Global research trends on drug interactions with direct oral anticoagulants: A comprehensive bibliometric analysis

Ivan Henao-Torres Antistio Alviz-Amador Nathalie Gómez-Sánchez   

Open Access   

Published:  Jul 26, 2025

DOI: 10.7324/JAPS.2025.229788
Abstract

This study presents a bibliometric analysis of global research on drug interactions involving direct oral anticoagulants (DOACs), mapping field development, identifying hotspots, and highlighting trends to guide future studies and improve clinical safety. Effective management of DOAC interactions is critical in clinical and public health. Publications on DOAC interactions from 2011 to 2023 were retrieved from Scopus and analyzed using VOSviewer, Google Colab, and the R package bibliometrix, enabling performance assessment and science mapping. Analysis of 345 publications from 45 countries reveals a significant rise in DOAC research, led by contributions from North America, Europe, and East Asia, with the United States, Germany, and Japan producing the most publications. Notable institutions include Inserm, Harvard Medical School, and McMaster University, alongside industry leaders such as Daiichi Sankyo, Bayer AG, and Boehringer Ingelheim, underscoring academia-industry partnerships. Keyword analysis shows that key research themes identified are “Anticoagulant,” “Rivaroxaban,” “Atrial fibrillation,” and “Drug interaction.” Recent studies focus on physiologically based pharmacokinetic (PBPK) modeling and interactions within oncology and COVID-19 treatment, highlighting challenges in managing drug–drug interactions (DDIs) in polypharmacy. This analysis uncovers how pharmacokinetic and pharmacodynamic interactions contribute to improving the safety of DOACs, offering insights that can guide clinical approaches and formulate public health policies.


Keyword:     Drug interaction DOAC anticoagulant PBPK clinical practice bibliometric analysis


Citation:

Henao-Torres I, Alviz-Amador A, Gómez-Sánchez N. Global research trends on drug interactions with direct oral anticoagulants: A comprehensive bibliometric analysis. J Appl Pharm Sci. 2025. Article in Press. http://doi.org/10.7324/JAPS.2025.229788

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. SPS - Specialist Pharmacy Service. Understanding drug interactions [Internet]. London, UK: NHS Specialist Pharmacy Service; 2024 [cited 2024 Jul 20]. Available from: https://www.sps.nhs.uk/articles/understanding-drug-interactions/

2. Neves LMB, Castro Silva LD, De Melo MTB, Silva Nobre YV, Paulino ET, Nogueira Ribeiro ÊA, et al. Drug interactions pharmacology: a narrative review. Am J Pharmacol Toxicol. 2022;17(1):27-36. https://doi.org/10.3844/ajptsp.2022.27.36

3. Corrie K, Hardman JG. Mechanisms of drug interactions: pharmacodynamics and pharmacokinetics. Anaesth Intensive Care Med. 2020;21(5):219-22. https://doi.org/10.1016/j.mpaic.2020.02.004

4. Jeong E, Malin B, Nelson SD, Su Y, Li L, Chen Y. Revealing the dynamic landscape of drug-drug interactions through network analysis. Front Pharmacol. 2023;14:1211491. https://doi.org/10.3389/fphar.2023.1211491

5. Jarosz M, Wolanicka K. Relations between occurrence of the risk of food-drug interactions and patients’ socio-demographic characteristics and selected nutrition habits. Pol J Food Nutr Sci. 2011;61(3):211-8. https://doi.org/10.2478/v10222-011-0023-7

6. Degefu N, Getachew M, Amare F. Knowledge of drug-food interactions among healthcare professionals working in Public Hospitals in Ethiopia. J Multidiscip Healthc. 2022;Volume 15:2635-45. https://doi.org/10.2147/JMDH.S389068

7. Dülger G. Herbal drugs and drug interactions. MARMARA Pharm J. 2012;1(16):9-22. https://doi.org/10.12991/201216415

8. Lopera V, Rodríguez A, Amariles P. Clinical relevance of drug interactions with Cannabis: a systematic review. J Clin Med. 2022;11(5):1154. https://doi.org/10.3390/jcm11051154

