Metabolic syndrome is a multifactorial and progressive disorder characterized by obesity, dyslipidemia, type 2 diabetes, and other metabolism-related conditions. Cape gooseberry (CP) (Physalis peruviana L.), an exotic fruit rich in bioactive compounds, has attracted growing attention for its potential benefits on metabolic health. This narrative review critically examines preclinical and clinical studies evaluating the metabolic effects of CP consumption, with a focus on biomarkers related to glucose and lipid metabolism, oxidative stress, and inflammation. A comprehensive search was conducted in four major scientific databases. A total of 40 studies were analyzed, including 28 preclinical investigations, 2 clinical trials, and 10 complementary studies addressing compound characterization and the impact of processing. While preclinical studies consistently report beneficial effects in animal models, clinical evidence is limited to two studies with heterogeneous results, both of which are affected by methodological limitations such as small sample sizes, short intervention durations, and inadequate dosing. Additionally, this review explores processing techniques aimed at preserving the bioactive profile of the fruit, which may enhance its application in functional food formulations. Despite encouraging evidence from preclinical studies, robust randomized controlled trials are required to validate the therapeutic potential of CP in the prevention and management of metabolic syndrome in humans.
Mendoza-Girón MG, Castro-Gómez F, Guerrero JC. Cape gooseberry (Physalis peruviana L.) as a functional food for metabolic health: A narrative review of glucose and lipid regulatory effects. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2026.260089
1. Nhlbi.nih.gov [Internet]. Síndrome metabólico. Causas y factores de riesgo [updated 2022 May 27; cited 2024 Mar 9]. Available from: https://www.nhlbi.nih.gov/es/salud/sindrome-metabolico/causas
2. Ramírez-López LX, Aguilera AM, Rubio CM, Aguilar-Mateus ÁM. Síndrome metabólico: una revisión de criterios internacionales. Rev Colomb Cardiol. 2022;28(1):60–6. doi: https://doi.org/10.24875/RCCAR.M21000010
3. Angelico F, Baratta F, Coronati M, Ferro D, Del Ben M. Diet and metabolic syndrome: a narrative review. Intern Emerg Med. 2023;18:1007–17. doi: https://doi.org/10.1007/s11739-023-03226-7
4. Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, et al. New advances in metabolic syndrome, from prevention to treatment: the role of diet and food. Nutrients. 2023;15(3):640. doi: https://doi.org/10.3390/nu15030640
5. Prat L, Sáenz C. Chemical characteristics, bioactive compounds, and advances in processing of Physalis peruviana. In: Ramadan M, editor. Handbook of goldenberry (Physalis peruviana) cultivation, processing, chemistry, and functionality. United Kingdom: Academic Press Elsevier; 2024. pp. 473–484. doi: https://doi.org/10.1016/B978-0-443-15433-1.00044-3
6. Kasali FM, Tusiimire J, Kadima JN, Tolo CU, Weisheit A, Agaba AG. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: an overview. Sci World J.2021;2021(1):1– 22. doi: https://doi.org/10.1155/2021/5212348
7. Odongo E, Mungai N, Mutai P, Karumi E, Mwangi J, Omale J.Ethnobotanical survey of medicinal plants used in Kakamega County, western Kenya. Appl Med Res. 2018;4(1):1–19. doi: https://doi.org/10.47363/AMR/2018(5)157
8. Pinto MDS, Ranilla LG, Apostolidis E, Lajolo FM, Genovese MI, Shetty K. Evaluation of antihyperglycemia and antihypertension potential of native Peruvian fruits using in vitro models. J Med Food. 2009;12(2):278–91. doi: https://doi.org/10.1089/jmf.2008.0113
