Fabrication and characterization of chitosan–gelatin–chondroitin sulfate-diclofenac scaffold with cross-linked glutaraldehyde for potential application in osteoarthritis

Wa Ode Nurfinti Chrismawan Ardianto Toetik Aryani Mareta Rindang Andarsari Anisa Cendekia Muslimah Ita Pramudia Ananta Yusuf Alif Pratama Noer El Huda Abd Rahim Sakinato Mazidda Esti Hendradi Junaidi Khotib Fani Deapsari Aniek Setiya Budiatin   

Open Access   

Published:  Aug 19, 2025

DOI: 10.7324/JAPS.2025.v15.i12.8
Abstract

The inadequate regenerative capacity of cartilage renders osteoarthritis (OA) and cartilage injuries difficult to manage. In tissue engineering, a scaffold facilitates establishing an environment favorable to cell proliferation, migration, and adhesion. Moreover, diclofenac sodium can be administered locally due to the scaffold’s porous architecture, which possesses anti-inflammatory characteristics. This study investigated the development and characterization of an innovative scaffold formulation intended for potential application in cartilage repair associated with OA and cartilage injuries. The scaffold was cross-linked with varying concentrations of GA (0.00%–2.50%) and comprised chitosan, gelatin, chondroitin sulfate, and PEG 400. The scaffold also contained the anti-inflammatory agent, diclofenac sodium, which was dissolved in PEG 400 for targeted drug delivery. The pore diameter, porosity, compressive strength, and degradation of the scaffolds were assessed following their dried form. The results indicated that GA significantly influenced these attributes, with porosity, mechanical stability, and degradation control improved at an optimal concentration of 0.50 percent. GA cross-linking between polymer chains enhanced the scaffold’s integrity and augmented its mechanical properties through the establishment of more rigid structures. The cross-linking of the amino group in chitosan with the sulfonate group in chondroitin sulfate enhanced the scaffold’s stability. The study’s findings indicated that GA-optimized chitosan–gelatin–chondroitin sulfate-PEG 400-diclofenac scaffolds exhibited suitable physicochemical and mechanical properties, supporting their potential use in localized drug delivery systems for OA management.


Keyword:     Parkinson’s disease ang (1–7)/MasR/Nrf2 rotenone dopamine mitochondrial dysfunctions


Citation:

Ode Nurfinti W, Ardianto C, Aryani T, Andarsari MR, Muslimah AC, Pramudia Ananta I, Pratama YA, El Huda Abd Rahim N, Mazidda S, Hendradi E, Khotib J, Deapsari F, Budiatin AS. Fabrication and characterization of chitosan–gelatin–chondroitin sulfate-diclofenac scaffold with cross-linked glutaraldehyde for potential application in osteoarthritis. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.v15.i12.8

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. He Y, Jiang W, Wang W. Global burden of osteoarthritis in adults aged 30 to 44 years, 1990 to 2019: results from the Global Burden of Disease Study 2019. BMC Musculoskelet Disord. 2024;25(1):1–12. doi: https://doi.org/10.1186/s12891-024-07442-w

2. Welhaven HD, Welfley AH, June RK. Osteoarthritis year in review 2024: molecular biomarkers of osteoarthritis. Osteoarthr Cartil. 2024;33(1):67–87. doi: https://doi.org/10.1016/j.joca.2024.10.003

3. Kloppenburg M, Berenbaum F. Osteoarthritis year in review 2019: epidemiology and therapy. Osteoarthr Cartil. 2020;28(3):242–8. doi: https://doi.org/10.1016/j.joca.2020.01.002

4. Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthr Cartil. 2022;30(2):196–206. doi: https://doi.org/10.1016/j.joca.2021.10.003

5. Coaccioli S, Sarzi-Puttini P, Zis P, Rinonapoli G, Varrassi G. Osteoarthritis: new insight on its pathophysiology. J Clin Med. 2022;11(20):1–12. doi: https://doi.org/10.3390/jcm11206013

6. Nicoliche T, Maldonado DC, Faber J, Da Silva MCP. Evaluation of the articular cartilage in the knees of rats with induced arthritis treated with curcumin. PLoS One. 2020;15(3):1–23. doi: https://doi.org/10.1371/journal.pone.0230228

