Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE) are one of the significant public health issues. They are associated with high rates of illness and death, and increased prevalence of antimicrobial resistance, which causes treatment failure in infectious diseases. This study investigated the effects of combined seven phytochemicals, including four stilbenoids [namely, pinosylvin monomethyl ether (1), 2,3’-dihydroxy-5’-methoxystilbene (2), (E)-2,3′-dihydroxy-2′-(4-hydroxybenzyl)-5′-methoxystilbene (3), (E)-2,5′-dihydroxy-2′-(4-hydroxybenzyl)-3′-methoxystilbene (4)], one flavonoid (isalpinin) (5), one triterpenoid saponin (oleanolic acid 28-O-β-D-glucopyranoside) (6), and one amide alkaloid (piperine) (7) with amoxicillin and predicting mode of action of seven natural compounds with amoxicillin to kill MRSA and VRE. The antibacterial activity was assessed by the minimum inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) index. In addition, a molecular docking study was evaluated to predict the mechanism of action of their compounds to bind resistance-related proteins: penicillin-binding protein 2a (PBP2a) for MRSA and VanA ligase for VRE. All compounds showed antibacterial activity (MIC: 5–10 mg/ml) and enhanced amoxicillin efficacy, with FIC index values indicating additive to synergistic effects (FIC: 0.0018–0.8020). The compounds interacted with PBP2a at allosteric sites (ΔG: –11.70 to –6.60 kcal/mol; Ki: 0.00263–14.65 μM) and with VanA ligase at active sites (ΔG: –10.46 to –7.20 kcal/mol; Ki: 0.021–5.32 μM), exhibiting favourable binding affinities. In contrast, amoxicillin showed unfavourable interactions with these proteins. This study suggests that compounds 1–7 increased the susceptibility of MRSA and VRE to amoxicillin, which might be associated with their interaction with PBP2a and VanA proteins.
Powthong P, Lertnitikul N, Boonyong C. Boosting amoxicillin effectiveness against methicillin-resistant Staphylococcus aureus and ancomycin-resistant Enterococcus faecalis with phytochemicals: In vitro and in silico approaches. J Appl Pharm Sci. 2025;15(07):121–131. https://doi.org/10.7324/JAPS.2025.229288
1. de Oliveira Santos JV, da Costa Júnior SD, de Fátima Ramos Dos Santos Medeiros SM, Cavalcanti IDL, de Souza JB, Coriolano DL, et al. Panorama of bacterial infections caused by epidemic resistant strains. Curr Microbiol. 2022;79(6):175. doi: https://doi.org/10.1007/s00284-022-02875-9
2. Janice J, Wagner TM, Olsen K, Hegstad J, Hegstad K. Emergence of vancomycin-resistant enterococci from vancomycin-susceptible enterococci in hospitalized patients under antimicrobial therapy. J Glob Antimicrob Resist. 2024;36:116–22. doi: https://doi.org/10.1016/j.jgar.2023.12.010
3. Ali Alghamdi B, Al-Johani I, Al-Shamrani JM, Musamed Alshamrani H, Al-Otaibi BG, Almazmomi K, et al. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J Biol Sci. 2023;30(4):103604. doi: https://doi.org/10.1016/j.sjbs.2023.103604
4. Ahmed MO, Baptiste KE. Vancomycin-resistant Enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb Drug Resist. 2018;24(5):590–606. doi: https://doi.org/10.1089/mdr.2017.0147
5. Vestergaard M, Frees D, Ingmer H. Antibiotic resistance and the MRSA problem. Microbiol Spectr. 2019;7(2):1–23. doi: https://doi.org/10.1128/microbiolspec.GPP3-0057-2018