9. Navarro-Hoyos M, Arnáez-Serrano E, Quirós-Fallas MI, Vargas-Huertas F, Wilhelm-Romero K, Vásquez-Castro F, et al. QTOF-ESI MS characterization and antioxidant activity of Physalis peruviana L. (Cape Gooseberry) husks and fruits from Costa Rica. Molecules. 2022;27(13):4238. doi: https://doi.org/10.3390/molecules27134238
10. Carrillo-Perdomo E, Aller A, Cruz-Quintana SM, Giampieri F, Alvarez-Suarez JM. Andean berries from Ecuador: a review on botany, agronomy, chemistry and health potential. J Berry Res. 2015;5(2):49–69. doi: https://doi.org/10.3233/JBR-140093
11. Kasali FM, Tuyiringire N, Peter EL, Ahovegbe LY, Ali MS, Tusiimire J, et al. Chemical constituents and evidence-based pharmacological properties of Physalis peruviana L.: an overview. J Herbmed Pharmacol. 2022;11(1):35–47. doi: https://doi.org/10.34172/jhp.2022.04
12. Mora ÁC, Aragón DM, Ospina LF. Effects of Physalis peruviana fruit extract on stress oxidative parameters in streptozotocin-diabetic rats. Latin Am J Pharm. 2010;9(7):1132–6. Available from: http://www.latamjpharm.org/resumenes/29/7/LAJOP297112.pdf
13. Fazilet E, Tubay K, Sevinc A, Orhan E, Okkes Y. The protective effects of goldenberry extract against to the oxidative and destructive effects of type I diabetes in rats. Fresenius Environ Bull. 2020;29(5):3344–53. Available from: https://www.prt-parlar.de/downloadlist/?c=FEB2020#
14. Pino-de la Fuente F, Nocetti D, Sacristán C, Ruiz P, Guerrero J, Jorquera G, et al. Physalis peruviana L. pulp prevents liver inflammation and insulin resistance in skeletal muscles of diet-induced obese mice. Nutrients. 2020;12(3):700. doi: https://doi.org/10.3390/nu12030700
15. Moussa SAA, Ibrahim FAA, Elbaset MA, Aziz SW, Morsy FA, Abdellatif N, et al. Goldenberry (Physalis peruviana) alleviates hepatic oxidative stress and metabolic syndrome in obese rats. J Appl Pharm Sci. 2022;12(11):138–50. doi: https://doi.org/10.7324/JAPS.2022.121115
16. Vaillant F, Corrales-Agudelo V, Moreno-Castellanos N, Ángel-Martín A, Henao-Rojas JC, Muñoz-Durango K, et al. Plasma metabolome profiling by high-performance chemical isotope-labelling LC-MS after acute and medium-term intervention with golden berry fruit (Physalis peruviana L.), confirming its impact on insulin-associated signaling pathways. Nutrients. 2021;13(9):3125. doi: https://doi.org/10.3390/nu13093125
17. Ludeña-Meléndez V, Ishikawa-Arias P, Gutiérrez-Guerrero A, Guevara-Coronel C, Laiza-Pajilla D, Ledesma-Chavarria L, et al. Efecto del consumo de Physalis peruviana en la glucemia de adultos jóvenes con sobrepeso y obesidad. Iatreia. 2024;38(1):56–66. doi: https://doi.org/10.17533/udea.iatreia.258
18. Suren Garg S, Kushwaha K, Dubey R, Gupta J.Association between obesity, inflammation and insulin resistance: insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract. 2023;200:110691. doi: https://doi.org/10.1016/j.diabres.2023.110691
19. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55(1):31– 55. doi: https://doi.org/10.1016/j.immuni.2021.12.013
20. Swaroop JJ, Rajarajeswari D, Naidu JN. Association of TNF-α with insulin resistance in type 2 diabetes mellitus. Indian J Med Res. 2012;135(1):127–30. doi: https://doi.org/10.4103/0971-5916.93435
21. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: https://doi.org/10.1038/nri2925
22. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6628012/
23. Jakubiak GK, Osadnik K, Lejawa M, Osadnik T, Go?awski M, Lewandowski P, et al. “Obesity and Insulin Resistance” is the component of the metabolic syndrome most strongly associated with oxidative stress. Antioxidants. 2021;11(1):79. doi: https://doi.org/10.3390/antiox11010079
24. Magliano DJ, Boyko EJ, Committee IDA 10th ES. Global picture [Internet]. IDF DIABETES ATLAS -NCBI Bookshelf. 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581940/
