Diabetic nephropathy (DN), a complication of diabetes mellitus, is the primary cause of chronic kidney disease. Fibroblast-specific protein-1 (FSP-1) is a key protein involved in renal fibrosis through the epithelial-mesenchymal transition. Strychnos potatorum, a plant with various health benefits, has been studied for its potential to modulate FSP-1 expression in diabetic nephropathic rats. Thirty adult male Wistar albino rats were divided into five groups and treated with an ethanolic extract of S. potatorum seeds (500 mg/kg) and metformin (50 mg/kg) for 30 days. Biochemical parameters, renal histopathology, and FSP-1immuno-histochemistry, gene, and protein expressions were analyzed. The S. potatorum-treated group showed serum creatinine, urea, blood urea nitrogen, and glucose values of 0.70 ± 0.06, 39 ± 1.41, 19.31 ± 0.38, and 144.67 ± 8.71 mg/dl, respectively, which were significantly lower than those in the untreated diabetic group. Excessive collagen deposition, atrophied renal tubules, and perivascular fibrosis observed in diabetic animals were attenuated in the S. potatorum-treated group. The gene and protein expression of FSP-1 was significantly reduced in the S. potatorum-treated group than in the untreated diabetic animals. Strychnos potatorum by attenuating the expression of FSP-1 has arrested the epithelial-mesenchymal transition and restored the normalcy of the podocyte’s slit diaphragm. Strychnos potatorum’s modulatory effect on FSP-1 could be attributed to its antioxidant and anti-inflammatory activities. Strychnos potatorum seeds could be a promising drug for the treatment of DN pending clinical trials.
Shankaranarayanan A, Subramanian M, Thomson JER, Anbumani SK. Protective effects of Strychnos potatorum seed extract on diabetic nephropathy in rats: Downregulation of FSP-1 expression. J Appl Pharm Sci. 2025;15(07):193–202. http://doi.org/10.7324/JAPS.2025.233971
1. Mestry SN, Dhodi JB, Kumbhar SB, Juvekar AR. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Tradit Complement Med. 2017;7(3):273-80. https://doi.org/10.1016/j.jtcme.2016.06.008 | |
2. Dhasarathan P, Theriappan P. Evaluation of antidiabetic activity of Strychonous potatorum in alloxan induced diabetic rats. J Med Med Sci. 2011;2(2):670-4. | |
3. Giralt-López A, Molina-Van den Bosch M, Vergara A, García-Carro C, Seron D, Jacobs-Cachá C, et al. Revisiting experimental models of diabetic nephropathy. Int J Mol Sci. 2020;21(10):3587. https://doi.org/10.3390/ijms21103587 | |
4. Kikuchi Y, Yamada M, Imakiire T, Kushiyama T, Higashi K, Hyodo N, et al. A Rho-kinase inhibitor, fasudil, prevents development of diabetes and nephropathy in insulin-resistant diabetic rats. J Endocrinol. 2007;192(3):595-603. https://doi.org/10.1677/JOE-06-0045 | |
5. Kang MK, Park SH, Choi YJ, Shin D, Kang YH. Chrysin inhibits diabetic renal tubulointerstitial fibrosis through blocking epithelial to mesenchymal transition. J Mol Med. 2015;93:759-72. https://doi.org/10.1007/s00109-015-1301-3 | |
6. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Müller GA, Neilson EG, et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int. 2002;61(5):1714-28. https://doi.org/10.1046/j.1523-1755.2002.00333.x | |
7. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995;130(2):393-405. https://doi.org/10.1083/jcb.130.2.393 | |
8. Kuncio GS, Neilson EG, Haverty T. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 1991;39(3):550-6. https://doi.org/10.1038/ki.1991.63 | |
