Endophytic fungi have garnered attention for their ability to synthesize chemical compounds similar to those of their host plants. This study evaluated the bioactivities of BwKpRt-1, an endophytic fungus associated with Kaempferia parviflora rhizome. Bioactivity analyses included antioxidant assays, antibacterial, and antiproliferative toward cell lines, identified a fungal species and its chemical compounds using liquid chromatography high resolution mass spectrometry (LC-HRMS). Docking study for equisetin was also carried out in this research. The extract of BwKpRt-1 demonstrated antioxidant activity with an IC50 value of 57.36 μg/ml (DPPH) or AAI value of 0.5 (moderate). Its α-amylase and α-glucosidase inhibitory activities were 0.121 ± 0.02 nmole/minute/ml and 335.38 unit/l, respectively. Antibacterial activity is strong against Staphylococcus aureus with a minimum inhibitory concentration value of 64 μg/ml. The anticancer activity of this extract against MCF-7 and A549 showed IC50, which were 58.61 and 42.64 μg/ml. Chemical compound analysis using LC-HRMS identified equisetin as a main compound (42.18%). Docking study showed that Equisetin (EQ) exhibits stronger antioxidant and anticancer potential than standard drugs, showing lower energy affinities than vitamin C (VitC) for HsKEAP1 (−8.5 vs. −6.1 kcal/mol) and doxorubicin (DXR) for HsEGFR (−8.5 vs. −7.8 kcal/mol). Phylogenetic analysis revealed that BwKpRt-1 had a 99.08% similarity to Fusarium equiseti. These findings highlight the potential of F. equiseti BwKpRt-1 as a source of bioactive compounds for pharmaceutical applications.
Praptiwi P, Ilyas M, Putra ABN, Palupi KD, Fathoni A, Lotulung PDN, Evana E, Rahmi D, Agusta A. Bioactivity evaluation of compounds produced by Fusarium equiseti from Kaempferia parviflora rhizome from Indonesia. J Appl Pharm Sci. 2025;15(07):179–192. http://doi.org/10.7324/JAPS.2025.221818
1. Socfindoconservation.co.id [Internet]. Kaempferia parviflora. [Cited 2024 Sep 5]. Available from https://www.socfindoconservation.co.id/plant/535?lang=en | |
2. Powo.science.kew.org [Internet]. Kaempferia parviflora. [Cited 2024 Sep 5]. Available from https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:797188-1 | |
3. Yee TT, Lwin KWY. Study of phytochemical composition on Kaempferia parviflora Wall. Ex Baker . IEEE-SEM. 2019;7(7):128-36. | |
4. Wattanathorn J, Muchimapura S, Tong-Un T, Saenghong N, Thukhum-Mee W, Sripanidkulchai B. Positive modulation effect of 8-week consumption of Kaempferia parviflora on health-related physical fitness and oxidative status in healthy elderly volunteers. Evid Based Complement Alternat Med. 2012;2012:732816. https://doi.org/10.1155/2012/732816 | |
5. Sae-Wong C, Matsuda H, Tewtrakul S, Tansakul P, Nakamura S, Nomura Y, et al. Suppressive effects of methoxyflavonoids isolated from Kaempferia parviflora on inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. J Ethnopharmacol. 2011;136(3):488-95. https://doi.org/10.1016/j.jep.2011.01.013 | |
6. Tewtrakul S, Subhadhirasakul S, Kummee S. Anti-allergic activity of compounds from Kaempferia parviflora. J Ethnopharmacol. 2008;116(1):191-3. https://doi.org/10.1016/j.jep.2007.10.042 | |
7. Leardkamolkarn V, Tiamyuyen S, Sripanidkulchai B. Pharmacological activity of Kaempferia parviflora extract against human bile duct cancer cell lines. Asian Pac J Cancer Prev. 2009;10(4):695-8. | |
8. Akase T, Shimada T, Terabayashi S, Ikeya Y, Sanada H, Aburada M. Antiobesity effects of Kaempferia parviflora in spontaneously obese type II diabetic mice. J Nat Med. 2011;65(1):73-80. https://doi.org/10.1007/s11418-010-0461-2 | |
