The use of biocontrollers such as Streptomyces sp. PNM-9, which is effective against Burkholderia glumae and Colletotrichum gloeosporioides, the phytopathogens of yam and rice crops, serves as a promising alternative to pesticides. However, its effectiveness may be compromised by environmental stress. The preformulation of a microparticulate system that could contain the biocontroller was conducted to improve its stability. Streptomyces sp. PNM-9 was cultivated on rice husk and kaolin solid supports, subjecting them to temperatures of 60°C and 80°C for 10 minutes and desiccation stress for 6 hours at 25°C. To evaluate compatibility with wall materials, selected and inoculated solid support was used to prepare mixtures with maltodextrin, soy protein, and gum arabic. Each of these mixtures was subsequently spray-dried under predefined conditions. Solid supports demonstrated a protective effect on Streptomyces sp. PNM-9 against high temperature and drying conditions, in contrast to the broth. No statistically significant differences were found in the viability of Streptomyces sp. PNM-9 between the two supports after exposure to different temperatures and drying conditions. The rice husk, selected as the solid support, showed no incompatibilities with the wall materials. Therefore, subsequent studies focusing on microparticle formulation with rice husk and the evaluated polymer as wall material are strongly recommended.
Urrego JR, Tordecilla JD, Ramos FA, Castellanos L, Bernal CA, Baena-Aristizábal CM. Preformulation study as a basis for the development of Streptomyces sp. PNM-9 microparticles for biological control. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.257753
1. Muñoz Quezada MT. Aspectos bioéticos En El control y aplicación de plaguicidas En Chile. Acta Bioeth. 2011;17(1): 95–104. doi: https://doi.org/10.4067/S1726-569X2011000100011
2. Yasemi M, Jalali A, Asadzadeh M, Komijani M. Organophosphate pesticides and their potential in the change of microbial population and frequency of antibiotic resistance genes in aquatic environments. Chemosphere. 2025;376:144296. doi: https://doi.org/10.1016/j.chemosphere.2025.144296
3. Vinchira-Villarraga DM, Moreno-Sarmiento N. Control biológico: camino a la agricultura moderna. Rev Colomb Biotecnol. 2019;21(1): 2–5. doi: https://doi.org/10.15446/rev.colomb.biote.v21n1.80860
4. Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, et al. Plant -growth promotion and biocontrol properties of three Streptomyces Spp. isolates to control bacterial rice pathogens. Front Microbiol. 2019;10:290. doi: https://doi.org/10.3389/fmicb.2019.00290
5. Chater KF. Recent advances in understanding Streptomyces. F1000Res. 2016;5:2795. doi: https://doi.org/10.12688/f1000research.9534.1
6. Betancur LA, Forero AM, Romero-Otero A, Sepúlveda LY, Moreno- Sarmiento NC, Castellanos L, et al. Cyclic tetrapeptides from the marine strain Streptomyces Sp. PNM-161a with activity against rice and yam phytopathogens. J Antibiot 2019;72(10):744–51. doi: https://doi.org/10.1038/s41429-019-0201-0
7. Betancur LA, Forero AM, Vinchira-Villarraga DM, Cárdenas JD, Romero-Otero A, Chagas FO, et al. NMR-based metabolic profiling to follow the production of anti-phytopathogenic compounds in the culture of the marine strain Streptomyces Sp. PNM-9. Microbiol Res. 2020;239:126507. doi: https://doi.org/10.1016/j.micres.2020.126507
8. Marian M, Shimizu M. Improving performance of microbial biocontrol agents against plant diseases. J Gen Plant Pathol. 2019;85(5):329–36. doi: https://doi.org/10.1007/s10327-019-00866- 6
9. Ma X, Wang X, Cheng J, Nie X, Yu X, Zhao Y, et al. Microencapsulation of Bacillus subtilis B99-2 and its biocontrol efficiency against Rhizoctonia solani in tomato. Biol Control. 2015;90:34–41. doi: https://doi.org/10.1016/j.biocontrol.2015.05.013
10. Rathore S, Desai PM, Liew CV, Chan LW, Heng PWS. Microencapsulation of microbial cells. J Food Eng. 2013;116(2):369– 81. doi: https://doi.org/10.1016/j.jfoodeng.2012.12.022