25. Islam ANMS, Sultana H, Refat MNH, Farhana Z, Kamil AA, Rahman MM. The global burden of overweight-obesity and its association with economic status, benefiting from STEPs survey of WHO member states: a meta-analysis. Prev Med Rep [Internet]. 2024;46:102882. doi: https://doi.org/10.1016/j.pmedr.2024.102882
26. Dewi L, Sulchan M, Kisdjamiatun. Potency of cape gooseberry (Physalis peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom J Diabetes Nutr Metab Dis. 2018;25(3):253–60. Available from: https://www.rjdnmd.org/index.php/RJDNMD/article/view/484/440
27. Campos J, Bobadilla D, Huamán M, Bazán M. Efecto del extracto del fruto de Physalis peruviana “tomatillo” en Mus musculus var. swis con hiperlipidemia inducida. Sci Agropecu. 2011;2(2):83–9. doi: https://doi.org/10.17268/sci.agropecu.2011.02.03
28. Ramadan MF, Hassan NA, Elsanhoty RM, Sitohy MZ. Goldenberry (Physalis peruviana) juice rich in health-beneficial compounds suppresses high-cholesterol diet-induced hypercholesterolemia in rats. J Food Biochem. 2012;37(6):708–22. doi: https://doi.org/10.1111/j.1745-4514.2012.00669.x
29. Ramadan MF. Physalis peruviana pomace suppresses highcholesterol diet-induced hypercholesterolemia in rats. Grasas Aceites. 2012;63(4):411–22. doi: https://doi.org/10.3989/gya.047412
30. Ángel-Martín A, Vaillant F, Moreno-Castellanos N. Daily consumption of golden berry (Physalis peruviana) has been shown to halt the progression of insulin resistance and obesity in obese rats with metabolic syndrome. Nutrients. 2024;16(3):365. doi: https://doi.org/10.3390/nu16030365
31. Aljadani H, Shehta H, Khattab HAE, El-Shitany N. Protective effects of golden berry (Physalis peruviana L.) juice against diabetic renal injury in rats. Egypt J Vet Sci. 2025;56(6):1195–206. doi: https://doi.org/10.21608/ejvs.2024.274177.1891
32. Tshibangu DST, Kavugho FS, Kabengele CN, Masunda AT, Bongo GN, Kasiama GN, et al. Phytochemical study and evaluation of the antidiabetic and antihyperglycemic activities of the fruit extracts of Physalis peruviana L. (Solanaceae). Phytomedicine Plu. 2025;5(1):100675. doi: https://doi.org/10.1016/j.phyplu.2024.100675
33. World Health Organization: WHO. Healthy diet [Internet]. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/healthy-diet
34. Pinzón EH, Reyes AJ, Álvarez-Herrera JG, Leguizamo MF, Joya JG. Comportamiento del fruto de uchuva Physalis peruviana L., bajo diferentes temperaturas de almacenamiento. Rev Cienc Agríc [Internet]. 2015;32(2):26–35. doi: http://dx.doi.org/10.22267/rcia.153202.10
35. Gallón M, Eraso S, Cortés M. Avances tecnológicos en el proceso de transformación de la uchuva: una revisión. Rev Fac Cienc Básicas [Internet]. 2021;16(1):7–18. doi: https://doi.org/10.18359/rfcb.5019
36. Borda C, Obradith C. Cambios en el contenido nutricional de la uchuva (Physalis peruviana) frente a osmodeshidratación como método de conservación. Perspectivas en Nutrición Humana. 2014;15(2):149–56. doi: https://doi.org/10.17533/udea.penh.18996
37. Narváez-Cuenca CE, Mateus-Gómez Á, Restrepo-Sánchez LP. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (Physalis peruviana L.) at different ripeness stages. Agron Colomb. 2014;32(2):232–7. doi: https://doi.org/10.15446/agron.colomb.v32n2.43731
38. Vega-Gálvez A, López J, Torres-Ossandón MJ, Galotto MJ, Puente-Díaz L, Quispe-Fuentes I, et al. High hydrostatic pressure effect on chemical composition, color, phenolic acids and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). LWT Food Sci Technol. 2014;58(2):519–26. doi: https://doi.org/10.1016/j.lwt.2014.04.010
