Open Access
Published:  Jun 05, 2025
DOI: 10.7324/JAPS.2025.231795This study assessed the effect of an oyster mushroom ethanolic extract on lipid accumulation, Cebpa and Slc2a4 gene expression, and methylation level on Slc2a4 promoter during 3T3-L1 adipocyte differentiation. The oyster mushrooms were extracted using the maceration method with ethanol. 3T3-L1 preadipocytes were cultured and differentiated using methylisobutylxanthine, dexamethasone, and insulin cocktail-containing DMEM. Twenty-four hours after seeding, the cells were incubated with 25, 50, or 100 μg/ml of the oyster mushroom ethanolic extract for 12 days. The media were replaced every 2 days. On day 12 after differentiation induction, oil red O staining and quantitative RT-PCR were performed to analyze lipid accumulation and to measure the mRNA expression of Cebpa and Slc2a4, respectively. The methylation level on the Slc2a4 promoter was measured using pyrosequencing of bisulfite-treated DNA samples. Treatment with the oyster mushroom ethanolic extract increased the mRNA expression of Cebpa and Slc2a4 in a dose-dependent manner. The highest expression of Cebpa and Slc2a4 was observed with the addition of the 50-μg/ml oyster mushroom ethanolic extract (about two-fold and fifty-fold higher than that of the control, respectively). Moreover, lipid accumulation increased after the addition of the oyster mushroom ethanolic extract. Interestingly, the oyster mushroom ethanolic extract slightly reduced the Slc2a4 methylation level on one of the CpG sites analyzed, in a dose-dependent manner. The oyster mushroom ethanolic extract increased the lipid accumulation and the Cebpa and Slc2a4 expression, while reducing the methylation level in the Slc2a4 gene promoter region.
Ariyanto EF, Fitri DN, Arvieri SA, Mahaedally S, Widiarsih E, Qomarilla N, Rahayu NS, Wikayani TP, Heryaman H, Berbudi A, Rohmawaty E, Wira DW, Bashari MH, Pamela Y, Pratiwi YS, Ghozali M. Oyster mushroom ethanolic extract promotes lipid accumulation and upregulates Cebpa and Slc2a4 gene expression while reducing Slc2a4 promoter methylation during 3T3-L1 adipocyte differentiation. J Appl Pharm Sci. 2025;15(07):242–252. http://doi.org/10.7324/JAPS.2025.231795
1. Standl E, Khunti K, Hansen TB, Schnell O. The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur J Prev Cardiol. 2019 Dec;26(2_suppl):7–14. doi: https://doi.org/10.1177/2047487319881021
2. WHO. Diabetes [Internet]. Geneva, Switzerland: WHO; 2024 [cited 2024 Apr 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
3. Wahidin M, Achadi A, Besral B, Kosen S, Nadjib M, Nurwahyuni A, et al. Projection of diabetes morbidity and mortality till 2045 in Indonesia based on risk factors and NCD prevention and control programs. Sci Rep. 2024 Mar 5;14:5424. doi: https://doi.org/10.1038/s41598-024-54563-2
4. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010 Jan;33(Suppl 1):S62–9. doi: https://doi.org/10.2337/dc10-S062
5. Freeman AM, Acevedo LA, Pennings N. Insulin resistance. Treasure Island, FL: StatPearls Publishing; 2024 [cited 2024 Apr 2]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK507839/
6. Carvalho E, Kotani K, Peroni OD, Kahn BB. Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am J Physiol-Endocrinol Metab. 2005 Oct;289(4):E551–61. doi: https://doi.org/10.1152/ajpendo.00116.2005
7. Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U. Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 2015 Apr 1;26(4):193–200. doi: https://doi.org/10.1016/j.tem.2015.01.006
8. Reitman ML, Arioglu E, Gavrilova O, Taylor SI. Lipoatrophy revisited. Trends Endocrinol Metab TEM. 2000 Dec;11(10):410–6. doi: https://doi.org/10.1016/s1043-2760(00)00309-x
9. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cell Biol. 2013 Jun 1;92(6):229–36. doi: https:// doi.org/10.1016/j.ejcb.2013.06.001
10. Zhao J, Zhou A, Qi W. The potential to fight obesity with adipogenesis modulating compounds. Int J Mol Sci. 2022 Feb 19;23(4):2299. doi: https://doi.org/10.3390/ijms23042299
11. Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019 Apr;20(4):242–58. doi: https://doi.org/10.1038/s41580-018-0093-z
12. Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, et al. An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif. 2023 Oct 31;57(3):e13552. doi: https://doi.org/10.1111/cpr.13552
