Research Article | Volume: 15, Issue: 12, December, 2025

Mitigating cardiotoxicity of Naja naja venom: Evaluation of a multipronged strategy using anti-snake venom and methanolic extract of Andrographis paniculata

Sujatha Prabhu P. Maya Roche Ashwini Aithal P. Sreedhara Ranganath Pai K. Varun Kumar Singh Akshatha Ganesh Nayak   

Open Access   

Published:  Nov 05, 2025

DOI: 10.7324/JAPS.2025.266425
Abstract

This study assesses the effect of anti-snake venom (ASV), methanolic extract of Andrographis paniculata (MAP), and ASV+MAP (50% reduced dose of ASV+MAP) in mitigating cardiotoxicity in rats. Thirty female Wistar rats were divided into five groups (n = 6): normal control, venom control (VC), and three test groups treated with ASV or MAP or ASV+MAP. Electrocardiogram was recorded at baseline, 30, 90 minutes, 24 hours, and days 7 and 14. Serum creatine kinase (CKMB) levels were measured at baseline, 24 hours, and days 7 and 14. On day 15, animals were sacrificed for histopathological analysis. Bradycardia occurred at 90 minutes in all groups except the ASV+MAP group. The amplitude of the P wave improved maximally with ASV+MAP. CKMB, which was high in the VC group, was reduced by ASV to the extent of 20% and ASV+MAP by 30%. On day 14, a decrease in CKMB was observed in all groups, lowest being the ASV+MAP group. Histopathological changes observed in the VC group were attenuated by ASV+MAP. The multipronged approach of administering MAP along with a 50% reduced dose of ASV was shown to be the best strategy for mitigating cardiotoxicity of Naja naja venom.


Keyword:     Naja naja venom cardiotoxicity anti-snake venom methanolic extract of Andrographis paniculata


Citation:

Prabhu PS, Roche M, Aithal PA, Pai KSR, Singh VK, Nayak AG. Mitigating cardiotoxicity of Naja naja venom: Evaluation of a multipronged strategy using anti-snake venom and methanolic extract of Andrographis paniculata. J Appl Pharm Sci. 2025;15(12):266-275. http://doi.org/10.7324/JAPS.2025.266425

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Suraweera W, Warrell D, Whitaker R, Menon G, Rodrigues R, Fu SH, et al. Trends in snakebite deaths in India from 2000 to 2019 in a nationally representative mortality study. Elife. 2020;9:e54076. doi: https://doi.org/10.7554/eLife.54076

2. Mohapatra B, Warrell DA, Suraweera W, Bhatia P, Dhingra N, Jotkar RM, et al. Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl Trop Dis. 2011;5(4):1018. doi: https://doi.org/10.1371/journal.pntd.0001018

3. Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Sa T, et al. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel). 2019;11(6):363. doi: https://doi.org/10.3390/toxins11060363

4. Chaves LF, Chuang TW, Sasa M, Gutiérrez JM. Snakebites are associated with poverty, weather fluctuations, and El Niño. Sci Adv. 2015;1(8):e1500249. doi: https://doi.org/10.1126/sciadv.1500249

5. Vaiyapuri S, Vaiyapuri R, Ashokan R, Ramasamy K, Nattamaisundar K, Jeyaraj A, et al. Snakebite and Its Socio-Economic Impact on the Rural Population of Tamil Nadu, India. PLoS One. 2013;8(11):e80090. doi: https://doi.org/10.1371/journal.pone.0080090

6. Shashidharamurthy R, Mahadeswaraswamy YH, Ragupathi L, Vishwanath BS, Kemparaju K. Systemic pathological effects induced by cobra (Naja naja) venom from geographically distinct origins of Indian peninsula. Exp Toxicol Pathol. 2010;62(6):587–92. doi: https://doi.org/10.1016/j.etp.2009.08.002

7. Dissanayake DSB, Thewarage LD, Waduge RN, Ranasinghe JGS, Kularatne SAM, Rajapakse RPVJ. The Venom of Spectacled Cobra (Elapidae: naja naja): In Vitro Study from Distinct Geographical Origins in Sri Lanka. J Toxicol. 2018;2018:7358472. doi: https://doi.org/10.1155/2018/7358472

8. Asad MHHB, Murtaza G, Ubaid M, Durr-E-Sabih, Sajjad A, Mehmood R, et al. Naja naja karachiensis envenomation: biochemical parameters for cardiac, liver, and renal damage along with their neutralization by medicinal plants. Biomed Res Int. 2014; 2014: 970540. doi: https://doi.org/10.1155/2014/970540