9. Le Hir M, Hegyi I, Cueni-Loffing D, Loffing J, Kaissling B. Characterization of renal interstitial fibroblast-specific protein 1/ S100A4-positive cells in healthy and inflamed rodent kidneys. Histochem Cell Biol. 2005;123:335-46. https://doi.org/10.1007/s00418-005-0788-z | |
10. Wang GG, Lu XH, Li W, Zhao X, Zhang C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complementary Altern Med. 2011;2011(1):323171. https://doi.org/10.1155/2011/323171 | |
11. Alarcon-Aguilara FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar- Contreras A, Contreras-Weber CC, Flores-Saenz JL. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J Ethnopharmacol. 1998;61(2):101-10. https://doi.org/10.1016/S0378-8741(98)00020-8 | |
12. Arunthathi K. Exploring anti-diabetic compounds from the ethanolic extraction of Strychnos potatorum seeds: ligand- based design, molecular dynamics. YMER. 2023;22(01):435-44. | |
13. Yadav KN, Kadam PV, Patel JA, Patil MJ. Strychnos potatorum: phytochemical and pharmacological review. Phcog Rev. 2014;8(15):61. https://doi.org/10.4103/0973-7847.125533 | |
14. Sanmugapriya E, Venkataraman S. Toxicological investigations on Strychnos potatorum Linn seeds in experimental animal models. Phcog Rev. 2006;52(4):339-43. https://doi.org/10.1248/jhs.52.339 | |
15. Varghese R, Moideen MM, Suhail MJM, Dhanapal CK. Nephroprotective effect of ethanolic extract of Strychnos potatorum seeds in rat models. Res J Pharm Biol Chem Sci. 2011;2(3):521-9. | |
16. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006;17(6):300-12. https://doi.org/10.1016/j.tifs.2005.12.004 | |
17. Punithavathi VR, Prince PS, Kumar R, Selvakumari J. Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol. 2011;650(1):465-71. https://doi.org/10.1016/j.ejphar.2010.08.059 | |
18. Government of India. Compendium of CPCSEA 2018 [Internet]. New Delhi: Government of India; 2018 [cited 2025 Feb 11]. Available from: https://ccsea.gov.in/WriteReadData/userfiles/file/ Compendium%20of%20CPCSEA.pdf | |
19. Langenfeld NJ, Payne LE, Bugbee B. Colorimetric determination of urea using diacetyl monoxime with strong acids. PLoS One. 2021;16(11):e0259760. https://doi.org/10.1371/journal.pone.0259760 | |
20. Mishra SB, Verma A, Vijayakumar M. Preclinical valuation of anti-hyperglycemic and antioxidant action of Nirmali (Strychnos potatorum) seeds in streptozotocin-nicotinamide-induced diabetic Wistar rats: a histopathological investigation. Biomark Genomic Med. 2013;5(4):157-63. https://doi.org/10.1016/j.bgm.2013.07.010 | |
21. Tsai GY, Cui JZ, Syed H, Xia Z, Ozerdem U, McNeill JH, et al. Effect of Nacetylcysteine on the early expression of inflammatory markers in the retina and plasma of diabetic rats. Clin Exp Ophthalmol. 2009;37(2):223-31. https://doi.org/10.1111/j.1442-9071.2009.02000.x | |
22. Sharun K, Banu SA, Mamachan M, Subash A, Mathesh K, Kumar R, et al. Comparative evaluation of masson's trichrome and picrosirius red staining for digital collagen quantification using ImageJ in rabbit wound healing research. JEBAS. 2023;11(5):822-33. https://doi.org/10.18006/2023.11(5).822.833 | |
23. Crowe AR, Yue W. Semi-quantitative determination of protein expression using immunohistochemistry staining and analysis: an integrated protocol. Bio Protoc. 2019;9(24):e3465. https://doi.org/10.21769/BioProtoc.3465 | |
24. Noshahr ZS, Salmani H, Khajavi Rad A, Sahebkar A. Animal models of diabetes-associated renal injury. J Diabetes Res. 2020;2020:9416419. https://doi.org/10.1155/2020/9416419 | |