13. Matulewicz N, Stefanowicz M, Niko?ajuk A, Karczewska- Kupczewska M. Markers of adipogenesis, but not inflammation, in adipose tissue are independently related to insulin sensitivity. J Clin Endocrinol Metab. 2017 Aug 1;102(8):3040–9. doi: https://doi.org/10.1210/jc.2017-00597
14. Boughanem H, Cabrera-Mulero A, Millán-Gómez M, Garrido- Sánchez L, Cardona F, Tinahones FJ, et al. Transcriptional analysis of FOXO1, C/EBP-α and PPAR-γ2 genes and their association with obesity-related insulin resistance. Genes. 2019 Sep 12;10(9):706. doi: https://doi.org/10.3390/genes10090706
15. Fatima LA, Campello RS, Barreto-Andrade JN, Passarelli M, Santos RS, Clegg DJ, et al. Estradiol stimulates adipogenesis and Slc2a4/ GLUT4 expression via ESR1-mediated activation of CEBPA. Mol Cell Endocrinol. 2019 Dec 1;498:110447. doi: https://doi.org/10.1016/j.mce.2019.05.006
16. Carvalho E, Jansson PA, Nagaev I, Wenthzel AM, Smith U. Insulin resistance with low cellular IRS-1 expression is also associated with low GLUT4 expression and impaired insulin-stimulated glucose transport. FASEB J Off Publ Fed Am Soc Exp Biol. 2001 Apr;15(6):1101–3. doi: https://doi.org/10.1096/fsb2fj000435fje
17. Carvalho E, Jansson PA, Axelsen M, Eriksson J, Huang X, Groop L, et al. Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB J. 2000 Jan 1;13:2173–8. doi: https://doi.org/10.1096/fasebj.13.15.2173
18. Weinhold B. Epigenetics: the science of change. Environ Health Perspect. 2006 Mar;114(3):A160–7. doi: https://doi.org/10.1289/ehp.114-a160
19. Li Y, Tollefsbol TO. DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol Clifton NJ. 2011;791:11–21. doi:
20. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–13. doi: https://doi.org/10.1038/321209a0
21. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al. Flavonoids from Tetracera indica Merr. induce adipogenesis and exert glucose uptake activities in 3T3-L1 adipocyte cells. BMC Complement Altern Med. 2017 Aug 30;17(1):431. doi: https://doi.org/10.1186/s12906-017-1929-3
22. Bhushan A, Kulshreshtha M. The medicinal mushroom Agaricus bisporus: review of phytopharmacology and potential role in the treatment of various diseases. J Nat Sci Med. 2018 Mar 1;1:18. doi: https://doi.org/10.4103/JNSM.JNSM_1_18
23. Kumar K. Nutraceutical potential and processing aspects of oyster mushrooms (Pleurotus species). Curr Nutr Food Sci. 2020;16(1):3–14. doi: https://doi.org/10.2174/1573401314666181015111724
24. de Arruda EHP, de Reis MAB, Marin L, Muller LA, Damazo AS, Gerenutti M, et al. Investigation into the intake of edible mushroom Pleurotus ostreatus (aqueous extract oyster mushroom) on biochemical indices of female wistar Rats. Am J Plant Sci. 2023 Feb 9;14(2):177–90. doi: https://doi.org/10.4236/ajps.2023.142014
25. Ravi B, Renitta RE, Prabha ML, Issac R, Naidu S. Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacol Immunotoxicol. 2013 Feb;35(1):101–9. doi: https://doi.org/10.3109/08923973.2012.710635
26. Choudhury B, Rahman T, Kakon A, Hoque N, Akhtaruzzaman M, Begum M, et al. Effects of Pleurotus ostreatus on blood pressure and glycemic status of hypertensive diabetic male volunteers. J Med Biochem. 2013 Jan 13;6:5–10. doi: https://doi.org/10.3329/bjmb.v6i1.13280
27. Asrafuzzaman M, Rahman MM, Mandal M, Marjuque M, Bhowmik A, Rokeya B, et al. Oyster mushroom functions as an anti-hyperglycaemic through phosphorylation of AMPK and increased expression of GLUT4 in type 2 diabetic model rats. J Taibah Univ Med Sci. 2018 Oct;13(5):465–71. doi: https://doi.org/10.1016/j.jtumed.2018.02.009
28. Zhang Y, Hu T, Zhou H, Zhang Y, Jin G, Yang Y. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int J Biol Macromol. 2016 Feb;83:126–32. doi: https://doi.org/10.1016/j.ijbiomac.2015.11.045
29. Xiong M, Huang Y, Liu Y, Huang M, Song G, Ming Q, et al. Antidiabetic activity of ergosterol from Pleurotus ostreatus in KK-Ay mice with spontaneous type 2 diabetes mellitus. Mol Nutr Food Res. 2018 Feb;62(3):444. doi: https://doi.org/10.1002/mnfr.201700444
30. Shao HY, Hsu HY, Wu KS, Hee SW, Chuang LM, Yeh JI. Prolonged induction activates Cebpα independent adipogenesis in NIH/3T3 cells. PLoS One. 2013 Jan 10;8(1):e51459. doi: https://doi.org/10.1371/journal.pone.0051459