7. Hsu H, Siwiec RM. Knee osteoarhritis. Treasure Island, FL: StatPearls. 2023.

8. Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, et al. Comparison of bone and articular cartilage changes in osteoarthritis: a micro-computed tomography and histological study of surgically and chemically induced osteoarthritic rabbit models. J Orthop Surg Res. 2021;16(1):1–13. doi: https://doi.org/10.1186/s13018-021-02781-z

9. Chow YY, Chin KY. The role of inflammation in the pathogenesis of osteoarthritis. Mediat Inflamm. 2020;2020:1–19 doi: https://doi.org/10.1155/2020/8293921

10. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393:1745– 59. doi: https://doi.org/10.1016/S0140-6736(19)30417-9

11. Budiatin AS, Khotib J, Samirah S, Ardianto C, Gani MA, Putri BRKHP, et al. Acceleration of bone fracture healing through the use of bovine hydroxyapatite or calcium lactate oral and implant bovine hydroxyapatite – gelatin on bone defect animal model. Polymers. 2022;14:1–17. doi: https://doi.org/10.3390/polym14224812

12. Siddik M, Haryadi RD. The risk factors effect of knee osteoarthritis towards postural lateral sway. Indian J Forensic Med Toxicol. 2020;14(2):1787–92. doi: https://doi.org/10.37506/ijfmt.v14i2.3196

13. Oliviero F, Ramonda R. Cartilage-derived biomarkers in osteoarthritis. Indian J Med Res. 2021;153:413–5. doi: https://doi.org/10.4103/ijmr.IJMR

14. Katzung BG. Basic & clinical pharmacology. 14th ed. Katzung BG, editor. Mc Graw Hill Education. New York, NY: McGraw Hill Education; 2018. doi: https://doi.org/10.24079/cajms.2022.12.008

15. Burchum JR, Rosenthal LD (eds). Lehne’s pharmacology for nursing care. 10th ed. Amsterdam, Netherlands: Elsevier; 2019. doi: https://doi.org/10.1046/j.1365-2648.1995.21010191.x

16. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Vol. 75, Drugs. Berlin: Springer International Publishing; 2015. Pp. 859–77. doi: https://doi.org/10.1007/s40265-015-0392-z

17. Zhao S, Jian Y, Wang Y, Xu Y, Liu W, Shao X, et al. Research of diclofenac sodium-loaded gelatin scaffold with anti-inflammatory activity for promoting in vivo cartilage regeneration. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2023;37(1):91–100. doi: https://doi.org/10.7507/1002-1892.202207114

18. Bariguian F, Marina R, Hagen FM. Topical diclofenac, an efficacious treatment for osteoarthritis: a narrative review. Rheumatol Ther. 2019;7(2):217–236. doi: https://doi.org/10.6084/m9.figshare.11791470

19. Reich KM, Viitanen P, Apu EH, Tangl S, Ashammakhi N. The effect of diclofenac sodium-loaded plga rods on bone healing and inflammation: a histological and histomorphometric study in the femur of rats. Micromachines. 2020;11(12):1–20. doi: https://doi.org/10.3390/mi11121098

20. Hesaraki S, Nazarian H, Pourbaghi-Masouleh M, Borhan S. Comparative study of mesenchymal stem cells osteogenic differentiation on low-temperature biomineralized nanocrystalline carbonated hydroxyapatite and sintered hydroxyapatite. J Biomed Mater Res−Part B Appl Biomater. 2014;102(1):108–18. doi: https://doi.org/10.1002/jbm.b.32987

21. Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, G??b M, Kud?acik- Kramarczyk S, S?ota D, et al. Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials (Basel). 2021;14(9):1– 51. doi: https://doi.org/10.3390/ma14092096

22. Tieppo Francio V, Davani S, Towery C, Brown TL. Oral versus topical diclofenac sodium in the treatment of osteoarthritis. J Pain Palliat Care Pharmacother. 2017;31(2):113–20. doi: https://doi.org/1 0.1080/15360288.2017.1301616

23. Budiatin AS, Su’aida N, Lamakluang AI, Rahma SS, Zulkarnain BS, Isadiartuti D. Effect of glutaraldehyde concentration variation on diclofenac sodium scaffolds as cross-linking agent. Res J Pharm Technol. 2022;15(11):4974–80. doi: https://doi.org/10.52711/0974- 360X.2022.00836

24. Sidney LE, Heathman TRJ, Britchford ER, Abed A, Rahman C V, Buttery LDK. Investigation of localized delivery of diclofenac sodium from poly(D,L-lactic acid-co-glycolic acid)/poly(ethylene glycol) scaffolds using an in vitro osteoblast inflammation model. Tissue Eng—Part A. 2015;21(1–2):362–73. doi: https://doi.org/10.1089/ten.tea.2014.0100

25. Anggani OF. Karakterisasi freeze drying scaffold kitosan rajungan-gelatin sapi dan kondroitin sulfat. Surabaya, Indonesia: Faculty of Fisheries and Marine Universitas Airlangga; 2020.