9. Azuma T, Kayano S, Matsumura Y, Konishi Y, Tanaka Y, Kikuzaki H. Antimutagenic and α-glucosidase inhibitory effects of constituents from Kaempferia parviflora. Food Chem. 2011;125(2):471-5. https://doi.org/10.1016/j.foodchem.2010.09.033 | |
10. Jeong D, Kim DH, Chon JW, Kim H, Lee SK, Kim HS, et al. Antibacterial effect of crude extracts of Kaempferia parviflora (Krachaidam) against cronobacter spp. and Enterohemorrhagic Escherichia coli (EHEC) in various dairy foods: a preliminary study. J Milk Sci Biotechnol. 2016;34(2):63-8. https://doi.org/10.22424/jmsb.2016.34.2.63 | |
11. Labrooy CD, Abdullah TL, Abdullah NAP, Stanslas J. Optimum shade enhances growth and 5,7-Dimethoxyflavone accumulation in Kaempferia parviflora Wall. ex Baker cultivars. Sci Hortic (Amsterdam). 2016;213:346-53. https://doi.org/10.1016/j.scienta.2016.10.042 | |
12. Sharma P, Singh SP. Chapter 11-Role of the endogenous fungal metabolites in the plant growth improvement and stress tolerance. In: Sharma VK, Shah MP, Parmar S, Kumar A, editors. Fungi Bio-Prospects Sustain. Agric. Environ. Nano-technology. London, UK: Academic Press; 2021. pp 381-401. https://doi.org/10.1016/B978-0-12-821734-4.00002-2 | |
13. Anand U, Pal T, Yadav N, Singh VK, Tripathi V, Choudhary KK, et al. Current scenario and future prospects of endophytic microbes: promising candidates for abiotic and biotic stress management for agricultural and environmental sustainability. Microb Ecol. 2023;86(3):1455-86. https://doi.org/10.1007/s00248-023-02190-1 | |
14. Yang SX, Zhao WT, Chen HY, Zhang L, Liu TK, Chen HP, et al. Aureonitols A and B, Two New C(13) -polyketides from Chaetomium globosum, an endophytic fungus in Salvia miltiorrhiza. Chem Biodivers. 2019;16(9):e1900364. https://doi.org/10.1002/cbdv.201900364 | |
15. Ujam NT, Adonu CC, Gugu TH, Onwusoba RC, Ike CJ, Offiah RO, et al. Assessment of antiplasmodial and immunomodulatory activities of endophytic fungal metabolites from Azadirachta Indica A. Juss. Afr J Microbiol Res. 2022;6(3):121-31. | |
16. Alisaac E, Mahlein AK. Fusarium head blight on wheat: biology, modern detection and diagnosis and integrated disease management. Toxins (Basel). 2023;15(3):192. https://doi.org/10.3390/toxins15030192 | |
17. Hami A, Rasool RS, Khan NA, Mansoor S, Mir MA, Ahmed N, et al. Morpho-molecular identification and first report of Fusarium equiseti in causing chilli wilt from Kashmir (Northern Himalayas). Sci Rep. 2021;11(1):3610. https://doi.org/10.1038/s41598-021-82854-5 | |
18. Liu S, Gao W, Yang X, Huo R, Chen F, Cao F, et al. Structure determination and cytotoxic evaluation of metabolites from the entomogenous fungus Fusarium equiseti. J Antibiot (Tokyo). 2021;74(3):176-80. https://doi.org/10.1038/s41429-020-00379-x | |
19. Pham GN, Josselin B, Cousseau A, Baratte B, Dayras M, Le Meur C, et al. New fusarochromanone derivatives from the marine fungus Fusarium equiseti UBOCC-A-117302. Mar Drugs. 2024;22(10):444. https://doi.org/10.3390/md22100444 | |
20. Praptiwi, Fathoni A, Ilyas M. Diversity of endophytic fungi from Vernonia amygdalina, their phenolic and flavonoid contents and bioactivities. Biodiversitas. 2020;21(2):436-41. https://doi.org/10.13057/biodiv/d210202 | |
21. Technelysium.com.au [Internet]. Chromaspro. [Cited 2024 Aug 1]. Available from http://technelysium.com.au/wp/chromaspro/ | |
22. Ncbi.nlm.nih.gov [Internet]. NCBI. [Cited 2024 Aug 1]. Available from https://www.ncbi.nlm.nih.gov/ | |
