Careya arborea Roxb. was investigated for its phytotherapeutic potential, focusing on two key bioactive constituents, (−)-epigallocatechin-3-gallate (EGCG) and azelaic acid (AzA). These compounds were efficiently extracted using supercritical fluid extraction (SFE), a green and selective technique. The chemical composition of the extract was confirmed through liquid chromatography–mass spectrometry (LC-MS), verifying the presence of both EGCG and AzA. To improve bioavailability and dermal absorption, the extract was formulated into a nanosuspension using suitable stabilizers and homogenization techniques. A robust and reproducible reverse-phase high-performance liquid chromatography method was developed for the quantitative estimation of EGCG and AzA in both the crude extract and nanosuspension. Method development was guided by a quality by design approach using central composite design, optimizing key chromatographic parameters with minimal experimentation. EGCG was separated using a Chemsil ODS C18 column with methanol and 0.1% orthophosphoric acid (60:40 v/v) at 276 nm, while AzA was analyzed using a Phenomenex Luna C18 column with acetonitrile and 0.1% formic acid (80:20 v/v) at 227 nm. The method was validated as per ICH Q2(R1) guidelines, showing high accuracy, precision, and robustness. Green chemistry metrics such as Analytical Eco-Scale and Analytical GREEnness confirmed the method’s environmental sustainability.
Salokhe AS, Patil AS, Gaude Y, Rayanade P, Koli R, Jadhav NS. Supercritical fluid extraction, LC-MS profiling, and QbD-guided green HPLC method for standardization of Careya arborea Roxb. nanoemulsion. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.266427
1. Chaachouay N, Zidane L. Plantderived natural products: a source for drug discovery and development. Drugs Drug Candidates. 2024;3(1):184–207. doi: https://doi.org/10.3390/ddc3010011
2. Paul T, Kumar KJ. Standardization of herbal medicines for lifestyle diseases. In: Dhara AK, Mandal SC, editors. Role of herbal medicines: management of lifestyle diseases. Singapore: Springer; 2024. pp: 545–557. doi: https://doi.org/10.1007/978981997703127
3. Khaliq HA. Pharmacognostic, physicochemical, phytochemical and pharmacological studies on Careya arborea Roxb.; a review. J Phytopharmacol. 2016;5(1):27–34.
4. Gupta P, Patil D, Patil A. Qualitative HPTLC phytochemical profiling of Careya arborea Roxb. bark, leaves and seeds. 3 Biotech. 2019;9(8):311. doi: https://doi.org/10.1007/s132050191846x
5. Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2023;49(5):1003–16. doi: https://doi.org/10.1016/j.burns.2022.10.008
6. Liakopoulou A, Letsiou S, Avgoustakis K, Hatziantoniou S. Comparative study between nanoemulsions and conventional emulsions as carriers of plant oils: physicochemical and invivo performance. Cosmetics 2025;12(3):102. doi: https://doi.org/10.3390/cosmetics12030102
7. Jahanimoghadam F, Javidan A, Ranjbar M, Torabi M, Kakooei S, Sharififar F. The healing effect of nanoemulsified Plantago major L extract on oral wounds in a Wistar rat model. BMC Complement Med Ther. 2024;24:327. doi: https://doi.org/10.1186/s12906024040001
8. Myint YL, Kyu KM, Sint TT. Phytochemical, physicochemical and antimicrobial activities on flowers of Careya arborea Roxb. J Myanmar Acad Arts Sci. 2021;19(4B):77.
9. De França Ferreira ÉL, de Carvalho Oliveira JP, de Araújo MR, Rai M, Chaves MH. Phytochemical profile and ethnopharmacological applications of Lecythidaceae: an overview. J Ethnopharmacol. 2021;274:114049. doi: https://doi.org/10.1016/j.jep.2021.114049
10. AlSulaimi S, Kushwah R, Abdullah Alsibani M, El Jery A, Aldrdery M, Ashraf GA. Emerging developments in separation techniques and analysis of chiral pharmaceuticals. Molecules 2023;28(17):6175. doi: https://doi.org/10.3390/molecules28176175
11. Tome T, Žigart N, ?asar Z, Obreza A. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Org Process Res Dev. 2019;23(9):1784–802. doi: https://doi.org/10.1021/acs.oprd.9b00238
12. Meher AK, Zarouri A. Green analytical chemistry—recent innovations. Analytica 2025;6(1):10. doi: https://doi.org/10.3390/analytica6010010
13. Uwineza PA, Wa?kiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from plant materials. Molecules 2020;25(17):3847. doi: https://doi.org/10.3390/molecules25173847
14. Toribio L, Martín MT, Bernal J. Supercritical fluid chromatography in bioanalysis: a review. J Sep Sci. 2024;47(21):e70003. doi: https://doi.org/10.1002/jssc.70003.