39. Cortés GM, Prieto GA, Rozo WE. Caracterización bromatológica y fisicoquímica de la uchuva [Physalis peruviana L.] y su posible aplicación como alimento nutracéutico. Cienc Desarr. 2015;6(1):87– 98. doi: https://doi.org/10.19053/01217488.3653
40. Puente L, Vega-Gálvez A, Fuentes I, Stucken K, Rodríguez A, Pastén A. Effects of drying methods on the characterization of fatty acids, bioactive compounds and antioxidant capacity in a thin layer of physalis (Physalis peruviana L.) pulp. J Food Sci Technol. 2021;58:1470–9. doi: https://doi.org/10.1007/s13197-020-04659-0
41. Marín Z, Cortés M, Montoya O. Uchuva (Physalis peruviana L.) ecotipo Colombia, mínimamente procesada inoculada con la cepa nativa Lactobacillus plantarum LPBM10 mediante la técnica de impregnación a vacío. Re Chil Nut. 2010;37(4):461–72. doi: https://doi.org/10.4067/S0717-75182010000400007
42. Etzbach L, Pfeiffer A, Weber F, Schieber A. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MS. Food Chem. 2018;245:508–17. doi: https://doi.org/10.1016/j.foodchem.2017.10.120
43. Nishino A, Maoka T, Yasui H. Preventive effects of β-Cryptoxanthin, a potent antioxidant and provitamin A carotenoid, on lifestyle-related diseases—a central focus on its effects on non-alcoholic fatty liver disease (NAFLD). Antioxidants. 2021;11(1):43. doi: https://doi.org/10.3390/antiox11010043
44. Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290–324. doi: https://doi.org/10.1111/bph.13625
45. Chatterjee M, Roy K, Janarthan M, Das S, Chatterjee M. Biological activity of carotenoids: its implications in cancer risk and prevention. Curr Pharm Biotechnol. 2012;13(1):180–90. doi: https://doi.org/10.2174/138920112798868683
46. Zhao T, He X, Yan X, Xi H, Li Y, Yang X. Recent advances in the extraction, synthesis, biological activities, and stabilisation strategies for β-carotene: a review. Int J Food Sci Technol. 2024;59(4):2136– 47. doi: https://doi.org/10.1111/ijfs.16986
47. Karakoy Z, Cadirci E, Dincer B. A new target in inflammatory diseases: lycopene. Eurasian J Med. 2022;54(1):S23–8. doi: https://doi.org/10.5152/eurasianjmed.2022.22303
48. Trapali M. Lutein in chronic diseases: a mini review. Rev Clin Pharmacol Pharmacokinet Int Ed. 2024;38(1):47–56. doi: https://doi.org/10.61873/YBCS9028
49. Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5(35):27540–57. doi: https://doi.org/10.1039/C5RA01911G
50. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci. 2019;22(3):225– 37. doi: https://doi.org/10.22038/ijbms.2019.32806.7897
51. Chen S, Jiang H, Wu X, Fang J.Therapeutic effects of quercetin on inflammation, obesity, and type 2 diabetes. Mediators Inflamm. 2016;2016(1):5. doi: https://doi.org/10.1155/2016/9340637
52. Li Y, Yao J, Han C, Yang J, Chaudhry M, Wang S, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(6):167. doi: https://doi.org/10.3390/nu8030167
53. Mukhopadhyay P, Prajapati AK. Quercetin in anti-diabetic research and strategies for improved quercetin bioavailability using polymer-based carriers—a review. RSC Adv. 2015;5(118):97547–62. doi: https://doi.org/10.1039/C5RA18896B
54. Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J.2017;25(2):149–64. doi: https://doi.org/10.1016/j.jsps.2016.04.025
55. Enogieru AB, Haylett W, Hiss DC, Bardien S, Ekpo OE. Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid Med Cell Longev. 2018;2018(1):17. doi: https://doi.org/10.1155/2018/6241017
56. Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, et al. Myricetin: a comprehensive review on its biological potentials. Food Sci Nutr. 2021;9(10):5854–68. doi: https://doi.org/10.1002/fsn3.2513
57. Rufino AT, Costa VM, Carvalho F, Fernandes E. Flavonoids as antiobesity agents: a review. Med Res Rev. 2021;41(1):556–85. doi: https://doi.org/10.1002/med.21740