6. Quiñones D, Aung MS, Sousa Martins JP, Urushibara N, Kobayashi N. Genetic characteristics of VanA-type vancomycin-resistant Enterococcus faecalis and Enterococcus faecium in Cuba. New Microbes New Infect 2017;21:125–7. doi: https://doi.org/10.1016/j.nmni.2017.12.001
7. Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4:18033. doi: https://doi.org/10.1038/nrdp.2018.33
8. Mahjabeen F, Saha U, Mostafa MN, Siddique F, Ahsan E, Fathma S, et al. An update on treatment options for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: a systematic review. Cureus. 2022;14(11):e31486. doi: https://doi.org/10.7759/cureus.31486
9. Wingler MJ, Patel NR, King ST, Wagner JL, Barber KE, Stover KR. Linezolid for the treatment of urinary tract infections caused by vancomycin-resistant Enterococci. Pharmacy (Basel). 2021;9(4):175. doi: https://doi.org/10.3390/pharmacy9040175
10. Awadelkarim AM, Idris I, Abdelhai M, Yeddi A, Saad E, Alhusain R, et al. Daptomycin-associated diarrhea: a Case report and review of the literature. Cureus. 2022;14(6):e26135. doi: https://doi.org/10.7759/cureus.26135
11. Porchera BR, da Silva CM, Miranda RP, Gomes ARQ, Fernandes PHDS, de Menezes CGO, et al. Linezolid and vancomycin for nosocomial infections in pediatric patients: a systematic review. J Pediatr (Rio J). 2024;100(3):242–9. doi: https://doi.org/10.1016/j.jped.2023.08.011
12. Husain A, Rawat V, Umesh, Kumar M, Verma PK. Vancomycin, linezolid and daptomycin susceptibility pattern among clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) from Sub-Himalyan Center. J Lab Physicians. 2018;10(2):145–8. doi: https://doi.org/10.4103/JLP.JLP_92_17
13. Gentry CA, Rodvold KA, Novak RM, Hershow RC, Naderer OJ. Retrospective evaluation of therapies for Staphylococcus aureus endocarditis. Pharmacotherapy. 1997;17(5):990–7.
14. Rybak MJ. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis. 2006;42 Suppl 1:S35–9. doi: https://doi.org/10.1086/491712
15. Altarawneh H, Alhomra T, Alharbi M, Fan Y, Derrick JP, Xia G. Synergistic bactericidal activity of a novel dual β-lactam combination against methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2024;79(7):1677–82. doi: https://doi.org/10.1093/jac/dkae165
16. Descourouez JL, Jorgenson MR, Wergin JE, Rose WE. Fosfomycin synergy in vitro with amoxicillin, daptomycin, and linezolid against vancomycin-resistant Enterococcus faecium from renal transplant patients with infected urinary stents. Antimicrob Agents Chemother. 2013;57(3):1518–20. doi: https://doi.org/10.1128/AAC.02099-12
17. Feng Y, Tonon CC, Hasan T. Dramatic destruction of methicillin-resistant Staphylococcus aureus infections with a simple combination of amoxicillin and light-activated methylene blue. J Photochem Photobiol B. 2022;235:112563. doi: https://doi.org/10.1016/j.jphotobiol.2022.112563
18. Barbieri R, Coppo E, Marchese A, Daglia M, Sobarzo-Sánchez E, Nabavi SF, et al. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol Res. 2017;196:44–68. doi: https://doi.org/10.1016/j.micres.2016.12.003
19. Uzair B, Niaz N, Bano A, Khan BA, Zafar N, Iqbal M, et al. Essential oils showing in vitro anti MRSA and synergistic activity with penicillin group of antibiotics. Pak J Pharm Sci. 2017;30(5):1997– 2002.