23. Ebi.ac.uk [Internet]. Muscle. [Cited 2024 Aug 1]. Available from http://www.ebi.ac.uk/Tools/msa/muscle | |
24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406-25. | |
25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054 | |
26. Amarowicz R, Pegg RB. Chapter one-natural antioxidants of plant origin. In: Ferreira ICFR, Barros LBT-A in F and NR, editors. Funct. Food Ingredients from Plants. Academic Press; 2019. Vol. 90, 1-81. https://doi.org/10.1016/bs.afnr.2019.02.011 | |
27. Kim KY, Nam KA, Kurihara H, Kim SM. Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry. 2008;69(16):2820-5. https://doi.org/10.1016/j.phytochem.2008.09.007 | |
28. Windarsih A, Suratno, Warmiko HD, Indrianingsih AW, Rohman A, Ulumuddin YI. Untargeted metabolomics and proteomics approach using liquid chromatography-Orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat. Food Chem. 2022;386:132856. https://doi.org/10.1016/j.foodchem.2022.132856 | |
29. Rcsb.org [Internet]. RCSB Protein Data Bank. [Cited 2025 Feb 3]. Available from https://www.rcsb.org/. | |
30. Nurkanto A, Masrukhin, Erdian Tampubolon JC, Ewaldo MF, Putri AL, Ratnakomala S, et al. Exploring Indonesian actinomycete extracts for anti-tubercular compounds: integrating inhibition assessment, genomic analysis, and prediction of its target by molecular docking. Heliyon. 2024;10(15):e35648. https://doi.org/10.1016/j.heliyon.2024.e35648 | |
31. Rybak MJ, Akins RL. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance. Drugs. 2001;61(1):1-7. https://doi.org/10.2165/00003495-200161010-00001 | |
32. Wei W, Chen P, Khan B, Tian K, Feng Y, Lv B, et al. Evaluation of Equisetin as an anti-microbial and herbicidal agent from endophytic fungus Fusarium sp. JDJR1. Agronomy. 2024;14(1):31 https://doi.org/10.3390/agronomy14010031 | |
33. Chen S, Liu D, Qi Z, Guo P, Ding S, Shen J, et al. A marine antibiotic kills multidrug-resistant bacteria without detectable high-level resistance. ACS Infect Dis. 2021;7:884-93. https://doi.org/10.1021/acsinfecdis.0c00913 | |
34. Adione NM, Onyeka IP, Abba CC, Okoye NN, Eze PM, Umeokoli BO, et al. Antimicrobial activities of the endophytic fungus, Fusarium equiseti, isolated from the leaves of Ocimum gratissimum. J Adv Med Pharm Sci. 2022;24(7):11-23. https://doi.org/10.9734/jamps/2022/v24i730312 | |
35. Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW. Antibiotic produced by Fusarium equiseti NRRL 5537. Antimicrob Agents Chemother. 1974;5(6):634-9. https://doi.org/10.1128/AAC.5.6.634 | |
36. Zhao D, Han X, Wang D, Liu M, Gou J, Peng Y, et al. Bioactive 3-decalinoyltetramic acids derivatives from a marine-derived strain of the fungus Fusarium equiseti D39. Front Microbiol. 2019;10:1285. https://doi.org/10.3389/fmicb.2019.01285 | |
37. Pubchem.ncbi.nlm.nih.gov [Internet]. Beauvericin. [Cited 2024 Sep 5]. Available from https://pubchem.ncbi.nlm.nih.gov/compound/3007984 | |
38. Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv. 2015;33(6 Pt 1):873-87. https://doi.org/10.1016/j.biotechadv.2015.07.004 | |
39. Lahmass I, Ouahhoud S, Elmansuri M, Sabouni A, Elyoubi M, Benabbas R, et al. Determination of antioxidant properties of six by-products of Crocus sativus L. (Saffron) plant products. Waste Biomass Valorization. 2018;9(8):1349-57. https://doi.org/10.1007/s12649-017-9851-y | |
40. Munteanu IG, Apetrei C. Assessment of the antioxidant activity of catechin in nutraceuticals: comparison between a newly developed electrochemical method and spectrophotometric methods. Int J Mol Sci. 2022;23(15):8110. https://doi.org/10.3390/ijms23158110 | |