58. Kim JK, Park SU. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J.2020;19:627–34.
59. Chen J, Zhong H, Huang Z, Chen X, You J, Zou T. A critical review of kaempferol in intestinal health and diseases. Antioxidants. 2023;12(8):1642. doi: https://doi.org/10.3390/antiox12081642
60. Yang Y, Chen Z, Zhao X, Xie H, Du L, Gao H, et al. Mechanisms of Kaempferol in the treatment of diabetes: a comprehensive and latest review. Front Endocrinol. 2022;13:990299. doi: https://doi.org/10.3389/fendo.2022.990299
61. Puente L, Nocetti D, Espinosa A. Physalis peruviana Linnaeus, an update on its functional properties and beneficial effects in human health. In: Mario A, editor. Wild fruits: composition, nutritional value and products, Geneva, Switzerland: Springer International Publishing; 2019. pp. 447–63. doi: https://doi.org/10.1007/978-3-030-31885-7_34
62. Ambavade SD, Misar AV, Ambavade PD. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review. Orient Pharm Exp Med. 2014;14:193–211. doi: https://doi.org/10.1007/s13596-014-0151-9
63. Bakrim S, Benkhaira N, Bourais I, Benali T, Lee LH, Omari N, et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants. 2022;11(10):1912. doi: https://doi.org/10.3390/antiox11101912
64. Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, et al. Lupeol and its derivatives as anticancer and anti-inflammatory agents: molecular mechanisms and therapeutic efficacy. Pharmacol Res. 2021;164:105373. doi: https://doi.org/10.1016/j.phrs.2020.105373
65. An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, et al. Recent updates on bioactive properties of linalool. Food Funct. 2021;12:10370–89. doi: https://doi.org/10.1039/D1FO02120F
66. Al Kury LT, Abdoh A, Ikbariah K, Sadek B, Mahgoub M. In vitro and in vivo antidiabetic potential of monoterpenoids: an update. Molecules. 2021;27(1):182. doi: https://doi.org/10.3390/molecules27010182
67. Coy-Barrera E. Withanolides from Physalis peruviana. In: Ramadan M, editor. Handbook of goldenberry (Physalis peruviana) ultivation, processing, chemistry, and functionality. UK: Academic Press Elsevier; 2024, pp. 271–87. doi: https://doi.org/10.1016/B978-0-443-15433-1.00021-2
68. Restrepo AM, Cortes M, Julio CM. Uchuvas (Physalis peruviana L.) mínimamente procesadas fortificadas con vitamina E. Rev Fac Quím Farm. 2009;16(1):19–30. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042009000100003
69. Duque A, Giraldo G, Cortes M. Fortificación de pulpa de uchuva con calcio, oligofructosa y vitamina c, estabilizada con hidrocoloide. Biotecnologia En El Sector Agropecuario y Agroindustrial. 2014;12(1):124–33.
70. Ruth P, Misael C, Olga M. Evaluation of the physicochemical, physical and sensory properties of fresh cape gooseberry and vacuum impregnated with physiologically active components. Vitae. 2013;20(1):13–22. doi: https://doi.org/10.17533/udea.vitae.11628
71. Cortés M, Hernández G, Estrada E. Optimization of the spray drying process for obtaining cape gooseberry powder: an innovative and promising functional food. Vitae. 2017;24(1):59–67. doi: https://doi.org/10.17533/udea.vitae.v24n1a07
72. Mokhtar SM, Swailam HM, Embaby HES. Physicochemical properties, nutritional value and techno-functional properties of goldenberry (Physalis peruviana) waste powder concise title: composition of goldenberry juice waste. Food Chem. 2018;248:1–7. doi: https://doi.org/10.1016/j.foodchem.2017.11.117
73. Bazalar M, Nazareno M, Viturro C. Optimized formulation of a Physalis peruviana L. fruit nectar: physicochemical characterization, sensorial traits and antioxidant properties. J Food Sci Technol. 2020;57:3267–77. doi: https://doi.org/10.1007/s13197-020-04358-w
74. Meza PFZ, Sepúlveda-V JU, Ciro-V HJ.Evaluation of physicochemical, antioxidant and sensory properties of a beverage made with hydrolyzed sweet whey permeate enriched with agraz (Vaccinium meridionale Swartz) and cape gooseberry (Physalis peruviana L) pulp. Ing Compet. 2023;25(1):e–22012055. doi: https://doi.org/10.25100/iyc.v25i1.12055
75. Amaar FE, Khallaf MF, Ibrahim MT, Yasin NMN. Utilization of Egyptian golden berry fruit for producing sugar -preserved functional products. Egypt J Chem. 2024;68(3):79–89. doi: https://doi.org/10.21608/ejchem.2024.300706.9927
76. Ndahura NB, Nambooze J, Mangusho G, Najjuuko R. Effect of consumption of cape gooseberries on blood glucose control among patients with type 2 diabetes mellitus in Kampala, Uganda: a protocol for a randomized controlled trial. Open Access J Clin Trials. 2025;17:63–70. doi: https://doi.org/10.2147/OAJCT.S525661
Year
Month