15. Chouhan B. Supercritical fluid chromatography: a review on a key green analytical technique in pharmaceutical spectral analysis. J Sep Sci. 2025;1(1):1–10. doi: https://doi.org/10.69557/n70bvv08
16. Pila?ová V, Plachká K, Herbsová D, Kosturko Š, Svec F, Nováková L. Comprehensive twostep supercritical fluid extraction for green isolation of volatiles and phenolic compounds from plant material. Green Chem. 2024;26(11):6480–9. doi: https://doi.org/10.1039/d4gc00371c
17. Nitthikan N, Preedalikit W, Supadej K, Chaichit S, Leelapornpisid P, Kiattisin K. Exploring the wound healing potential of a Cuscuta chinensis extract-loaded nanoemulsion-based gel. Pharmaceutics. 2024;16(5):573. doi: https://doi.org/10.3390/pharmaceutics16050573
18. Rodrigues VH, Portugal I, Silva CM. Economic analysis of the supercritical fluid extraction of lupane-triterpenoids from Acacia dealbata Link bark. Ind Crops Prod. 2023;200:116838. doi: https://doi.org/10.1016/j.indcrop.2023.116838
19. Herzyk F, Pi?akowska-Pietras D, Korzeniowska M. Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts. Foods 2024;13(11):1713. doi: https://doi.org/10.3390/foods13111713
20. Patel N, Dave K, Patel R, Vegad K, Kanaki N. HPLC-based metabolomic fingerprint profiling as a comprehensive quality assessment tool, why not for standardization of ayurvedic herbs and formulations. Pharmacognosy Res. 2024;16(4):677–87. doi: http://dx.doi.org/10.5530/pres.16.4.79
21. Jouaneh TM, Motta N, Wu C, Coffey C, Via CW, Kirk RD, et al. Analysis of botanicals and botanical supplements by LC-MS/MS-based molecular networking: approaches for annotating plant metabolites and authentication. Fitoterapia 2022;159:105200.
22. Aayush K, Sharma K, Singh GP, Chiu I, Chavan P, Shandilya M, et al. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int J Biol Macromol. 2024;270:132220. doi: https://doi.org/10.1016/j.ijbiomac.2024.132220
23. Semysim FA, Hussain BK, Hussien MA, Azooz EA, Snigur D. Assessing the greenness and environmental friendliness of analytical methods: modern approaches and recent computational programs. Crit Rev Anal Chem. 2024;12:1–4. doi: https://doi.org/10.1080/10408347.2024.2304552
24. Koli R, Mannur VS. Green RP-HPLC method for simultaneous quantification of epigallocatechin-3-gallate and rosmarinic acid in lipid-based nanocarriers and biological fluids: quality by design-driven optimization and lean six sigma approach. Green Anal Chem. 2024;11:100153. doi: https://doi.org/10.1016/j.greeac.2024.100153
25. Prajapati SK, Jain A, Bajpai M. Development and validation of the RP-HPLC method for quantification of tavaborole. Anal Methods. 2024;16(30):5280–7. doi: https://doi.org/10.1039/D4AY00943F
26. Gulawani S, Mahajan S, Waghole RJ, Srivastava P. Comprehensive metabolic profiling of Mandarin Peel different extracts obtained by conventional and green methods by Sciex LC-MS/MS-Qtrap. J Food Compos Anal. 2025;21:107254. doi: https://doi.org/10.1016/j.jfca.2025.107254
27. Maan P, Chauhan S, Gupta N, Rani D. Dual-drug quantification: HPLC method validation for hesperidin and piperine in ethosomal delivery systems. Int J Appl Pharm. 2025;17(2):240–9. doi: https://dx.doi.org/10.22159/ijap.2025v17i2.53262
28. Lee SG, Ko H, Choi EJ, Oh DR, Bae D, Choi C. Isolation and analytical method validation for phytocomponents of aqueous leaf extracts from Vaccinium bracteatum Thunb. in Korea. Processes 2021;9(11):1868. doi: https://doi.org/10.3390/pr9111868
29. Sezgin B, Soyseven M, Arli G. Greenness assessment and comparison of the developed and validated green HPLC-PDA, HPLC-FLD, and HPLC-ELSD methods for the determination of melatonin in various products using analytical eco-scale, NEMI, GAPI, and AGREE greenness metric tools. Microchem J. 2024;205:111211. doi: https://doi.org/10.1016/j.microc.2024.111211