25. Badole SL, Jangam GB. Animal models of diabetic cardiomyopathy. In: Watson RR, Dokken BB, editors. Glucose intake and utilization in pre-diabetes and diabetes. Amsterdam, Netherlands: Academic Press; 2015. pp. 181-90. https://doi.org/10.1016/B978-0-12-800093-9.00014-4 | |
26. Carpenter L, Cordery D, Biden TJ. Inhibition of protein kinase C δ protects rat INS-1 cells against interleukin-1β and streptozotocin-induced apoptosis. Diabetes. 2002;51(2):317-24. https://doi.org/10.2337/diabetes.51.2.317 | |
27. Bendayan M. Immunocytochemical detection of advanced glycated end products in rat renal tissue as a function of age and diabetes. Kidney Int. 1998;54(2):438-47. https://doi.org/10.1046/j.1523-1755.1998.00030.x | |
28. Gross ML, Ritz E, Schoof A, Adamczak M, Koch A, Tulp O, et al. Comparison of renal morphology in the Streptozotocin and the SHR/ N-cp models of diabetes. Lab Invest. 2004;84(4):452-64. https://doi.org/10.1038/labinvest.3700052 | |
29. Brenna Ø, Qvigstad G, Brenna E, Waldum HL. Cytotoxicity of streptozotocin on neuroendocrine cells of the pancreas and the gut. Dig Dis Sci. 2003;48:906-10. https://doi.org/10.1023/A:1023043411483 | |
30. Sanmugapriya E, Venkataraman S. Studies on hepatoprotective and antioxidant actions of Strychnos potatorum Linn. seeds on CCl4- induced acute hepatic injury in experimental rats. J Ethnopharmacol. 2006;105(1-2):154-60. https://doi.org/10.1016/j.jep.2005.10.028 | |
31. Singh AK, Dhar DN. Studies on the chemical constituents of the seeds of Strychnos potatorum L. Part I. Planta Med. 1977;32(08):362-7. https://doi.org/10.1055/s-0028-1097613 | |
32. Al-Tameme HJ, Hadi MY, Hameed IH. Phytochemical analysis of Urtica dioica leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. J Pharmacognosy Phytother. 2015;7(10):238-52. https://doi.org/10.5897/JPP2015.0361 | |
33. Tan H, Chen J, Li Y, Li Y, Zhong Y, Li G, et al. Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med. 2022;28(1):58. https://doi.org/10.1186/s10020-022-00481-w | |
34. Dey P, Kundu A, Lee HE, Kar B, Vishal V, Dash S, et al. Molineria recurvata ameliorates streptozotocin-induced diabetic nephropathy through antioxidant and anti-inflammatory pathways. Molecules. 2022;27(15):4985. https://doi.org/10.3390/molecules27154985 | |
35. Lin HH, Tseng CY, Yu PR, Ho HY, Hsu CC, Chen JH. Therapeutic effect of Desmodium caudatum extracts on alleviating diabetic nephropathy mice. Plant Foods Hum Nutr. 2024;79(2):374-80. https://doi.org/10.1007/s11130-024-01192-9 | |
36. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. JASN. 2003;14(5):1358-73. https://doi.org/10.1097/01.ASN.0000065640.77499.D7 | |
37. Badid C, Desmouliere A, Babici D, Hadj-Aissa A, McGregor B, Lefrancois N, et al. Interstitial expression of α-SMA: an early marker of chronic renal allograft dysfunction. Nephrol Dial Transplant. 2002;17(11):1993-8. https://doi.org/10.1093/ndt/17.11.1993 | |
38. Ziyadeh FN. Mediators of diabetic renal disease: the case for TGF-β as the major mediator. JASN. 2004;15(1_suppl):S55-7. https://doi.org/10.1097/01.ASN.0000093460.24823.5B | |
39. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol Cell Physiol. 1999;277(1):C1-9. https://doi.org/10.1152/ajpcell.1999.277.1.C1 | |
40. Ganesan D, Albert A, Paul E, Ananthapadmanabhan K, Andiappan R, Sadasivam SG. Rutin ameliorates metabolic acidosis and fibrosis in alloxan induced diabetic nephropathy and cardiomyopathy in experimental rats. Mol Cell Biochem. 2020;471:41-50. https://doi.org/10.1007/s11010-020-03758-y | |