31. Ariyanto EF, Shalannandia WA, Lantika UA, Fakih TM, Ramadhan DSF, Gumilar AN, et al. Anthocyanin-containing purple sweet potato (Ipomoea batatas L.) synbiotic yogurt inhibited 3T3-L1 adipogenesis by suppressing white adipocyte-specific genes. J Exp Pharmacol. 2023 May 22;15:217–30. doi: https://doi.org/10.2147/JEP.S405433
32. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, Hofmann SM, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007 Sep 4;117(9):2621–37. doi: https://doi.org/10.1172/JCI31021
33. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006 Dec 14;444(7121):840–6. doi: https://doi.org/10.1038/nature05482
34. Chi Y, Li J, Li N, Chen Z, Ma L, Peng W, et al. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway. Oncotarget. 2017 May 3;8(28):45862–73. doi: https://doi.org/10.18632/oncotarget.17578
35. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014 Jan;6(1):a009191. doi: https://doi.org/10.1101/cshperspect.a009191
36. Uldry M, Thorens B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch. 2004 Feb;447(5):480–9. doi: https://doi.org/10.1007/s00424-003-1085-0
37. Britsemmer JH, Krause C, Taege N, Geißler C, Lopez-Alcantara N, Schmidtke L, et al. Fatty Acid induced hypermethylation in the Slc2a4 gene in visceral adipose tissue is associated to insulin-resistance and obesity. Int J Mol Sci. 2023 Mar 29;24(7):6417. doi: https://doi.org/10.3390/ijms24076417
38. Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony. J Clin Invest. 2006 Jul 3;116(7):1767–75. doi: https://doi.org/10.1172/JCI29027
39. Corrêa LH, Heyn GS, Magalhaes KG. The impact of the adipose organ plasticity on inflammation and cancer progression. Cells. 2019 Jul;8(7):662. doi: https://doi.org/10.3390/cells8070662
40. Cignarelli A, Genchi VA, Perrini S, Natalicchio A, Laviola L, Giorgino F. Insulin and insulin receptors in adipose tissue development. Int J Mol Sci. 2019 Feb 11;20(3):759. doi: https://doi.org/10.3390/ijms20030759
41. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005 Jul;436(7049):356–62. doi: https://doi.org/10.1038/nature03711
42. Michael Gibbs E, Stock JL, McCoid SC, Stukenbrok H, Pessin JE, Stevenson RW, et al. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin-regulatable glucose transporter (GLUT4). J Clin Investig. 1995 Apr 1;95(4):1512–8. doi: https://doi.org/10.1172%2FJCI117823
43. Wang J, Chen B, Hu F, Zou X, Yu H, Wang J, et al. Effect of hispolon from Phellinus lonicerinus (Agaricomycetes) on estrogen receptors, aromatase, and cyclooxygenase II in MCF-7 breast cancer cells. Int J Med Mushrooms. 2017;19(3):233–42. doi: https://doi.org/10.1615/IntJMedMushrooms.v19.i3.50
44. Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev. 2011 May 15;25(10):1010–22. doi: https://doi.org/10.1101/gad.2037511
45. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012 May 29;13(7):484–92. doi: https://doi.org/10.1038/nrg3230
46. Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, et al. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr. 2006 Jun;136(6):1522–7. doi: https://doi.org/10.1093/jn/136.6.1522
47. Wainfan E, Poirier LA. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 1992 Apr 1;52(7 Suppl):2071s–7s.
48. Devi PV, Islam J, Narzary P, Sharma D, Sultana F. Bioactive compounds, nutraceutical values and its application in food product development of oyster mushroom. J Future Foods. 2024 Dec 1;4(4):335–42. doi: https://doi.org/10.1016/j.jfutfo.2023.11.005
49. Lee WJ, Shim JY, Zhu BT. Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol. 2005 Oct;68(4):1018–30. doi: https://doi.org/10.1124/mol.104.008367
50. Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics. 2018 Feb 9;10(1):17. doi: https://doi.org/10.1186/s13148-018-0450-y
51. Lau KH, Waldhart AN, Dykstra H, Avequin T, Wu N. PPARγ and C/EBPα response to acute cold stress in brown adipose tissue. iScience. 2023 Jan 1;26(1):105848–8. doi: https://doi.org/10.1016/j.isci.2022.105848
Year
Month
Updates on the roles of epigenetics in the mechanism, diagnosis, and treatment of triple-negative breast cancer: A review
Eko Fuji Ariyanto, Abdan Syakura Danil, Rima Destya Triatin, Salsabila AriefaniMedication adherence and achievement of glycaemic targets in ambulatory type 2 diabetic patients