41. Giordano ME, Caricato R, Lionetto MG. Concentration dependence of the antioxidant and prooxidant activity of trolox in heLa cells: involvement in the induction of apoptotic volume decrease. Antioxidants (Basel, Switzerland). 2020;9(11):1058. https://doi.org/10.3390/antiox9111058 | |
42. Prathyusha AMVN, Mohana Sheela G, Bramhachari PV. Chemical characterization and antioxidant properties of exopolysaccharides from mangrove filamentous fungi Fusarium equiseti ANP2. Biotechnol Reports. 2018;19:e00277. https://doi.org/10.1016/j.btre.2018.e00277 | |
43. Sadowska-Bartosz I, Bartosz G. Antioxidant activity of anthocyanins and anthocyanidins: a critical review. Int J Mol Sci. 2024;25(22):12001. https://doi.org/10.3390/ijms252212001 | |
44. Eze PM, Abonyi DO, Abba CC, Proksch P, Okoye FBC, Esimone CO. Toxic, but beneficial compounds from endophytic fungi of Carica papaya. EuroBiotech J. 2019;3(2):105-11. https://doi.org/10.2478/ebtj-2019-0012 | |
45. Alotaibi SH, Momen AA. Anticancer drugs’ deoxyribonucleic acid (DNA) interactions. In: Khalid MAA, editor. Biophysical chemistry-advance applications. Rijeka, Croatia: IntechOpen; 2019. | |
46. Saetang P, Rukachaisirikul V, Phongpaichit S, Sakayaroj J, Shi X, Chen J, et al. β-Resorcylic macrolide and octahydronaphthalene derivatives from a seagrass-derived fungus Fusarium sp. PSU-ES123. Tetrahedron. 2016;72(41):6421-7. https://doi.org/10.1016/j.tet.2016.08.048 | |
47. Watari K, Nakamura M, Fukunaga Y, Furuno A, Shibata T, Kawahara A, et al. The antitumor effect of a novel angiogenesis inhibitor (an octahydronaphthalene derivative) targeting both VEGF receptor and NF-κB pathway. Int J Cancer. 2012;131(2):310-21. https://doi.org/10.1002/ijc.26356 | |
48. Wu JL, Yu YH, Yao HZ, Zhao X, Yuan T, Huang YH. Trichodermic acids from an endophytic Trichoderma sp. and their antifungal activity against the phytopathogen Botrytis cinerea. Phytochem Lett. 2023;56:24-9. https://doi.org/10.1016/j.phytol.2023.06.004 | |
49. Pa?asz A, Cie? D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: synthesis, biological activity and applications. Eur J Med Chem. 2015;97:582-611. https://doi.org/10.1016/j.ejmech.2014.10.008 | |
50. Wei Q, Wang X, Cheng JH, Zeng G, Sun DW. Synthesis and antimicrobial activities of novel sorbic and benzoic acid amide derivatives. Food Chem. 2018;268:220-32. https://doi.org/10.1016/j.foodchem.2018.06.071 | |
51. Wang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: a short review. Molecules. 2012;17(3):2367-77. https://doi.org/10.3390/molecules17032367 | |
52. Adelusi TI, Abdul-Hammed M, Idris MO, Oyedele QK, Adedotun IO. Molecular dynamics, quantum mechanics and docking studies of some Keap1 inhibitors-an insight into the atomistic mechanisms of their antioxidant potential. Heliyon. 2021;7(6):e07317. https://doi.org/10.1016/j.heliyon.2021.e07317 | |
53. Kashima K, Kawauchi H, Tanimura H, Tachibana Y, Chiba T, Torizawa T, et al. CH7233163 Overcomes Osimertinib-resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther. 2020;19(11):2288-97. https://doi.org/10.1158/1535-7163.MCT-20-0229 |
Year
Month
Endophytic fungal communities associated with two ethno-medicinal plants of Similipal Biosphere Reserve, India and their antimicrobial prospective
Genetic Profiling, Chemical Characterization and Biological Evaluation of Two Conyza Species Growing in Egypt
Phytochemical screening, in vitro anti-oxidant activity, and in silico anti-diabetic activity of aqueous extracts of Ruellia tuberosa L
Anna Safitri, Fatchiyah Fatchiyah, Dewi Ratih Tirto Sari, Anna Roosdiana