41. Kim KH, Seol HJ, Kim EH, Rheey J, Jin HJ, Lee Y, et al. Wnt/β- catenin signaling is a key downstream mediator of MET signaling in glioblastoma stem cells. Neuro-oncology. 2013;15(2):161-71. https://doi.org/10.1093/neuonc/nos299 | |
42. Cheng D, Xu Q, Wang Y, Li G, Sun W, Ma D, et al. Metformin attenuates silica-induced pulmonary fibrosis via AMPK signaling. J Transl Med. 2021;19:1-8. https://doi.org/10.1186/s12967-021-03036-5 | |
43. Xue HZ, Chen Y, Wang SD, Yang YM, Cai LQ, Zhao JX, et al. Radix astragali and its representative extracts for diabetic mephropathy: efficacy and molecular mechanism. J Diabetes Res. 2024;2024(1):5216113. https://doi.org/10.1155/2024/5216113 | |
44. Zhang PN, Zhou MQ, Guo J, Zheng HJ, Tang J, Zhang C, et al. Mitochondrial dysfunction and diabetic nephropathy: nontraditional therapeutic opportunities. J Diabetes Res. 2021;2021(1):1010268. https://doi.org/10.1155/2021/1010268 | |
45. Noonin C, Thongboonkerd V. Curcumin prevents high glucose-induced stimulatory effects of renal cell secretome on fibroblast activation via mitigating intracellular free radicals and TGF-β secretion. Biomed Pharmacother. 2024;174:116536. https://doi.org/10.1016/j.biopha.2024.116536 | |
46. Tan E, Gao Z, Wang Q, Han B, Shi H, Wang L, et al. Berberine ameliorates renal interstitial inflammation and fibrosis in mice with unilateral ureteral obstruction. Basic Clin Pharmacol Toxicol. 2023;133(6):757-69. https://doi.org/10.1111/bcpt.13947 | |
47. Zhang L, Liu W, Li S, Wang J, Sun D, Li H, et al. Astragaloside IV alleviates renal fibrosis by inhibiting renal tubular epithelial cell pyroptosis induced by urotensin II through regulating the cAMP/PKA signaling pathway. PLoS One. 2024;19(5):e0304365. https://doi.org/10.1371/journal.pone.0304365 | |
48. Chen H, Yang T, Wang MC, Chen DQ, Yang Y, Zhao YY. Novel RAS inhibitor 25-O-methylalisol F attenuates epithelial-to-mesenchymal transition and tubulo-interstitial fibrosis by selectively inhibiting TGF-β-mediated Smad3 phosphorylation. Phytomedicine. 2018;42:207-18. https://doi.org/10.1016/j.phymed.2018.03.034 | |
49. Wang E, Wang L, Ding R, Zhai M, Ge R, Zhou P, et al. Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol Res. 2020;157:104831. https://doi.org/10.1016/j.phrs.2020.104831 | |
50. Guo Y, Xiao Y, Zhu H, Guo H, Zhou Y, Shentu Y, et al. Inhibition of proliferation-linked signaling cascades with atractylenolide I reduces myofibroblastic phenotype and renal fibrosis. Biochem Pharmacol. 2021;183:114344. https://doi.org/10.1016/j.bcp.2020.114344 | |
51. Huang WJ, Liu WJ, Xiao YH, Zheng HJ, Xiao Y, Jia Q, et al. Tripterygium and its extracts for diabetic nephropathy: efficacy and pharmacological mechanisms. Biomed Pharmacother. 2020;121:109599. https://doi.org/10.1016/j.biopha.2019.109599 | |
52. Ganesan T, Subban M, Christopher Leslee DB, Kuppannan SB, Seedevi P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2024;14(13):14547-58. https://doi.org/10.1007/s13399-022-03576-w | |
53. Ding T, Zhao T, Li Y, Liu Z, Ding J, Ji B, et al. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro. Phytomedicine. 2021;86:153562. https://doi.org/10.1016/j.phymed.2021.153562 |
Year
Month
Serum Levels of Heat Shock Protein 27 as a Potential Marker of Diabetic Nephropathy in Egyptians with Type 2 Diabetes
Invitro studies and evaluation of metformin marketed tablets-Malaysia
Arcot Ravindran Chandrasekaran, Chan Yoke Jia, Choong Sheau Theng, Teeba Muniandy, Selvadurai Muralidharan, Sokkalingam Arumugam Dhanaraj