26. Putri TS, Rianti D, Rachmadi P, Yuliati A. Effect of glutaraldehyde on the characteristics of chitosan–gelatin–β-tricalcium phosphate composite scaffolds. Mater Lett. 2021;304:130672. doi: https://doi.org/10.1016/j.matlet.2021.130672

27. Budiatin AS, Pramesti MP, Nurfinti WO, Pratama YA, Ratri DMN, Ardianto C. Effect of diclofenac sodium on the cartilage-regeneration potential of the chitosan-gelatin-chondroitin sulfate scaffold. Iraqi J Vet Sci. 2025;39(2):243–51. doi: https://doi.org/10.56499/jppres24.1938_13.1.46

28. Vassallo V, Tsianaka A, Alessio N, Grübel J, Cammarota M, Tovar GEM, et al. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. J Biomed Mater Res - Part A. 2022;110(6):1210–23. doi: https://doi.org/10.1002/jbm.a.37364

29. Sun HW, Feigal RJ, Messer HH. Cytotoxicity of glutaraldehyde and formaldehyde in relation to time of exposure and concentration. Pediatr Dent. 1990;12(5):303–7.

30. Samirah S, Sumarno S, Fauziyah AN, Afrida DI, Zaini OS, Aprilia DC, et al. Effect of glutaraldehyde on the bovine hydroxyapatite-gelatin-alendronate bioscrew and its fabrication. J Pharm Pharmacogn Res. 2025;13(1):46–57. doi: https://doi.org/10.56499/ jppres24.1938_13.1.46

31. Suyatno A, Nurfinti WO, Kusuma CPA, Pratama YA, Ardianto C, Samirah S, et al. Effectiveness of bilayer scaffold containing chitosan/gelatin/diclofenac and bovine hydroxyapatite on cartilage/subchondral regeneration in rabbit joint defect models. Adv Pharmacol Pharm Sci. 2024;2024:1–18. doi: https://doi.org/10.1155/2024/6987676

32. Kotturi H, Abuabed A, Zafar H, Sawyer E, Pallipparambil B, Jamadagni H, et al. Evaluation of polyethylene glycol diacrylate-polycaprolactone scaffolds for tissue engineering applications. J Funct Biomater. 2017;8(3):39. doi: https://doi.org/10.3390/jfb8030039

33. Martínez-Mejía G, Vázquez-Torres NA, Castell-Rodríguez A, del Río JM, Corea M, Jiménez-Juárez R. Synthesis of new chitosan-glutaraldehyde scaffolds for tissue engineering using Schiff reactions. Colloids Surfaces A Physicochem Eng Asp. 2019;579:123658. doi: https://doi.org/10.1016/j.colsurfa.2019.123658

34. Qasim SSB, Nogueria LP, Fawzy AS, Daood U. The effect of cross-linking efficiency of drug-loaded novel freeze gelated chitosan templates for periodontal tissue regeneration. AAPS PharmSciTech. 2020;21(5):1–9. doi: https://doi.org/10.1208/s12249-020-01708-x

35. Pratama YA, Marhaeny HD, Deapsari F, Budiatin AS, Rahmadi M, Miatmoko A, et al. Development of hydroxyapatite as a bone implant biomaterial for triggering osteogenesis [In press]. Eur J Dent. 2025. doi: https://doi.org/10.1055/s-0045-1809312

36. Ahmed S, Annu, Ali A, Sheikh J.A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–62. doi: https://doi.org/10.1016/j.ijbiomac.2018.04.176

37. Sharma S, Swetha KL, Roy A. Chitosan-Chondroitin sulfate based polyelectrolyte complex for effective management of chronic wounds. Int J Biol Macromol. 2019;132:97–108. doi: https://doi.org/10.1016/j.ijbiomac.2019.03.186

38. Li J, Zhi W, Xu T, Shi F, Duan K, Wang J, et al. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo. Regen Biomater. 2016;3(5):285–97. doi: https://doi.org/10.1093/rb/rbw031

