee SH, Kim KR, Heo CY, Choy YB. Surgical suture braided with a diclofenac-loaded strand of poly (lactic-co-glycolic acid) for local, sustained pain mitigation. Mat Sci Eng C, 2017; 79:209-15. https://doi.org/10.1016/j.msec.2017.05.024

Hyde RA, Jung EKY, Myhryold NP, Tegreene CT, Wattenburg WH, Wood LL, Zare RN. Invention Science Fund I LLC. Vasculature and lymphatic system imaging and ablation associated with a reservoir. United State Patent US Patent 2012 8285367, 2012.

John AT. Triclosan containing absorbable sutures with extended antimicrobial properties. United State Patent US 2004/0185250 A1, September2004.

Kashiwabuchi F, Parikh KS, Omiadze R, Zhang S, Luo L, Patel HV, Xu Q. Development of absorbable, antibiotic-eluting sutures for ophthalmic surgery. Transl Vis Sci Technol, 2017; 6(1):1.

Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J Control Rel, 2002; 81(1-2):57-64. https://doi.org/10.1016/S0168-3659(02)00041-X

Labhasetwar V, Bonadio J, Goldstein S, Chen W, Levy RJ. A DNA controlled˗ release coating for gene transfer: Transfection in skeletal and cardiac muscle. J Pharm Sci, 1998; 87(11):1347-50. https://doi.org/10.1021/js980077+

Leaper D, McBain AJ, Kramer A, Assadian O, Sanchez JL, Lumio J, Kiernan M. Healthcare associated infection: novel strategies and antimicrobial implants to prevent surgical site infection. Ann R Coll Surg Engl, 2010; 92(6):453-8. https://doi.org/10.1308/003588410X12699663905276

Leaper D, Wilson P, Assadian O, Edmiston C, Kiernan M, Miller A, Bond-Smith G, Yap J. The role of antimicrobial sutures in preventing surgical site infection. Ann R Coll Surg Engl, 2017; 99(6):439-43. https://doi.org/10.1308/rcsann.2017.0071

Lee DH, Kwon TY, Kim KH, Kwon ST, Cho DH, Jang SH, Son JS, Lee KB. Anti-inflammatory drug releasing absorbable surgical sutures using poly (lactic-co-glycolic acid) particle carriers. Polym Bull, 2014; 71(8):1933-46. https://doi.org/10.1007/s00289-014-1164-8

Lee JE, Park S, Park M, Kim MH, Park CG, Lee SH, Choi SY, Kim BH, Park HJ, Park JH, Heo CY. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomaterialia, 2013; 9(9):8318-27. https://doi.org/10.1016/j.actbio.2013.06.003

Lee JS, Lu Y, Baer GS, Markel MD, Murphy WL. Controllable protein delivery from coated surgical sutures. J Mat Chem, 2010; 20(40):8894-903. https://doi.org/10.1039/c0jm01389g

Loh A. Controlled release of drugs from surgical suture. Doctoral dissertation, Massachusetts Institute of Technology, 1987.

Mack BC, Davis ME, Wright KW. Layered drug delivery polymer monofilament fibres. United State Patent US 20090 155326A1, June 2009.

Maruyama T, Jeong J, Sheu TJ, Hsu W. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun, 2016; 7:10526. https://doi.org/10.1038/ncomms10526

Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm, 2012; 81(1):1-3. https://doi.org/10.1016/j.ejpb.2012.01.016

Ming X, Nichols M, Rothenburger S. In vivo antibacterial efficacy of Monocryl plus antibacterial suture (Poliglecaprone 25 with triclosan). Surg Infect (Larchmt), 2007; 8(2):209-14. https://doi.org/10.1089/sur.2006.004

Ming X, Rothenburger S, Nichols MM. In vivo and in vitro antibacterial efficacy of PDS plus (polidioxanone with triclosan) suture. Surg Infect (Larchmt), 2008; 9(4):451-7. https://doi.org/10.1089/sur.2007.061

Modak S, Sampath L. Columbia University of New York. Triclosan-containing medical devices. United State Patent US19985772640, 1998.

Morizumi S, Suematsu Y, Gon S, Shimizu T. Inhibition of neointimal hyperplasia with a novel tacrolimus-eluting suture. J Am Coll Cardiol, 2011; 58(4):441-2. https://doi.org/10.1016/j.jacc.2011.02.062

Mysore V. ACS (I) textbook on cutaneous and aesthetic surgery. Jaypee Brothers Medical Publishers, New Delhi, India, 2012.

Nagy ZK, Balogh A, Drávavölgyi G, Ferguson J, Pataki H, Vajna B, Marosi G. Solvent-free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent-based electrospun and melt extruded systems. J Pharm Sci, 2013; 102(2):508-17. https://doi.org/10.1002/jps.23374

Parikh PM, Davison SP, Higgins JP. Barbed suture tenorrhaphy: an ex vivo biomechanical analysis. Plast Reconstr Surg, 2009; 124(5):1551-8. https://doi.org/10.1097/PRS.0b013e3181babb77

Pelz K, Todtmann N, Otten JE. Comparison of antibacterial-coated and non-coated suture material in intraoral surgery by isolation of adherent bacteria. Ann Agric Environ Med. 2015; 22(3):551-5. https://doi.org/10.5604/12321966.1167733

Perale G, Casalini T, Barri V, Müller M, Maccagnan S, Masi M. Lidocaine release from polycaprolactone threads. J Appl Polym Sci, 2010; 117(6):3610-4. https://doi.org/10.1002/app.32262

Ray JA, Doddi N, Regula D, Williams JA, Melveger A. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet, 1981; 153(4):497-507.