9. Singh S, Pall A, Kirar RS. Study of electrocardiographic changes pattern in cases of snake bites in a tertiary care hospital of Mahakaushal area of central India. Int J Res Med Sci. 2019;7(5):1450–4. doi: https://doi.org/10.18203/2320-6012.ijrms20191545

10. Ismail AK, Weinstein SA, Auliya M, Appareo P. Ventricular bigeminy following a cobra envenomation. Clin Toxicol (Phila). 2012;50(6):518–21. doi:https://doi.org/10.3109/15563650.2012.696119

11. Lalloo DG, Trevett AJ, Nwokolo N, Laurenson IF, Naraqi S, Kevau I, et al. Electrocardiographic abnormalities in patients bitten by taipans (Oxyuranus scutellatus canni) and other elapid snakes in Papua New Guinea. Trans R Soc Trop Med Hyg. 1997;91(1):53–6. doi: https://doi.org/10.1016/s0035-9203(97)90394-1

12. World Health Organization. Guidelines for the management of snake-bites. 2nd ed. New Delhi: World Health Organization, Regional Office for South-East Asia. In: Warrell DA (eds), Epidemiology of snake-bite in South-East Asia Region. 2010; pp. 36–45.

13. Ahmed SM, Ahmed M, Nadeem A, Mahajan J, Choudhary A, Pal J. Emergency treatment of a snake bite: pearls from literature. J Emerg Trauma Shock. 2008;1(2):97–105. doi: https://doi.org/10.4103/0974-2700.43190

14. Deshpande RP, Motghare VM, Padwal SL, Pore RR, Bhamare CG, Deshmukh VS, et al. Adverse drug reaction profile of anti-snake venom in a rural tertiary care teaching hospital. J Young Pharm. 2013;5(2):41–5. doi: https://doi.org/10.1016/j.jyp.2013.02.003

15. De Silva HA, Ryan NM, De Silva HJ. Adverse reactions to snake antivenom, and their prevention and treatment. Br J Clin Pharmacol. 2016;81(3):446–52. doi: https://doi.org/10.1111/bcp.12739

16. Meenatchisundaram S, Priyagrace S, Vijayaraghavan R, Velmurugan A, Parameswari G, Michael A. Antitoxin activity of Mimosa pudica root extracts against Naja naja and Bangarus caerulus venoms. Bangladesh J Pharmacol. 2009;4:105–9. doi: https://doi.org/10.3329/bjp.v4i2.2276

17. Meenatchisundaram S, Michael A. Antitoxin activity of Mucuna pruriens aqueous extracts against Cobra and Krait venom by in vivo and in vitro methods. Int J Pharm Tech Res. 2010;2:870–4. Available from: https://www.semanticscholar.org/paper/Antitoxin-activity-of-Mucuna-pruriens-aqueous-cobra-Meenatchisundaram-Michael/1f02d2f80f9f391a658f0b572f4a18d2c79461ea

18. Meenatchisundaram S, Parameshwari G, Michael A. Studies on antivenom activity of Andrographis paniculata and Aristolochia indica plant extracts against Daboia russelli venom by in vivo and in vitro methods. Indian J Sci Tech. 2009;2:76–9. doi: https://doi.org/10.17485/ijst/2009/v2i4.9

19. Lakhmale SP, Acharya R, Yewatkar N. Ethnomedicinal claims on antivenom activity of certain fruit and seed drugs–a review. Ayurpharm Int J Ayur Alli Sci. 2012;1:21–9. Available from: https://www.researchgate.net/publication/272498021_Ethnomedicinal_claims_on_antivenom_activity_of_certain_fruit_and_seed_drugs-a_review

20. Qureshi NN, Kuchekar BS, Logade NA, Haleem MA. Analgesic, anti-inflammatory and acute toxicity studies on Cordia macleodii and Leucas ciliata leaves. Int J Pharm Tech Res. 2010;2:1311–5. Available from: https://sphinxsai.com/s_v2_n2/PT_V.2No.2/phamtech_vol2no.2_pdf/PT=52%20(1311-1315).pdf

21. Gopi K, Renu K, Raj M, Kumar D, Muthuvelan B. The neutralization effect of methanol extract of Andrographis paniculata on Indian cobra Naja naja snake venom. J Pharm Res. 2011;4(4):1010–2. Available from: https://tinyurl.com/3twc97hu

22. Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamil Nadu, India. J Ethnopharmacol. 2008;115(2):302–12. doi: https://doi.org/10.1016/j.jep.2007.10.006

23. Sareer O, Ahad A, Umar S. Prophylactic and lenitive effects of Andrographis paniculata against common human ailments: an exhaustive and comprehensive reappraisal. J Pharm Res Opinion. 2012;2(10):138–62. Available from: https://www.semanticscholar.org/paper/PROPHYLACTIC-AND-LENITIVE-EFFECTS-OF-ANDROGRAPHIS-Sareer-Ahad/18fab76787fd4c236f3235ce74d8a03af4c6d07b

24. Sorna Kumar RSA, Kunthavai PC, Gnaniah S. Isolation, purification and characterization of active compound from Andrographis paniculata L and Phyllanthus amarus L and testing the antivenom activity of the di-herbal extract by in vitro and in vitro studies. Int Res J Pharm. 2014; 5:207–11. doi: https://doi.org/10.7897/2230-8407.050344

25. Carvalho BMA, Santos JDL, Xavier BM, Almeida JR, Resende LM, Martins W, et al. Snake venom PLA2s inhibitors isolated from Brazilian plants: synthetic and natural molecules. Biomed Res Int. 2013:153045. doi: https://doi.org/10.1155/2013/153045

26. Nayak AG, Ahammad J, Kumar N, Shenoy S, Roche M. Can the methanolic extract of Andrographis paniculata be used as a supplement to anti-snake venom to normalize hemostatic parameters: a thromboelastographic study. J Ethnopharmacol. 2020;252:112480. doi: https://doi.org/10.1016/j.jep.2019.112480

27. Nayak AG, Aithal PA, Kumar N, Shenoy S, Roche M. Augmented rescue of macroglobulins by supplementation of anti-snake venom with methanolic extract of Andrographis paniculata in Naja naja envenomation. 3 Biotech. 2022;12(11):310. doi: https://doi.org/10.1007/s13205-022-03379-w

28. Nayak AG, Kumar N, Shenoy S, Roche M. Evaluation of the merit of the methanolic extract of Andrographis paniculata to supplement anti-snake venom in reversing secondary hemostatic abnormalities induced by Naja naja venom. 3 Biotech. 2021;11(5):228. doi: https://doi.org/10.1007/s13205-021-02766-z

29. Ciobotaru EM, Manuella B, Corneliu BED, Soare T, Joita S, Dinescu, G. Gravimetric and morphometric assessments in Wistar rats with experimental diabetes mellitus type 1 and cardiac failure. Acta Veterinaria. 2008;58: 5-6. doi: https://doi.org/10.2298/AVB0806583C

30. Tambe PK, Mathew AJ, Bharati S. Cardioprotective potential of mitochondria-targeted antioxidant, mito-TEMPO, in 5-fluorouracil-induced cardiotoxicity. Cancer Chemother Pharmacol. 2023;91(5):389–400. doi: https://doi.org/10.1007/s00280-023-04529-4

31. Asaikumar L, Vennila L, Akila P, Sivasangari S, Kanimozhi K, Premalatha V, et al. Expression of concern: preventive effect of nerolidol on isoproterenol-induced myocardial damage in Wistar rats: Evidences from biochemical and histopathological studies. Drug Dev Res. 2019;80:814–23. doi: https://doi.org/10.1002/ddr.21564

32. Nagaraju PG, S. A, Rao PJ, Priyadarshini P. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. Nanotoxicology. 2024;18(1):87–105. doi: https://doi.org/10.1080/17435390.2024.2314483

33. Deshpande AM, Sastry KV, Bhise SB. Physiology monitoring as a tool of effective venom research. IntJPharmSciDrugRes. 2022;14(3):341–50. doi: https://doi.org/10.25004/IJPSDR.2022.140306

34. Omran MAA, Abdel-Nabi IM. Changes in the arterial blood pressure, heart rate and normal ECG parameters of rat after envenomation with Egyptian cobra (Naja haje) venom. Hum Exp Toxicol. 1997;16(6):327–33. doi: https://doi.org/10.1177/096032719701600606

35. Sunil KK, Joseph JK, Joseph S, Varghese AM, Jose MP. Cardiac Involvement in Vasculotoxic and Neurotoxic Snakebite - A not so Uncommon Complication. J Assoc Physicians India. 2020;68(11):39– 41.