9. Forbes HL, Polasek TM. Potential drug-drug interactions with direct oral anticoagulants in elderly hospitalized patients. Ther Adv Drug Saf. 2017;8(10):319-28. https://doi.org/10.1177/2042098617719815

10. Decaix T, Kemache K, Gay P, Ketz F, Laprévote O, Pautas É. Pharmacokinetics and pharmacodynamics of drug-drug interactions in hospitalized older adults treated with direct oral anticoagulants. Aging Clin Exp Res. 2024;36(1):113. https://doi.org/10.1007/s40520-024-02768-w

11. Sanborn D, Sugrue A, Amin M, Mehta R, Farwati M, Deshmukh AJ, et al. Outcomes of direct oral anticoagulants co-prescribed with common interacting medications. Am J Cardiol. 2022;162:80-5. https://doi.org/10.1016/j.amjcard.2021.09.025

12. Wang TF, Hill M, Mallick R, Chaudry H, Unachukwu U, Delluc A, et al. The prevalence of relevant drug-drug interactions and associated clinical outcomes in patients with cancer-associated thrombosis on concurrent anticoagulation and anticancer or supportive care therapies. Thromb Res. 2023;231:128-34. https://doi.org/10.1016/j.thromres.2023.10.004

13. Houben A, Bonhomme V, Senard M. Clinical use of direct oral anticoagulants and reversal: consideration for vascular surgeons. J Vasc Dis. 2023;2(2):230-5. https://doi.org/10.3390/jvd2020017

14. Khairani CD, Bejjani A, Assi A, Porio N, Talasaz AH, Piazza G, et al. Direct oral anticoagulants for treatment of venous thrombosis: illustrated review of appropriate use. Res Pract Thromb Haemost. 2024;8(4):102424. https://doi.org/10.1016/j.rpth.2024.102424

15. Darche FF, Fabricius LC, Helmschrott M, Rahm AK, Ehlermann P, Bruckner T, et al. Oral anticoagulants after heart transplantation- comparison between vitamin K antagonists and direct oral anticoagulants. J Clin Med. 2023;12(13):4334. https://doi.org/10.3390/jcm12134334

16. Hellfritzsch M, Henriksen JN, Holt MI, Grove EL. Drug- drug interactions in the treatment of cancer-associated venous thromboembolism with direct oral anticoagulants. Semin Thromb Hemost. 2024;50(03):489-98. https://doi.org/10.1055/s-0043-1762596

17. Van Der Linden L, Vanassche T, Van Cutsem E, Van Aelst L, Verhamme P. Pharmacokinetic drug-drug interactions with direct anticoagulants in the management of cancer-associated thrombosis. Br J Clin Pharmacol. 2023;89(8):2369-76. https://doi.org/10.1111/bcp.15785

18. Tsoukalas N, Brito-Dellan N, Font C, Butler T, Rojas-Hernandez CM, Butler T, et al. Complexity and clinical significance of drug- drug interactions (DDIs) in oncology: challenging issues in the care of patients regarding cancer-associated thrombosis (CAT). Support Care Cancer. 2022;30(10):8559-73. https://doi.org/10.1007/s00520-022-07235-8

19. Ranzato F, Roberti R, Deluca C, Carta M, Peretti A, Polo D, et al. Pilot study on the probability of drug-drug interactions among direct oral anticoagulants (DOACs) and antiseizure medications (ASMs): a clinical perspective. Neurol Sci. 2024;45(1):277-88. https://doi.org/10.1007/s10072-023-06992-6

20. Ersoy ?, Ersoy P. Impact of drug interactions with direct oral anticoagulants on mortality in elderly with atrial fibrillation during the COVID-19 pandemic. Med Clín. 2023;160(2):71-7. https://doi.org/10.1016/j.medcli.2022.05.009