30. Magdy MA, Abdelfatah RM, Abdelrahman MM, Elsayed MA. Feasible HPLC method for simultaneous determination of triple therapy prescribed for cancer patients with application to human plasma: method’s greenness, whiteness, and blueness appraisal. Microchem J. 2025;209:112731. doi: https://doi.org/10.1016/j.microc.2025.112731
31. Shrigod NM, Swami Hulle NR, Prasad RV. Supercritical fluid extraction of essential oil from mint leaves (Mentha spicata): process optimization and its quality evaluation. J Food Process Eng. 2017;40(3):e12488. doi: https://doi.org/10.1111/jfpe.12488
32. Slighoua M, Mahdi I, Moussaid FZ, Kamaly OA, Amrati FE, Conte R, et al. LC-MS/MS and GC/MS profiling of Petroselinum sativum Hoffm. and its topical application on burn wound healing and related analgesic potential in rats. Metabolites 2023;13(2):260. doi: https://doi.org/10.3390/metabo13020260
33. Chandrakasan G, García-Trejo JF, Feregrino-Pérez AA, Aguirre- Becerra H, García ER, Nieto-Ramírez MI. Preliminary screening on antibacterial crude secondary metabolites extracted from bacterial symbionts and identification of functional bioactive compounds by FTIR, HPLC and gas chromatography–mass spectrometry. Molecules 2024;29(12):2914. doi: https://doi.org/10.3390/molecules29122914
34. Gandu S, Gandla K. Development of a quality by design-based ultra-performance liquid chromatography method for the simultaneous estimation of casirivimab and imdevimab with greenness metrics. Green Anal Chem. 2025;13:100248. doi: https://doi.org/10.1016/j.greeac.2025.100248
35. Spaggiari C, Annunziato G, Spadini C, Montanaro SL, Iannarelli M, Cabassi CS, et al. Extraction and quantification of azelaic acid from different wheat samples (Triticum durum Desf.) and evaluation of their antimicrobial and antioxidant activities. Molecules 2023;28(5):2134. doi: https://doi.org/10.3390/molecules28052134
36. Ádám AL, Kátay G, Künstler A, Király L. Detection of lipid peroxidation-derived free azelaic acid, a biotic stress marker and other dicarboxylic acids in tobacco by reversed-phase HPLC-MS under non-derivatized conditions. Methods Mol Bio. 2022;2526:191–200. doi: https://doi.org/10.1007/978-1-0716-2469-2_14
37. Kunchanur M, Mannur VS, Koli R. High-performance liquid chromatography–based standardization of stigmasterol in Moringa oleifera: method development and validation through design of experiment approach. SSC Plus. 2024;7(9):e202400105. doi: https://doi.org/10.1002/sscp.202400105
38. Wadie M, Abdel-Moety EM, Rezk MR, Tantawy MA. Eco-friendly chiral HPLC method for determination of alfuzosin enantiomers and solifenacin in their newly pharmaceutical combination: method optimization via central composite design. Microchem J. 2021;165:106095. doi: https://doi.org/10.1016/j.microc.2021.106095
39. Singh BK, Verma H, Singh N, Singh P, Chaudhary A, Rajpoot AK. Optimization of HPLC method by using central composite design for simultaneous estimation of montelukast and ebastine dosage form. RJPT. 2024;17(4):1844–50. doi: http://dx.doi.org/10.52711/0974-360X.2024.00293
40. Mady MS, Sobhy Y, Orabi A, Sharaky M, Mina SA, Abo-Zeid Y. Preparation and characterization of nano-emulsion formulations of Asparagus densiflorus root and aerial parts extracts: evaluation of in-vitro antibacterial and anticancer activities of nano-emulsion versus pure plant extract. Drug Dev Ind Pharm. 2024;50(7):658–70. doi: https://doi.org/10.1080/03639045.2024.2386001
41. Siddique I. High-performance liquid chromatography: comprehensive techniques and cutting-edge innovations. Eur J Adv Eng Technol. 2023;10(9):66–70. doi: https://dx.doi.org/10.2139/ssrn.4885931
42. Mohannaik K, Basha SS, Bhaskar B, Malarvannan M. An overview of developments in stability-indicating chromatographic methods: an essential part of regulatory considerations. J Anal Chem. 2023;78:S1–3. doi: https://doi.org/10.1134/S1061934824030092
Year
Month