11. López-Cruz R, Ragazzo-Sánchez JA, Calderón-Santoyo M. Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: a biocontrol formulation for anthracnose disease of Mango. Biocontrol Sci Technol. 2020;30(10):1116–32. doi: https://doi.org/10.1080/09583157.2020.1793910
12. Mancera-López ME, Barrera-Cortés J, Mendoza-Serna R, Ariza- Castolo A, Santillan R. Polymeric encapsulate of Streptomyces mycelium resistant to dehydration with air flow at room temperature. Polymers. 2022;15(1):207. doi: https://doi.org/10.3390/polym15010207
13. Saberi Riseh R, Tamanadar E, Hajabdollahi N, Vatankhah M, Thakur VK, Skorik YA. Chitosan microencapsulation of rhizobacteria for biological control of plant pests and diseases: recent advances and applications. Rhizosphere. 2022;23:100565. doi: https://doi.org/10.1016/j.rhisph.2022.100565
14. Bunt CR, Stelting SA, Wright DA, Swaminathan J. Preformulation characterisation of zeolite core materials in biocontrol products. N Zealand Plant Protect. 2010;63:284. doi: https://doi.org/10.30843/nzpp.2010.63.6602
15. Vivek K, Mishra S, Pradhan RC, Nagarajan M, Kumar PK, Singh SS, et al. A comprehensive review on microencapsulation of probiotics: technology, carriers and current trends. Appl Food Res. 2023;3(1):100248. doi: https://doi.org/10.1016/j.afres.2022.100248
16. Lucas J, Ralaivao M, Estevinho BN, Rocha F. A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol. 2020;362:428–35. doi: https://doi.org/10.1016/j.powtec.2019.11.095
17. Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crops Prod. 2013;42:469–79. doi: https://doi.org/10.1016/j.indcrop.2012.06.035
18. Lapponi MJ, Méndez MB, Trelles JA, Rivero CW. Cell immobilization strategies for biotransformations. Curr Opin Green Sustain Chem. 2022;33:100565. doi: https://doi.org/10.1016/j. cogsc.2021.100565
19. Baena-Aristizábal CM, Foxwell M, Wright D, Villamizar-Rivero L. Microencapsulation of Rhizobium leguminosarum Bv. Trifolii with Guar Gum: preliminary approach using spray drying. J Biotechnol. 2019;302:32–41. doi: https://doi.org/10.1016/j.jbiotec.2019.06.007
20. Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, Moreno- Sarmiento NC, Maldonado LA, Suarez-Moreno ZR, et al. Marine actinobacteria as a source of compounds for phytopathogen control: an integrative metabolic-profiling /bioactivity and taxonomical approach. PLoS One. 2017;12(2):e0170148. doi: https://doi.org/10.1371/journal.pone.0170148
21. Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ. Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem. 2008;40(11):2771–9. doi: https://doi.org/10.1016/j.soilbio.2008.07.021
22. Chaturvedi S, Chakraborty S. Comparative analysis of spray-drying microencapsulation of Lacticaseibacillus casei in synbiotic legume-based beverages. Food Biosci. 2022;50:102139. doi: https://doi.org/10.1016/j.fbio.2022.102139
23. Hadzieva J, Mladenovska K, Simonoska Crcarevska M, Glavaš Dodov M, Dimchevska S, Geškovski N, et al. Lactobacillus casei loaded soy protein-alginate microparticles prepared by spray-drying. Food Technol Biotechnol. 2017;55(2):173–86. doi: https://doi.org/10.17113/ftb.55.02.17.4991
24. Aragón-Rojas S, Quintanilla-Carvajal MX, Hernández-Sánchez H. Multifunctional role of the whey culture medium in the spray-drying microencapsulation of lactic acid bacteria. Food Technol Biotechnol. 2018;56(3):381–97. doi: https://doi.org/10.17113/ftb.56.03.18.5285
25. Ma J, Li T, Liu Y, Cai T, Wei Y, Dong W, et al. Rice husk derived double network hydrogel as efficient adsorbent for Pb(II), Cu(II) and Cd(II) removal in individual and multicomponent systems. Bioresour Technol. 2019;290:121793. doi: https://doi.org/10.1016/j. biortech.2019.121793
26. Liu S, Dai J, Sun Y, Xiu Z, Wang X, Li F, et al. Effects of rice husk on the tolerance of Saccharomyces cerevisiae to high temperature and ethanol concentration. Fuel. 2023;333:126406. doi: https://doi.org/10.1016/j.fuel.2022.126406
