The genus Chamaecrista, belonging to the family Fabaceae, is mainly distributed in the American continent and is of great interest because of its extensive use in traditional medicine. This article presents a systematic review of the pharmacological and chemical properties of the Chamaecrista. Articles published between 2004 and 2023 were grouped through searches in the following databases: PubMed, SciELO, Scopus, Science Direct, Web of Science, and Google Scholar. Articles were included based on the selection and classification of titles and abstracts if they indicated the country of origin of the studies, plant species studied, compounds identified, and associated pharmacological activities. The results showed that most of the studies conducted in Brazil represented 35% of the published works. Moreover, Chamaecrista nictitans and Chamaecrista duckeana have been the most studied for their pharmacological potential, especially for their antioxidant activity. In addition, flavonoids were the leading group described, obtained from different extracts of various parts of the plant, with leaves being the most utilized. Despite promising advances in understanding the chemical composition and pharmacological properties of the genus Chamaecrista, this review highlights that no preclinical in vivo and clinical studies have been reported. This study underscores the importance of continuing research to identify and isolate new bioactive molecules from this genus, aiming to elucidate their pharmacological functions and potential therapeutic applications.
Villalba D, Escobar M, Martínez CC, Barúa JE, Pereira FO, Moura-Mendes J. Phytochemical and pharmacological aspects of the genus Chamaecrista: a systematic review. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.241066
1. Cragg GM, Newman DJ.Natural products: a continuing source of novel drug leads. Biochim Biophys Acta - Gen Subj.2013;1830:3670– 95. doi: https://doi.org/10.1016/j.bbagen.2013.02.008
2. Lutfi MF. The physiological basis and clinical significance of lung volume measurements. Multidiscip Respir Med. 2017;12:1–12. doi: https://doi.org/10.1186/s40248-017-0084-5
3. Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016;21:559. doi: https://doi.org/10.3390/molecules21050559
4. Bermúdez A, Oliveira-Miranda MA, Velázquez D. La investigación etnobotánica sobre plantas medicinales: una revisión de sus objetivos y enfoques actuales alexis bermúdez, maría a. Oliveira-miranda. Interciencia 2005;30:453–9.
5. Harvey AL. Natural products in drug discovery. Drug Discov Today 2008;13:894–901. doi: https://doi.org/10.1016/j.drudis.2008.07.004
6. Simões CMO, Schenkel EP, Gozman G, Melo JCP de. Farmacognosia da planta ao medicamento. 6th ed. Porto Alegre, Brazil: Editora UFRGS; 2007.
7. Lewis G, Polhill R. A situacao atual da sistematica de Leguminosae neotropicais. Cong Latin Bot. 1998;113–45.
8. da Silva WL, da Rocha AE, dos Santos JUM. Leguminosae em savanas do estuário amazônico brasileiro. Rodriguésia 2014;65:329– 53. doi: https://doi.org/10.1590/s2175-78602014000200004
9. Forzza RC, Leitman PM, Costa A, de Carvalho AA Jr, Peixoto AL, Walter BMT, et al. Catálogo de plantas e fungos do Brasil - Vol. 1.JBRJ (Botanical garden of Rio de Janeiro), Vol. 2; 2010.
10. Arroyo M, Bohlen C, Cavieres C, Marticorena C. Guía de consultas diversidad vegetal. Facena (Unne) 2002;1:122–41.
11. Rodrigues RS, Flores AS, Miotto STS, de Moura Baptista LR. The genus senna (Leguminosae, caesalpinioideae) in Rio Grande do Sul state, Brazil. Acta Bot Brasilica 2005;19:1–16. doi: https://doi.org/10.1590/s0102-33062005000100002
12. Queiroz RT de, Loiola MIB. O gênero Chamaecrista Moench (Caesalpinioideae) em áreas do entorno do Parque Estadual das Dunas de Natal, Rio Grande do Norte, Brasil. Hoehnea 2009;36:725– 36. doi: https://doi.org/10.1590/s2236-89062009000400011
13. Irwin H, Barneby R. Cassieae bronn. Advance in legumes systematics. London, UK: Royal Botanic Gardens; 1981. pp. 97–106.