21. Dou M, Tang J, Tiwari P, Ding Y, Guo F. Drug-drug interaction relation extraction based on deep learning: a review. ACM Comput Surv. 2024;56(6):1-33. https://doi.org/10.1145/3645089

22. Pranckut? R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications. 2021;9(1):12. https://doi.org/10.3390/publications9010012

23. Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res. 2021;133:285-96. https://doi.org/10.1016/j.jbusres.2021.04.070

24. Mian MK, Sreedharan S, Limaye NS, Hogan C, Darvall JN. Research trends in anticoagulation therapy over the last 25 years. Semin Thromb Hemost. 2020;46(08):919-31. https://doi.org/10.1055/s-0040-1718892

25. Öztürk O, Kocaman R, Kanbach DK. How to design bibliometric research: an overview and a framework proposal. Rev Manag Sci. 2024;18(11):3333-61. https://doi.org/10.1007/s11846-024-00738-0

26. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses. FASEB J. 2008;22(2):338-42. https://doi.org/10.1096/fj.07-9492LSF

27. Mongeon P, Paul-Hus A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. 2016;106(1):213- 28. https://doi.org/10.1007/s11192-015-1765-5

28. Martín-Martín A, Orduna-Malea E, Thelwall M, Delgado López- Cózar E. Google Scholar, Web of Science, and Scopus: a systematic comparison of citations in 252 subject categories. J Informetr. 2018;12(4):1160-77. https://doi.org/10.1016/j.joi.2018.09.002

29. Yao R, Shen Z, Xu X, Ling G, Xiang R, Song T, et al. Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis. Front Pharmacol. 2024;15:1393415. https://doi.org/10.3389/fphar.2024.1393415

30. Al-Taani GM, Al-Azzam SI, Alzoubi KH, Sweileh WM, Muflih S. Polypharmacy in the elderly: a bibliometric and visualization analysis. Electron J Gen Med. 2024;21(1):em555. https://doi.org/10.29333/ejgm/13901

31. Datablist App [Internet]. Datablist.com. [cited 2024 Aug 6]. Available from https://app.datablist.com/home

32. Shanaa A. Rayyan - intelligent systematic review [Internet]. Doha, QA: Rayyan Systems; 2021 [cited 2024 Aug 6]. Available from: https://www.rayyan.ai/

33. OpenAI. ChatGPT [Internet]. 2023 [cited 2024 Sep 1]. Available from: https://openai.com

34. Syriani E, David I, Kumar G. Screening articles for systematic reviews with ChatGPT. J Comput Lang. 2024;80:101287. https://doi.org/10.1016/j.cola.2024.101287

35. Issaiy M, Ghanaati H, Kolahi S, Shakiba M, Jalali AH, Zarei D, et al. Methodological insights into ChatGPT’s screening performance in systematic reviews. BMC Med Res Methodol. 2024;24(1):78. https://doi.org/10.1186/s12874-024-02203-8

36. Spillias S, Tuohy P, Andreotta M, Annand-Jones R, Boschetti F, Cvitanovic C, et al. Human-AI collaboration to identify literature for evidence synthesis. Cell Rep Sustain. 2024;1(7):100132. https://doi.org/10.1016/j.crsus.2024.100132

37. Wei L, Zhang B, Wang L, Liu A. Mapping the evolution of acne research based on 100 top-cited articles: a bibliometric analysis of trends and hotspots from 2014 to 2023. Medicine (Baltimore). 2024;103(21):e37657. https://doi.org/10.1097/MD.0000000000037657

38. Colab.Google [Internet]. colab.google. [cited 2024 Sep 8]. Available from https://colab.google/

39. Gálvez C. Evolution of the field of social media research through science Maps (2008-2017). Commun Soc. 2019;32(2):61-76. https://doi.org/10.15581/003.32.2.61-75

40. Us PW. CiteScore hub [Internet]. www.elsevier.com. [cited 2024 Sep 8]. Available from: https://www.elsevier.com/promotions/citescore-hub-explore-journal-rankings-track-trends-compare-performance-predict-directions