39. Liu HW, Su WT, Liu CY, Huang CC. Highly organized porous gelatin-based scaffold by microfluidic 3D-foaming technology and dynamic culture for cartilage tissue engineering. Int J Mol Sci. 2022;23(15). doi: https://doi.org/10.3390/ijms23158449

40. Anghelescu VM, Neculae I, Dinc? O, Vl?dan C, Socoliuc C, Cioplea M, et al. Inflammatory-driven angiogenesis in bone augmentation with bovine hydroxyapatite, B-tricalcium phosphate, and bioglasses: a comparative study. J Immunol Res. 2018;2018:1–8. doi: https://doi.org/10.1155/2018/9349207

41. Wirawan F, Cheng CL, Kao WC, Lee DJ, Chang JS. Cellulosic ethanol production performance with SSF and SHF processes using immobilized Zymomonas mobilis. Appl Energy. 2012;100:19–26. doi: https://doi.org/10.1016/j.apenergy.2012.04.032

42. Yoshikawa M, Tsuji N, Shimomura Y, Hayashi H, Ohgushi H. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds. Calcif Tissue Int. 2008;83(2):139–45. doi: https://doi.org/10.1007/s00223-008-9157-y

43. Banafati Zadeh F, Zamanian A. Glutaraldehyde: introducing optimum condition for cross-linking the chitosan/gelatin scaffolds for bone tissue engineering. Int J Eng Trans A Basics. 2022;35(10):1967–80. doi: https://doi.org/10.5829/ije.2022.35.10A.15

44. Nokoorani YD, Shamloo A, Bahadoran M, Moravvej H. Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering. Sci Rep. 2021;11(1):16164. doi: https://doi.org/10.1038/s41598-021-95763-4

45. Azami M, Tavakol S, Samadikuchaksaraei A, Hashjin MS, Baheiraei N, Kamali M, et al. A porous hydroxyapatite/gelatin nanocomposite scaffold for bone tissue repair: In vitro and in vivo evaluation. J Biomater Sci Polym Ed. 2012;23(18):2353–68. doi: https://doi.org/10.1163/156856211X617713

46. Lee CY, Nedunchezian S, Lin SY, Su YF, Wu CW, Wu SC, et al. Bilayer osteochondral graft in rabbit xenogeneic transplantation model comprising sintered 3D-printed bioceramic and human adipose-derived stem cells laden biohydrogel. J Biol Eng. 2023;17(1):74. doi: https://doi.org/10.1186/s13036-023-00389-x

47. Vishwanath V, Pramanik K, Biswas A. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J Biomater Sci Polym Ed. 2016;27(7):657– 74. doi: https://doi.org/10.1080/09205063.2016.1148303

48. Yue Y, Xu P, Lei Z, Li K, Xu J, Wen J, et al. Preparation and characterization of a novel drug-loaded Bi-layer scaffold for cartilage regeneration. RSC Adv. 2022;12(16):9524–33. doi: https://doi.org/10.1039/d2ra00311b

49. Shajahan Haima J, Narayanan Nair S, Juliet S, Ravindran Nisha A, Nair B, Nair Dhanushkrishna B. Synthesis and characterisation of glutaraldehyde cross-linked κ-carrageenan-gelatin hydrogel. ~ 459 ~ J Pharmacogn Phytochem. 2021;10(1):459–63.

50. Sharma C, Dinda AK, Potdar PD, Chou CF, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2016;64:416–27. doi: https://doi.org/10.1016/j.msec.2016.03.060

51. Pinto R V., Gomes PS, Fernandes MH, Costa MEV, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. Mater Sci Eng C. 2020;109:110557. doi: https://doi.org/10.1016/j.msec.2019.110557

52. Arianita A, Cahyaningtyas, Amalia B, Pudjiastuti W, Melanie S, Fauzia V, et al. Effect of glutaraldehyde to the mechanical properties of chitosan/nanocellulose. J Phys Conf Ser. 2019;1317(1):1–9. doi: https://doi.org/10.1088/1742-6596/1317/1/012045

53. Hikmawati D, Maulida HN, Putra AP, Budiatin AS, Syahrom A. Synthesis and characterization of nanohydroxyapatite-gelatin composite with streptomycin as antituberculosis injectable bone substitute. 2019;2019:1–8. doi: https://doi.org/10.1155/2019/7179243

Article Metrics
42 Views 19 Downloads 61 Total

Year

Month

Related Search

By author names