20. Schmidt S, Heimesaat MM, Fischer A, Bereswill S, Melzig MF. Saponins increase susceptibility of vancomycin-resistant enterococci to antibiotic compounds. Eur J Microbiol Immunol (Bp). 2014;4(4):204–12. doi: https://doi.org/10.1556/EUJMI-D-14-00029
21. Wu J, Li B, Xiao W, Hu J, Xie J, Yuan J, et al. Longistylin A, a natural stilbene isolated from the leaves of Cajanus cajan, exhibits significant anti-MRSA activity. Int J Antimicrob Agents. 2020;55(1):105821. doi: https://doi.org/10.1016/j.ijantimicag.2019.10.002
22. Plumed-Ferrer C, Väkeväinen K, Komulainen H, Rautiainen M, Smeds A, Raitanen JE, et al. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int J Food Microbiol. 2013;164(1):99–107. doi: https://doi.org/10.1016/j.ijfoodmicro.2013.04.001
23. Chan BCL, Ip M, Gong H, Lui SL, See RH, Jolivalt C, et al. Synergistic effects of diosmetin with erythromycin against ABC transporter over-expressed methicillin-resistant Staphylococcus aureus (MRSA) RN4220/pUL5054 and inhibition of MRSA pyruvate kinase. 2013;20(7):611–4. doi: https://doi.org/10.1016/j.phymed.2013.02.007
24. Wang SY, Sun ZL, Liu T, Gibbons S, Zhang WJ, Qing M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother Res. 2014;28:1071–6. doi: https://doi.org/10.1002/ptr.5098
25. Lertnitikul N, Liangsakul J, Jianmongkol S, Suttisri R. Three new cytotoxic stilbene dimers from Paphiopedilum dianthum. Nat Prod Res. 2023;37(21):3685–93. doi: https://doi.org/10.1080/14786419.2 022.2101049
26. Khameneh B, Iranshahy M, Ghandadi M, Atashbeyk DG, Bazzaz BSF, Iranshahi M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. 2014;41(6):989–94. doi: https://doi.org/10.3109/03639045.2014.920025
27. Lertnitikul N, Suttisri R, Sitthigool S, Pattamadilok C, Piewpong K, Khanboon A, et al. Antioxidant, antimicrobial and cytotoxic activities of amides and aristolactams from Piper wallichii (Miq.) Hand.-Mazz. Stems JBAPN. 2023;13(2):94–104. doi: https://doi.org/10.1080/22311866.2023.2211043
28. Powthong P, Suntornthiticharoen P. Comparative analysis of antioxidant, antimicrobial, and tyrosinase inhibitory activities of Centella asiatica (l.) Urb and Eichhornia crassipes (mart.) Solms. JMPAS. 2023;12-I14:5931–8. doi: https://doi.org/10.55522/jmpas.V12I4.5082
29. CLSI. Performance standards for antimicrobial susceptibility testing M100. 31st ed. Wayne: PA: Clinical and laboratory standards institute; 2021.
30. Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, et al. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: a computational and experimental study. Exp Biol Med (Maywood). 2017;242(7):731– 43. doi: https://doi.org/10.1177/1535370216689828
31. Boonyong C, Jianmongkol S. Predicting molecular mechanism of silymarin-potentiated diclofenac toxicity: insight from in silico molecular docking. Toxicol Rep. 2023;11:339–45. doi: https://doi.org/10.1016/j.toxrep.2023.10.001
32. Boonyong C, Lertnitikul N, Pattamadilok C, Sitthigool S, Suttisri R, Jianmongkol S, et al. In vitro and in silico effects of the polyisoprenylated benzophenones guttiferone K and oblongifolin C on P-glycoprotein function. J Appl Pharm Sci. 2024;14(02):102–8. doi: https://doi.org/10.7324/JAPS.2024.158877
33. Bouley R, Kumarasiri M, Peng Z, Otero LH, Song W, Suckow MA, et al. Discovery of antibiotic (E)-3-(3-carboxyphenyl)- 2-(4-cyanostyryl)quinazolin-4(3H)-one. J Am Chem Soc. 2015;137(5):1738–41. doi: https://doi.org/10.1021/jacs.5b00056
34. Bakrim S, Machate H, Benali T, Sahib N, Jaouadi I, Omari NE, et al. Natural sources and pharmacological properties of pinosylvin. Plants (Basel). 2022;11(12):1541. doi: https://doi.org/10.3390/plants11121541
35. Mattio LM, Catinella G, Dallavalle S, Pinto A. Stilbenoids: a natural arsenal against bacterial pathogens. Antibiotics (Basel). 2020;9(6):336. doi: https://doi.org/10.3390/antibiotics9060336
36. Roper DI, Huyton T, Vagin A, Dodson G. The molecular basis of vancomycin resistance in clinically relevant Enterococci: crystal structure of D-alanyl-D-lactate ligase (VanA). Proc Natl Acad Sci U S A. 2000;97(16):8921–5. doi: https://doi.org/10.1073/pnas.150116497
Year
Month
Cost-effectiveness analysis of several dosage regimens of vancomycin in ventilator-associated pneumonia critically ill patients
Bobby Presley, Steven Victoria Halim, Eko SetiawanSynthesis and Antimicrobial studies of novel Benzimidazole derivatives
Stability of reconstituted amoxicillin clavulanate potassium under simulated in-home storage conditions
Nwokoye Peace, Oyetunde Olubukola, Akinleye MoshoodPhysicochemical and Phytochemical evaluation of different black tea brands
Pradeep Kumar Sharma, Mohammad Ali, Dinesh Kumar Yadav