41. Bolek T, Samoš M, Stan?iaková L, Ivanková J, Škor?ová I, Staško J, et al. The impact of proton pump inhibition on dabigatran levels in patients with atrial fibrillation. Am J Ther. 2019;26(3):e308-13. https://doi.org/10.1097/MJT.0000000000000599

42. Bolek T, Samoš M, Škor?ová I, Stan?iaková L, Staško J, Korpallová B, et al. Does proton pump inhibition change the on-treatment anti- Xa activity in xabans-treated patients with atrial fibrillation? a pilot study. J Thromb Thrombolysis. 2019;47(1):140-5. https://doi.org/10.1007/s11239-018-1748-5

43. Schnierer M, Samoš M, Bolek T, Škor?ová I, Nosáková L, Bánov?in P, et al. The effect of proton pump inhibitor withdrawal on dabigatran etexilate plasma levels in patients with atrial fibrillation: a washout study. J Cardiovasc Pharmacol. 2020;75(4):333-5. https://doi.org/10.1097/FJC.0000000000000791

44. Škor?ová I, Samoš M, Bolek T, Stan?iaková L, Vádelová ?, Galajda P, et al. Does atorvastatin therapy change the anti-Xa activity in xabans-treated patients with atrial fibrillation? Pharmacol Res Perspect. 2021;9(3):e00730. https://doi.org/10.1002/prp2.730

45. Grymonprez M, Carnoy L, Capiau A, Boussery K, Mehuys E, De Backer TL, et al. Impact of P-glycoprotein and CYP3A4-interacting drugs on clinical outcomes in patients with atrial fibrillation using non-vitamin K antagonist oral anticoagulants: a nationwide cohort study. Eur Heart J Cardiovasc Pharmacother. 2023;9(8):722-30. https://doi.org/10.1093/ehjcvp/pvad070

46. Capiau A, Mehuys E, De Bolle L, Van Tongelen I, De Backer T, Boussery K. Drug-drug interactions with direct oral anticoagulants: development of a consensus list for ambulatory care. Int J Clin Pharm. 2023;45(2):364-74. https://doi.org/10.1007/s11096-022-01511-7

47. Mehuys E, De Backer T, De Keyser F, Christiaens T, Van Hees T, Demarche S, et al. Prevalence and management of drug interactions between nonsteroidal anti-inflammatory drugs and antithrombotics in ambulatory care. Br J Clin Pharmacol. 2022;88(8):3896-902. https://doi.org/10.1111/bcp.15288

48. Capiau A, De Backer T, Grymonprez M, Lahousse L, Van Tongelen I, Mehuys E, et al. Appropriateness of direct oral anticoagulant dosing in patients with atrial fibrillation according to the drug labelling and the EHRA Practical Guide. Int J Cardiol. 2021;328:97-103. https://doi.org/10.1016/j.ijcard.2020.11.062

49. Barrett Y, Wang J, Song Y, Pursley J, Wastall P, Wright R, et al. A randomised assessment of the pharmacokinetic, pharmacodynamic and safety interaction between apixaban and enoxaparin in healthy subjects. Thromb Haemost. 2012;107(05):916-24. https://doi.org/10.1160/TH11-09-0634

50. Upreti VV, Song Y, Wang J, Byon W, Boyd RA, Pursley JM, et al. Effect of famotidine on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. Clin Pharmacol Adv Appl. 2013;5:59-66. https://doi.org/10.2147/CPAA.S41999

51. Frost C, Wang J, Nepal S, Schuster A, Barrett YC, Mosqueda-Garcia R, et al. Apixaban, an oral, direct factor X a inhibitor: single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br J Clin Pharmacol. 2013;75(2):476-87. https://doi.org/10.1111/j.1365-2125.2012.04369.x

52. Frost C, Shenker A, Gandhi MD, Pursley J, Barrett YC, Wang J, et al. Evaluation of the effect of naproxen on the pharmacokinetics and pharmacodynamics of apixaban. Br J Clin Pharmacol. 2014;78(4):877-85. https://doi.org/10.1111/bcp.12393