14. Osunga S, Amuka O, Machocho AK, Getabu A. Ethnobotany of some members of the genus Cassia (Senna). Int J Novel Res Life Sci. 2023;10:1–14.
15. Uribe LH, Olarte EC, Castillo GT. In vitro antiviral activity of Chamaecrista nictitans (Fabaceae) against herpes simplex virus: biological characterization of mechanisms of action. Rev Biol Trop. 2004;52:807–16.
16. Adewusi EA, Moodley N, Steenkamp V. Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. South African J Bot. 2011;77:638–44. doi: https://doi.org/10.1016/j.sajb.2010.12.009
17. Delle Monache G, Cristina De Rosa M, Scurria R, Monacelli B, Pasqua G, Dall’Olio G, et al. Metabolites from in vitro cultures of Cassia didymobotrya. Phytochemistry 1991;30:1849–54. doi: https://doi.org/10.1016/0031-9422(91)85027-W
18. Nguyen VQ. Symbiosis between Chamaecrista fasciculata and nitrogen-fixing Symbiosis between Chamaecrista fasciculata and nitrogen-fixing bacteria: a review. JBRJ (Botanical garden of Rio de Janeiro), 2019.
19. Moher D, Liberati A, Tetzlaff J, Altman DG. Academia and clinic annals of internal medicine preferred reporting items for systematic reviews and meta-analyses. Ann Intern Med. 2009;151:264–9.
20. Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr. 2020;6:115–23. doi: https://doi.org/10.1016/j.aninu.2020.01.001
21. Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of polyphenols as antioxidant and anti-inflammatory compounds in brain–liver–gut axis. Antioxidants 2020;9:1–20. doi: https://doi.org/10.3390/antiox9080669
22. Salido FP. En Farmacia. Offarm 2005;24:178.
23. Haida Z, Hakiman M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci Nutr. 2019;7:1555–63. doi: https://doi.org/10.1002/fsn3.1012
24. Quirós-Guerrero L, Albertazzi F, Araya-Valverde E, Romero RM, Villalobos H, Poveda L, et al. Phenolic variation among Chamaecrista nictitans subspecies and varieties revealed through UPLC-ESI(-)- MS/MS chemical fingerprinting. Metabolomics 2019;15:14. doi: https://doi.org/10.1007/s11306-019-1475-8
25. Gomes P, Quirós-Guerrero L, Muribeca A, Reis J, Pamplona S, Lima AH, et al. Constituents of Chamaecrista diphylla (L.) greene leaves with potent antioxidant capacity: a feature-based molecular network dereplication approach. Pharmaceutics 2021;13:681. doi: https://doi.org/10.3390/pharmaceutics13050681
26. Nancy P, Ashlesha V. Pharmacognostic and phytochemical studies of Cassia absus seed extracts. Int J Pharm Pharm Sci. 2016;8:325–32.
27. Gowd V, Kanika, Jori C, Chaudhary AA, Rudayni HA, Rashid S, et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. J Nutr Biochem. 2022;109:109101. doi: https://doi.org/10.1016/j.jnutbio.2022.109101
28. Zhang LX, Li CX, Kakar MU, Khan MS, Wu PF, Amir RM, et al. Resveratrol (RV): a pharmacological review and call for further research. Biomed Pharmacother. 2021;143:112164. doi: https://doi.org/10.1016/j.biopha.2021.112164
29. Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J.Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021;26:1–15. doi: https://doi.org/10.3390/MOLECULES26010229