27. João JJ, Locks L, Vieira JL, Lucia EA. Rice husks as a microbial source for wastewater treatment. Rev Brasil Engenharia Agrícola e Ambiental. 2020;24(5): 343–7. doi: https://doi.org/10.1590/1807-1929/agriambi.v24n5p343-347
28. Lara-Juache HR, Ávila-Hernández JG, Rodríguez-Durán LV, Michel MR, Wong-Paz JE, Muñiz-Márquez DB, et al. Characterization of a biofilm bioreactor designed for the single-step production of aerial conidia and oosporein by beauveria bassiana PQ2. J Fungi. 2020;7(8). doi: https://doi.org/10.3390/jof7080582
29. Ding CH, Jiang ZQ, Li XT, Li LT, Kusakabe I. High activity xylanase production by Streptomyces olivaceoviridis E-86. World J Microbiol Biotechnol. 2004;20(1):7–10. doi: https://doi.org/10.1023/B:WIBI.0000013278.24679.ed
30. Kaur R, Kaur S. Carrier-based biofertilizers. In: Metabolomics, proteomes and gene editing approaches in biofertilizer industry. 1st ed. Singapore: Springer Nature Singapore; 2023. doi: https://doi.org/10.1007/978-981-99-3561-1_4
31. Spence A, Kelleher BP. FT-IR spectroscopic analysis of kaolinite– microbial interactions. Vib Spectrosc. 2012;61:151–5. doi: https://doi.org/10.1016/j.vibspec.2012.02.019
32. Abdel-Khalek NA, Seiem KA, Mohammed SE, El-Hendawy HH, M. Elbaz R. Interaction between kaolinite and Staphylococcus gallinarum bacteria. J Mining World Express. 2014;3(0):46. doi: https://doi.org/10.14355/mwe.2014.03.007
33. Rojas-Sánchez B, Guzmán-Guzmán P, Morales-Cedeño LR, Orozco- Mosqueda Ma del C, Saucedo-Martínez BC, Sánchez-Yáñez JM, et al. Bioencapsulation of microbial inoculants: mechanisms, formulation types and application techniques. Appl Biosci. 2022;1(2):198–220. doi: https://doi.org/10.3390/applbiosci1020013
34. Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, et al. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol. 2019;19(1):155. doi: https://doi.org/10.1186/s12866-019-1528-1
35. Zacky FA, Ting ASY. Biocontrol of Fusarium oxysporum f.Sp. Cubense tropical race 4 by formulated cells and cell-free extracts of Streptomyces griseus in sterile soil environment. Biocontrol Sci Technol. 2015;25(6):685–96. doi: https://doi.org/10.1080/09583157.2015.1007921
36. Behboudi-Jobbehdar S, Soukoulis C, Yonekura L, Fisk I. Optimization of spray-drying process conditions for the production of maximally viable microencapsulated L. Acidophilus NCIMB 701748. Drying Technol. 2013;31(11):1274–83. doi: https://doi.org/10.1080/07373937.2013.788509
37. Jiménez M, Flores-Andrade E, Pascual-Pineda LA, Beristain CI. Effect of water activity on the stability of Lactobacillus paracasei capsules. LWT—Food Sci Technol. 2015;60(1):346–51. doi: https://doi.org/10.1016/j.lwt.2014.09.050
38. McBride MJ, Ensign JC. Effects of intracellular trehalose content on Streptomyces griseus spores. J Bacteriol. 1987;169(11):4995–5001. doi: https://doi.org/10.1128/jb.169.11.4995-5001.1987
39. Lee J, Jeong B, Bae HR, Jang HA, Kim JK. Trehalose biosynthesis gene OtsA protects against stress in the initial infection stage of Burkholderia -bean bug symbiosis. Microbiol Spectr. 2023;11(2):e03510-22. doi: https://doi.org/10.1128/spectrum.03510-22
40. Bobek J, Šmídová K, ?ihák M. A waking review: old and novel insights into the spore germination in Streptomyces. Front Microbiol. 2017;8:2205. doi: https://doi.org/10.3389/fmicb.2017.02205
41. Kormanec J, Sevcikova B, Novakova R, Homerova D, Rezuchova B, Mingyar E. The complex roles and regulation of stress response σ factors in Streptomyces coelicolor. In: de Bruijn FJ, editor. Stress and environmental regulation of gene expression and adaptation in bacteria, Hoboken, NJ: John Wiley & Sons Inc; 2016. pp. 328–43. doi: https://doi.org/10.1002/9781119004813.ch29
42. Trujillo-Ramírez D, Bustos-Vázquez MG, Rodríguez-Durán LV, Torres-de los Santos R. Rice husk (Oryza sativa) as support in the immobilization of yeast cells. Rev Mex Ing Quim. 2021;21(1): 1–13. doi: https://doi.org/10.24275/rmiq/Bio2558
Year
Month