53. Frost CE, Byon W, Song Y, Wang J, Schuster AE, Boyd RA, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor X a inhibitor. Br J Clin Pharmacol. 2015;79(5):838-46. https://doi.org/10.1111/bcp.12541

54. Frost C, Song Y, Yu Z, Wang J, Lee L, Schuster A, et al. The effect of apixaban on the pharmacokinetics of digoxin and atenolol in healthy subjects. Clin Pharmacol Adv Appl. 2017;Volume 9:19-28. https://doi.org/10.2147/CPAA.S115687

55. Dans AL, Connolly SJ, Wallentin L, Yang S, Nakamya J, Brueckmann M, et al. Concomitant use of antiplatelet therapy with dabigatran or warfarin in the randomized evaluation of long-term anticoagulation therapy (RE-LY) trial. Circulation. 2013;127(5):634-40. https://doi.org/10.1161/CIRCULATIONAHA.112.115386

56. McBane RD, Wysokinski WE, Le-Rademacher JG, Zemla T, Ashrani A, Tafur A, et al. Apixaban and dalteparin in active malignancy-associated venous thromboembolism: the ADAM VTE trial. J Thromb Haemost. 2020;18(2):411-21. https://doi.org/10.1111/jth.14662

57. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76(3):455-66. https://doi.org/10.1111/bcp.12075

58. Liesenfeld K H., Lehr T, Dansirikul C, Reilly PA, Connolly SJ, Ezekowitz MD, et al. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J Thromb Haemost. 2011;9(11):2168-75. https://doi.org/10.1111/j.1538-7836.2011.04498.x

59. Chan EW, Lau WCY, Leung WK, Mok MTC, He Y, Tong TSM, et al. Prevention of dabigatran-related gastrointestinal bleeding with gastroprotective agents: a population-based study. Gastroenterology. 2015;149(3):586-95. https://doi.org/10.1053/j.gastro.2015.05.002

60. Stampfuss J, Kubitza D, Becka M, Mueck W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int J Clin Pharmacol Ther. 2013;51(07):549-61. https://doi.org/10.5414/CP201812

61. Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate ( P radaxa® ) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75(4):1053-62. https://doi.org/10.1111/j.1365-2125.2012.04453.x

62. Piccini JP, Hellkamp AS, Washam JB, Becker RC, Breithardt G, Berkowitz SD, et al. Polypharmacy and the efficacy and safety of rivaroxaban versus warfarin in the prevention of stroke in patients with nonvalvular atrial fibrillation. Circulation. 2016;133(4):352- 60. https://doi.org/10.1161/CIRCULATIONAHA.115.018544

63. Testa S, Prandoni P, Paoletti O, Morandini R, Tala M, Dellanoce C, et al. Direct oral anticoagulant plasma levels’ striking increase in severe COVID-19 respiratory syndrome patients treated with antiviral agents: the Cremona experience. J Thromb Haemost. 2020;18(6):1320-3. https://doi.org/10.1111/jth.14871

64. Fröhlich GM, Jeschke E, Eichler U, Thiele H, Alhariri L, Reinthaler M, et al. Impact of oral anticoagulation on clinical outcomes of COVID-19: a nationwide cohort study of hospitalized patients in Germany. Clin Res Cardiol. 2021;110(7):1041-50. https://doi.org/10.1007/s00392-020-01783-x

65. Potere N, Candeloro M, Porreca E, Marinari S, Federici C, Auciello R, et al. Direct oral anticoagulant plasma levels in hospitalized COVID-19 patients treated with dexamethasone. J Thromb Thrombolysis. 2022;53(2):346-51. https://doi.org/10.1007/s11239-021-02561-w