30. López Luengo MT. Flavonoids. Fitoterapia 2002;21:13028951.
31. Lima DR de, de Araújo Franca MG, de Cássia Evangelista de Oliveira F, do Ó Pessoa C, Cavalheiro AJ, de Vasconcelos Silvaa MG. Metabolic profiling and cytotoxic activity of methanol extracts from Chamaecrista duckeana (P. Bezerra & A. Fern.) H. S. Irwin & Barneby (Leguminosae, Caesalpinioideae). Quim Nova. 2022;45:803–6. doi: https://doi.org/10.21577/0100-4042.20170885
32. Odhiambo RS, Kareru PG, Mwangi EK, Onyango DW. Antioxidant activity, total phenols, flavonoids and lcms profile of Chamaecrista hildebrandtii (Vatke) lock and Clerodendrum rotundifolium (Oliv.). European J Med Plants 2019;26:1–11. doi: https://doi.org/10.9734/ejmp/2018/v26i330093
33. Trentin DDS, Giordani RB, Zimmer KR, Da Silva AG, Da Silva MV, Correia MTDS, et al. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol. 2011;137:327– 35. doi: https://doi.org/10.1016/j.jep.2011.05.030
34. de Morais CB, Scopel M, Pedrazza GPR, da Silva FK, Dalla Lana DF, Tonello ML, et al. Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). J Mycol Med. 2017;27:530–8. doi: https://doi.org/10.1016/j.mycmed.2017.07.006
35. Mateos-Martín ML, Fuguet E, Jiménez-Ardón A, Herrero-Uribe L, Tamayo-Castillo G, Torres JL. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC-ESI-MS/MS. Anal Bioanal Chem. 2014;406:5501–6. doi: https://doi.org/10.1007/s00216-014-7982-6
36. Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, et al. Apigenin as an anticancer agent. Phyther Res. 2020;34:1812–28. doi: https://doi.org/10.1002/ptr.6647
37. Hassan SS ul, Samanta S, Dash R, Karpi?ski TM, Habibi E, Sadiq A, et al. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: focus on the role of oxidative stress. Front Pharmacol. 2022;13:1015835. doi: https://doi.org/10.3389/fphar.2022.1015835
38. Tian C, Liu X, Chang Y, Wang R, Lv T, Cui C, et al. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. South African J Bot. 2021;137:257–64. doi: https://doi.org/10.1016/j.sajb.2020.10.022
39. Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, et al. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. BioFactors 2021;47:190–7. doi: https://doi.org/10.1002/biof.1687
40. Çetinkaya M, Baran Y. Therapeutic potential of luteolin on cancer. Vaccines 2023;11:554. doi: https://doi.org/10.3390/vaccines11030554
41. Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:8825387.
42. Islam MS, Quispe C, Hossain R, Islam MT, Al-Harrasi A, Al-Rawahi A, et al. Neuropharmacological effects of quercetin: a literature-based review. Front Pharmacol. 2021;12:1–16. doi: https://doi.org/10.3389/fphar.2021.665031
43. Singh P, Arif Y, Bajguz A, Hayat S. The role of quercetin in plants. Plant Physiol Biochem. 2021;166:10–9. Doi: https://doi.org/10.1016/j.plaphy.2021.05.023
44. Shen M, Yuan L, Zhang J, Wang X, Zhang M, Li H, et al. Phytosterols: physiological functions and potential application. Foods 2024;13:1754. doi: https://doi.org/10.3390/foods13111754
45. Salehi B, Quispe C, Sharifi-Rad J, Cruz-Martins N, Nigam M, Mishra AP, et al. Phytosterols: from preclinical evidence to potential clinical applications. Front Pharmacol. 2021;11:599959. doi: https://doi.org/10.3389/fphar.2020.599959
46. Sebei K, Sbissi I, Souhir A, Herchi W, Ssakouhi F, Boukhchina S. Phylogenetic identification, phytochemical analysis and antioxidant activity of Chamaecrista absus var. absus seeds. J Plant Biol Res. 2014;3:1–11.