Rodeheaver GT, Kurtz LD, Bellamy WT, Smith SL, Farris H, Edlich RF. Biocidal braided sutures. Arch Surg, 1983; 118(3):322-7. https://doi.org/10.1001/archsurg.1983.01390030054008

Rooney A. The story of medicine. Arcturus Publishing Ltd, London, UK, 2009.

Rothenburger S, Spangler D, Bhende S, Burkley D. In vitro antimicrobial evaluation of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 with triclosan) using zone of inhibition assays. Surg Infect, 2002; 3(S1):s79-87. https://doi.org/10.1089/sur.2002.3.s1-79

Rowland SM, Uman IJ, Cottone Jr. Drug eluting implantable medical device. United State Patent US 20040039441 A1, February 2004.

Saber A. Ancient Egyptian surgical heritage. J Invest Surg, 2010; 23(6):327-34. https://doi.org/10.3109/08941939.2010.515289

Scaffaro R, Botta L, Sanfilippo M, Gallo G, Palazzolo G, Puglia AM. Combining in the melt physical and biological properties of poly (caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments. Appl Micro Biotechnol, 2013; 97(1):99-109. https://doi.org/10.1007/s00253-012-4283-x

Shalaby SW. Antimicrobial, synthetic, fibrous and tubular medical devices. United State Patent US 20040171323a1, September 2004.

Shibuya TY, Kim S, Nguyen K, Do J, McLaren CE, Li KT, Chen WP, Parikh P, Wadhwa A, Zi X, Chen VY. Bioactive suture: a novel immunotherapy for head and neck cancer. Clin Cancer Res, 2004; 10(20):7088-99. https://doi.org/10.1158/1078-0432.CCR-04-0052

Shibuya TY, Kim S, Nguyen K, Parikh P, Wadhwa A, Brockardt C, Do J. Covalent linking of proteins and cytokines to suture: Enhancing the immune response of head and neck cancer patients. Laryngoscope, 2003; 113(11):1870-84. https://doi.org/10.1097/00005537-200311000-00004

Shibuya TY, Wei WZ, Zormeier M, Ensley J, Sakr W, Mathog RH, Meleca RJ, Yoo G, June CH, Levine B, Lum LG. Anti-CD3/anti-CD28 monoclonal antibody-coated suture enhances the immune response of patients with head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg, 1999; 125(11):1229-34. https://doi.org/10.1001/archotol.125.11.1229

Shukla A, Fuller RC, Hammond PT. Design of multi-drug release coatings targeting infection and inflammation. J Control Rel, 2011; 155(2):159-66. https://doi.org/10.1016/j.jconrel.2011.06.011

Singh H, Tyagi PK. Radiation induced grafting of methacrylic acid onto silk for the immobilization of antimicrobial drug for sustained delivery. Die Angewandte Makromolekulare Chemie: Appl Macromol Chem Phy, 1989; 172(1):87-102. https://doi.org/10.1002/apmc.1989.051720108

Sugiura K, Ogawa S, Tabata I, Hori T. Impregnation of tranilast to the poly (lactic acid) fiber with supercritical carbon dioxide and the release behavior of tranilast. Sen'i Gakkaishi, 2005; 61(6):159-65. https://doi.org/10.2115/fiber.61.159

Thimour-Bergström L, Roman-Emanuel C, Scherstén H, Friberg Ö, Gudbjartsson T, Jeppsson A. Triclosan-coated sutures reduce surgical site infection after open vein harvesting in coronary artery bypass grafting patients: a randomized controlled trial. Eur J Cardiothorac Surg, 2013; 44(5):931-8. https://doi.org/10.1093/ejcts/ezt063

Viju S, Thilagavathi G. Characterization of tetracycline hydrochloride drug incorporated silk sutures. J Text Inst, 2013; 104(3): 289-94. https://doi.org/10.1080/00405000.2012.720758

Wang L, Chen D, Sun J. Layer-by-layer deposition of polymeric microgel films on surgical sutures for loading and release of ibuprofen. Langmuir, 2009; 25(14):7990-4. https://doi.org/10.1021/la9004664

Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, Kohane DS. Electrospun drug-eluting sutures for local anesthesia. J Control Rel, 2012; 161(3):903-9. https://doi.org/10.1016/j.jconrel.2012.05.021

Wu DQ, Cui HC, Zhu J, Qin XH, Xie T. Novel amino acid based nanogel conjugated suture for antibacterial application. J Mater Chem B, 2016; 4(15):2606-13. https://doi.org/10.1039/C6TB00186F

Wu MH, Poncet P. Medical devices having drug eluting properties and methods of manufacture thereof. United State Patent US 20040193257, September 2004.

Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed, 2013; 8:2997. https://doi.org/10.2147/IJN.S43575

Zhukovskii VA, Khokhlova VA, Korovicheva SY. Surgical suture materials with antimicrobial properties. Fibre Chem, 2007; 39(2):136-43. https://doi.org/10.1007/s10692-007-0028-5

Zurita R, Puiggalí J, Rodríguez˗Galán A. Loading and release of ibuprofen in multi˗and monofilament surgical sutures. Macromol Biosci, 2006a; 6(9):767-75. https://doi.org/10.1002/mabi.200600084

Zurita R, Puiggalí J, Rodríguez˗Galán A. Triclosan release from coated polyglycolide threads. Macromol Biosci, 2006b; 6(1):58-69. https://doi.org/10.1002/mabi.200500147

Article Metrics