66. Launay M, Demartin AL, Ragey SP, Mismetti P, Botelho-Nevers E, Delavenne X. Severe inflammation, acute kidney injury, and drug- drug interaction: triple penalty for prolonged elimination of apixaban in patients with coronavirus disease 2019: a grand round. Ther Drug Monit. 2021;43(4):455-8. https://doi.org/10.1097/FTD.0000000000000899

67. Kravchenko OV, Boyce RD, Gomez-Lumbreras A, Kocis PT, Villa Zapata L, Tan M, et al. Drug-drug interaction between dexamethasone and direct-acting oral anticoagulants: a nested case- control study in the National COVID Cohort Collaborative (N3C). BMJ Open. 2022;12(12):e066846. https://doi.org/10.1136/bmjopen-2022-066846

68. Zhao Y, Hu Z. Physiologically based pharmacokinetic modelling and in vivo [I]/ Ki accurately predict P -glycoprotein-mediated drug-drug interactions with dabigatran etexilate. Br J Pharmacol. 2014;171(4):1043-53. https://doi.org/10.1111/bph.12533

69. Xu R, Ge W, Jiang Q. Application of physiologically based pharmacokinetic modeling to the prediction of drug-drug and drug-disease interactions for rivaroxaban. Eur J Clin Pharmacol. 2018;74(6):755-65. https://doi.org/10.1007/s00228-018-2430-8

70. Ismail M, Lee VH, Chow CR, Rubino CM. Minimal physiologically based pharmacokinetic and drug-drug-disease interaction model of rivaroxaban and verapamil in healthy and renally impaired subjects. J Clin Pharmacol. 2018;58(4):541-8. https://doi.org/10.1002/jcph.1044

71. Kushwah V, Arora S, Tamás Katona M, Modhave D, Fröhlich E, Paudel A. On absorption modeling and food effect prediction of rivaroxaban, a BCS II drug orally administered as an immediate-release tablet. Pharmaceutics. 2021;13(2):283. https://doi.org/10.3390/pharmaceutics13020283

72. Willmann S, Coboeken K, Kapsa S, Thelen K, Mundhenke M, Fischer K, et al. Applications of physiologically based pharmacokinetic modeling of rivaroxaban-renal and hepatic impairment and drug-drug interaction potential. J Clin Pharmacol. 2021;61(5):656-65. https://doi.org/10.1002/jcph.1784

73. Verso M, Munoz A, Bauersachs R, Huisman MV, Mandalà M, Vescovo G, et al. Effects of concomitant administration of anticancer agents and apixaban or dalteparin on recurrence and bleeding in patients with cancer-associated venous thromboembolism. Eur J Cancer. 2021;148:371-81. https://doi.org/10.1016/j.ejca.2021.02.026

74. Gulilat M, Keller D, Linton B, Pananos AD, Lizotte D, Dresser GK, et al. Drug interactions and pharmacogenetic factors contribute to variation in apixaban concentration in atrial fibrillation patients in routine care. J Thromb Thrombolysis. 2020;49(2):294-303. https://doi.org/10.1007/s11239-019-01962-2

75. Wang T, Baumann Kreuziger L, Leader A, Spectre G, Lim MY, Gahagan A, et al. Characteristics and outcomes of patients on concurrent direct oral anticoagulants and targeted anticancer therapies-TacDOAC registry: communication from the ISTH SSC subcommittee on hemostasis and malignancy. J Thromb Haemost. 2021;19(8):2068-81. https://doi.org/10.1111/jth.15367

76. Machado-Alba JE, García-Betancur S, Villegas-Cardona F, Medina- Morales DA. Patrones de prescripción de los nuevos anticoagulantes orales y sus costos económicos en Colombia. Rev Colomb Cardiol. 2016;23(4):277-85. https://doi.org/10.1016/j.rccar.2015.08.005

77. Maadarani O, Bitar Z, Mohsen M. Adding herbal products to direct-acting oral anticoagulants can be fatal. Eur J Case Rep Intern Med. 2019;6(8):1. https://doi.org/10.12890/2019001190

Article Metrics
9 Views 0 Downloads 9 Total

Year

Month

Related Search

By author names