47. Babu S, Jayaraman S. An update on β-sitosterol: apotential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020;131:110702. doi: https://doi.org/10.1016/j.biopha.2020.110702
48. Uttu AJ, Sallau MS, Ibrahim H, Iyun ORA. Isolation, characterization, and docking studies of campesterol and β-sitosterol from Strychnos innocua (Delile) root bark. J Taibah Univ Med Sci. 2023;18:566–78. doi: https://doi.org/10.1016/j.jtumed.2022.12.003
49. Kaur N, Chugh V, Gupta AK. Essential fatty acids as functional components of foods- a review. J Food Sci Technol. 2014;51:2289– 303. doi: https://doi.org/10.1007/s13197-012-0677-0
50. Tangavelou AC, Viswanathan MB, Balakrishna K, Patra A. Phytochemical analysis in the leaves of Chamaecrista nigricans (Leguminosae). Pharm Anal Acta 2018;9:582. doi: https://doi.org/10.4172/2153-2435.1000582
51. Saini RK, Prasad P, Sreedhar RV, Naidu KA, Shang X, Keum YS, et al. Omega−3 polyunsaturated fatty acids (PUFAs): emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits—a review’. Antioxidants (Basel) 2021;10(10):1627. doi: https://doi.org/10.3390/antiox10101627
52. Rogero MM, Leão M de C, Santana TM, Pimentel MV d. MB, Carlini GCG, da Silveira TFF, et al. Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med. 2020;156:190–9. doi: https://doi.org/10.1016/j.freeradbiomed.2020.07.005
53. Alagawany M, Elnesr SS, Farag MR, El-Sabrout K, Alqaisi O, Dawood MAO, et al. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim Biotechnol. 2022;33:1678–90. doi: https://doi.org/10.1080/10495398.2020.1869562
54. Morales J, Rodrigo Valenzuela B, Daniel González M, Marcela González E, Gladys Tapia O, Julio Sanhueza C, et al. New dietary sources of alpha-linolenic acid: a critical view. Rev Chil Nutr. 2012;39:79–87.
55. Malik E, Müller C. Anthraquinones as pharmacological tools and drugs. Med Res Rev. 2016;86:84–92. doi: https://doi.org/10.1002/med.21391
56. Diaz-Muñoz G, Miranda IL, Sartori SK, de Rezende DC, Diaz MAN. Anthraquinones: an overview. Stud Nat Prod Chem. 2018;58:313– 38. doi: https://doi.org/10.1016/B978-0-444-64056-7.00011-8
57. Sharifi-Rad J, Herrera-Bravo J, Kamiloglu S, Petroni K, Mishra AP, Monserrat-Mesquida M, et al. Recent advances in the therapeutic potential of emodin for human health. Biomed Pharmacother. 2022;154:113555. doi: https://doi.org/10.1016/j.biopha.2022.113555
58. Mitra S, Anjum J, Muni M, Das R, Rauf A, Islam F, et al. Exploring the journey of emodin as a potential neuroprotective agent: novel therapeutic insights with molecular mechanism of action. Biomed Pharmacother. 2022;149:112877. doi: https://doi.org/10.1016/j.biopha.2022.112877
59. Silva FCO, Ferreira MKA, Da Silva AW, Matos MGC, Magalhães FEA, Da Silva PT, et al. Bioativities of plant-isolated triterpenes: a brief review. Rev Virtual Quim, 2020;12:234–47. doi: https://doi.org/10.21577/1984-6835.20200018
60. Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K, et al. Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes. Front Pharmacol. 2023;14:1–12. doi: https://doi.org/10.3389/fphar.2023.1093696
61. Sieber MA, Hegel JKE. Azelaic acid: properties and mode of action. Skin Pharmacol Physiol. 2013;27:9–17. doi: https://doi.org/10.1159/000354888
62. Sadegh M, Baharara H, Sahebkar A, Ahmad S. Pharmacological research - modern chinese medicine Cassia species: a review of traditional uses, phytochemistry. Pharmacol Res - Mod Chinese Med. 2023;9:100325.