36. Sun JJ, Walker MJA. Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon. 1986;24(3):233–45. doi: https://doi.org/10.1016/0041-0101(86)90149-2

37. Cher CDN, Armugam A, Zhu YZ, Jeyaseelan K. Molecular basis of cardiotoxicity upon cobra envenomation. Cell Mol Life Sci. 2005;62(1):105–18. doi: https://doi.org/10.1007/s00018-004-4352-0

38. Konopelski P, Ufnal M. Electrocardiography in rats: a comparison to human. Physiol Res. 2016;65(5):717–25. doi: https://doi.org/10.33549/physiolres.933270

39. Vikas L, Riyaz A. Varying A V block complicating snake bite - a case report. J Evol Med Dental Sci. 2014;3(7):1713–7. doi: https://doi.org/10.14260/jemds/2014/2047

40. Sambhi MP, White FN. The electrocardiogram of the normal and hypertensive rat. Circ Res. 1960;8:129–34. doi: https://doi.org/10.1161/01.RES.8.1.129

41. Nandave M, Ojha SK, Joshi S, Kumari S, Arya DS. Cardioprotective effect of Bacopa monneira against isoproterenol-induced myocardial necrosis in rats. Int J Pharmacol. 2007;3(5):385–92. doi: https://doi.org/10.3923/ijp.2007.385.392

42. Kalita B, Utkin YN, Mukherjee AK. Current insights in the mechanisms of cobra venom cytotoxins and their complexes in inducing toxicity: implications in antivenom therapy. Toxins (Basel). 2022;14(12):839. doi: https://doi.org/10.3390/toxins14120839

43. Patel HV, Vyas AA, Vyas KA, Liu YS, Chiang CM, Chi LM, et al. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J Biol Chem. 1997;272(3):1484–92. doi: https://doi.org/10.1074/jbc.272.3.1484

44. Yingprasertchai S, Bunyasrisawat S, Ratanabanangkoon K. Hyaluronidase inhibitors (sodium cromoglycate and sodium auro-thiomalate) reduce the local tissue damage and prolong the survival time of mice injected with Naja kaouthia and Calloselasma rhodostoma venoms. Toxicon. 2003;42(6):635–46. doi: https://doi.org/10.1016/j.toxicon.2003.09.001

45. Angaji S, Houshmandi A, Zare Mirakabadi A. Acute effects of the iranian snake (Naja Naja Oxiana) venom on heart. Biomacromolecular J. 2016;2(2):97–101. Available from: https://www.bmmj.org/article_24877_499df97829f99f1d8bb192fad628287c.pdf

46. Sah DK, Nagarathana P. Screening of cardioprotective activity of leaves of Andrographis paniculata against isoproterenol induced myocardial infarction in rats. Int J Pharmacol Res. 2016;6:23–8. doi: https://doi.org/10.7439/ijpr

47. Zhang CY, Tan BK. Mechanisms of cardiovascular activity of Andrographis paniculata in the anaesthetized rat. J Ethnopharmacol. 1997;56(2):97–101. doi: https://doi.org/10.1016/s0378-8741(97)01509-2

48. Yoopan N, Thisoda P, Rangkadilok N, Sahasitiwat S, Pholphana N, Ruchirawat S, et al. Cardiovascular effects of 14-deoxy- 11,12-didehydroandrographolide and Andrographis paniculata extracts. Planta Med. 2007;73(6):503–11. doi: https://doi.org/10.1055/s-2007-967181

49. Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) Wall. ex Nees: a review of ethnobotany, phytochemistry, and pharmacology. Scientific World J. 2014:274905. doi: https://doi.org/10.1155/2014/274905

50. Tan MCS, Oyong GG, Shen C-C, Ragasa CY. Chemical constituents of Andrographis paniculata (Burm.f.) Nees. Int J Pharm Phytochem Res. 2016;8(8):1398–402.

51. Woo AY, Waye MM, Tsui SK, Yeung ST, Cheng CH. Andrographolide up-regulates cellular-reduced glutathione level and protects cardiomyocytes against hypoxia/reoxygenation injury. J Pharmacol Exp Ther. 2008;325(1):226–35. doi: https://doi.org/10.1124/jpet.107.133918

Article Metrics
6 Views 1 Downloads 7 Total

Year

Month

Related Search

By author names