63. Cholich LA, Pistán ME, Torres AM, Ortega HH, Gardner DR, Bustillo S. Characterization and cytotoxic activity on glial cells of alkaloid-enriched extracts from pods of the plants prosopis flexuosa and prosopis Nigra (Fabaceae). Rev Biol Trop. 2021;69:197–206. doi: https://doi.org/10.15517/RBT.V69I1.43515
64. Kite GC. Leontidine-type quinolizidine alkaloids in Orphanodendron (Leguminosae). Biochem Syst Ecol. 2017;73:47–9. doi: https://doi.org/10.1016/j.bse.2017.06.002
65. Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10. doi: https://doi.org/10.2147/IDR.S234610
66. Gobi M, Sujatha M, Pradeepa V, Muralidharan M, Venkatesan M. Green synthesis of iron oxide nanoparticles (FeONPs) and its antibacterial effect using Chamaecrista nigricans (Vahl) Greene (Caesalpiniaceae). Biomass Convers Biorefinery 2023; 1–8. doi: https://doi.org/10.1007/s13399-023-05184-8
67. Pinho BR, Ferreres F, Valentão P, Andrade PB. Nature as a source of metabolites with cholinesterase-inhibitory activity: an approach to Alzheimer’s disease treatment. J Pharm Pharmacol. 2013;65:1681– 700. doi: https://doi.org/10.1111/jphp.12081
68. Ramana KV, Reddy ABM, Ravi Kumar Majeti NV, Singhal SS. Therapeutic potential of natural antioxidants. Oxid Med Cell Longev. 2018;2018:9471051. doi: https://doi.org/10.1155/2018/9471051
69. Álvarez-Rodríguez A, Jin BK, Radwanska M, Magez S. Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030. Front Med. 2022;9:1–12. doi: https://doi.org/10.3389/fmed.2022.1037094
70. Stagos D. Antioxidant activity of polyphenolic plant extracts. Antioxidants. 2020;9:19. doi: https://doi.org/10.3390/antiox9010019
71. Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: structure, activity and biological fate. Asian J Pharm Sci. 2018;13:12– 23. doi: https://doi.org/10.1016/j.ajps.2017.08.004
72. Reis JDE, Gomes PWP, Muribeca A de JB, Castro MNR de. Quantification of phenolic derivatives and antioxidant activity of the leaves of Chamaecrista diphylla (L.) Greene (Fabaceae)). Sci Plena 2020;16:1–9. doi: https://doi.org/10.14808/sci.plena.2020.037201
73. David JP, Meira M, David JM, Brandão HN, Branco A, de Fátima Agra M, et al. Radical scavenging, antioxidant and cytotoxic activity of Brazilian Caatinga plants. Fitoterapia 2007;78:215–8. doi: https://doi.org/10.1016/j.fitote.2006.11.015
74. Musarra-pizzo M, Pennisi R, Ben-amor I, Mandalari G, Sciortino MT. Antiviral activity exerted by natural products against human viruses. Viruses 2021;13:1–30. doi: https://doi.org/10.3390/v13050828
75. Gonz P, Alvarenga N, Burgos-edwards A, Flores-giubi ME, Bar JE, Cristina M, et a. Screening of natural products inhibitors of SARS-CoV-2 entry. Molecules 2022;27:1–10. doi: https://doi.org/10.3390/molecules27051743
76. Saboyá-Díaz MI, Maia-Elkhoury ANS, Luciañez A, Valadas SYOB, Carvaho-Scholte RG, Nicholls RS, et al. Neglected infectious diseases in the Americas: current situation and perspectives for the control and elimination by 2030. Front Trop Dis. 2024;5:1–7. doi: https://doi.org/10.3389/fitd.2024.1326512
77. Madaki F, Kabiru A, Mann A, Abdulkadir A, Agadi J, Akinyode A. Phytochemical analysis and in-vitro antitrypanosomal activity of selected medicinal plants in Niger State, Nigeria. Int J Biochem Res Rev. 2016;13:1–7. doi: https://doi.org/10.9734/ijbcrr/2016/24955
78. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38:1551– 66. doi: https://doi.org/10.1016/j.clinthera.2016.03.026
79. Huang M, Lu JJ, Ding J.Natural products in cancer therapy: past, present and future. Nat Products Bioprospect. 2021;11:5–13. doi: https://doi.org/10.1007/s13659-020-00293-7
80. Akhila JS, Shyamjith D, Alwar MC. Acute toxicity studies and determination of median lethal dose. Curr Sci. 2007;93:917–20.
81. Medugu AN, Yakubu J, Marte HI, Yerima TS. Anti-epileptic potentials of the partitioned fractions of Chamaecrista mimosoides. Int J Pharmacol Toxicol. 2020;8:89–95.
82. Conrado GG, da Rosa R, Reis RD, Pessa LR. Building natural product–based libraries for drug discovery: challenges and opportunities from a brazilian pharmaceutical industry perspective. Rev Bras Farmacogn. 2024;34:706–21. doi: https://doi.org/10.1007/s43450-024-00540-9
Year
Month