Tuberculosis is a global disease problem that is still difficult to overcome. WHO reports that TB cases are increasing from year to year. This is directly proportional to the mortality rate due to TB, which has increased significantly, reaching 1.6 million by 2022. High mortality rates can result from immunosuppression and co-infection by other microorganisms such as bacteria, fungi, and viruses. This can prolong symptoms and worsen the patient’s condition. This article presents a bibliometric study of research articles on tuberculosis co-infection with microorganisms indexed in the Scopus journal database from 1966 to 2024. An accumulating total of 422 documents were disseminated globally, averaging 14 documents annually. The US produced the most documents (94), followed by India (73), the UK and South Africa (40), and China (33). Since 2002, global publishing numbers have continually increased. Co-infections, microbiology of co-infection, clinical articles, and case reports are popular trends these days. This study provides a comprehensive overview of global research on tuberculosis co-infections with microorganisms, spanning from 1966 to 2024.
1. WHO. WHO global tuberculosis report. Geneva, Switzerland: WHO; 2022.
2. World Health Organization. 2.1 TB incidence. Glob Tuberc Rep. 2022;2022:1–30.
3. Shu W, Chen W, Yao L, Sun M, Gao M, Wan Z, et al. A case series of co-infection in Mycobacterium tuberculosis and other pathogens: insights from nanopore sequencing. Egypt J Bronchol. 2024;18:19. doi: https://doi.org/10.1186/s43168-024-00270-5
4. Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8:1002464. doi: https://doi.org/10.1371/journal.ppat.1002464
5. Attia EF, Pho Y, Nhem S, Sok C, By B, Phann D, et al. Tuberculosis and other bacterial co-infection in Cambodia: a single center retrospective cross-sectional study. BMC Pulm Med. 2019;19:1–7. doi: https://doi.org/10.1186/s12890-019-0828-4
6. Abdulkadir B, Abubakar U, Abdullahi B, Owuna JE, Murtala R, Kabir K, et al. A survey of co-infection of some pathogenic bacteria with TB in patients attending Federal Medical Center Katsina, Nigeria. Bayero J Pure Appl Sci. 2020;12:209–14. doi: https://doi.org/10.4314/bajopas.v12i1.33s
7. Amala SE, Hanson A, Wokem GN. Candida co-infection with Mycobacterium tuberculosis in tuberculosis patients and antifungal susceptibility of the isolates. J Tuberc Res. 2020;8:53–65. doi: https://doi.org/10.4236/jtr.2020.82006
8. Kali A, Charles MP, Joseph NM, Umadevi S, Kumar S, Easow JM. Prevalence of Candida co-infection in patients with pulmonary tuberculosis. Australas Med J. 2013;6:387–91. doi: https://doi.org/10.4066/AMJ.2013.1709
9. Amiri MRJ, Siami R, Khaledi A. Tuberculosis status and coinfection of pulmonary fungal infections in patients referred to reference laboratory of health centers Ghaemshahr City during 2007–2017. Ethiop J Health Sci. 2018;28:683–90. doi: https://doi.org/10.4314/ejhs.v28i6.2
10. Hosseini M, Shakerimoghaddam A, Ghazalibina M, Khaledi A. Aspergillus coinfection among patients with pulmonary tuberculosis in Asia and Africa countries: a systematic review and meta-analysis of cross-sectional studies. Microb Pathog. 2020;141:104018. doi: https://doi.org/10.1016/j.micpath.2020.104018
11. Hossain HT, Noor N, Akhter S, Ahmed M, Islam QT. Co-infection by Mycobacterium tuberculosis and Klebsiella pneumoniae in an elderly male with multiple co-morbidities: a rare entity with high mortality. Bangladesh J Med. 2022;34:52–7. doi: https://doi.org/10.3329/bjm.v34i1.63428
12. World Health Organization (WHO). Co-infection of TB and HIV. Geneva, Switzerland: World Health Organization; 2019.
13. Stewart P, Patel S, Comer A, Muneer S, Nawaz U, Quann V, et al. Role of B cells in Mycobacterium tuberculosis infection. Vaccines. 2023;11:955. doi: https://doi.org/10.3390/vaccines11050955
14. Hosseinian K, Gerami A, Bral M, Venketaraman V. Mycobacterium tuberculosis–human immunodeficiency virus infection and the role of T cells in protection. Vaccines. 2024;12:730. doi: https://doi.org/10.3390/vaccines12070730
15. Bell LCK, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol. 2018;16:80–90. doi: https://doi.org/10.1038/nrmicro.2017.128
16. Hoerter A, Arnett E, Schlesinger LS, Pienaar E. Systems biology approaches to investigate the role of granulomas in TB-HIV coinfection. Front Immunol. 2022;13:1014515. doi: https://doi.org/10.3389/fimmu.2022.1014515
17. Chiok KR, Dhar N, Banerjee A. Mycobacterium tuberculosis and SARS-CoV-2 co-infections: the knowns and unknowns. IScience. 2023;26:106629. doi: https://doi.org/10.1016/j.isci.2023.106629
18. Burnham JF. Scopus database: a review. Biomed Digit Libr. 2006;3:1–8. doi: https://doi.org/10.1186/1742-5581-3-1
19. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of pubmed, scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 2008;22:338–42. doi: https://doi.org/10.1096/fj.07-9492lsf
20. Kulkarni AV, Aziz B, Shams I, Busse JW. Comparisons of citations in web of science, scopus, and google scholar for articles published in general medical journals. JAMA. 2009;302:1092–6. doi: https://doi.org/10.1001/jama.2009.1307
21. Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, et al. Bibliometric analysis of literature in snake venom-related research worldwide (1933–2022). Animals. 2022;12:1–20. doi: https://doi.org/10.3390/ani12162058
22. Blattner WA. HIV epidemiology: past, present, and future. FASEB J. 1991;5:2340–8. doi: https://doi.org/10.1096/fasebj.5.10.2065886
23. Moreno R, Ravasi G, Avedillo P, Lopez R. Tuberculosis and HIV coinfection and related collaborative activities in Latin America and the Caribbean. Rev Panam Salud Publica/Pan Am J Public Heal. 2020;44:1–9. doi: https://doi.org/10.26633/RPSP.2020.43
24. Komrower D, Thillai M. Tuberculosis and HIV co-infection. In: Davies PDO, editor. Clinical tuberculosis a practical handbook. London, UK: CRC Press; 2015. pp. 157–70.
25. Vittor AY, Garland JM, Gilman RH. Molecular diagnosis of TB in the HIV positive population. Ann Glob Heal. 2014;80:476–85. doi: https://doi.org/10.1016/j.aogh.2015.01.001
26. Cattamanchi A, Smith R, Steingart KR, Metcalfe JZ, Date A, Coleman C, et al. Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: a systematic review and meta-analysis. J Acquir Immune Defic Syndr. 2011;56:230–8. doi: https://doi.org/10.1097/QAI.0b013e31820b07ab
27. WHO. Tuberculosis deaths and disease increase during the COVID-19 pandemic. Geneva, Switzerland: World Health Organization; 2022.
28. Wang Q, Cao Y, Liu X, Fu Y, Zhang J, Zhang Y, et al. Systematic review and meta-analysis of tuberculosis and COVID-19 co-infection: prevalence, fatality, and treatment considerations. PLoS Negl Trop Dis. 2024;18:e0012136. doi: https://doi.org/10.1371/journal.pntd.0012136
29. Migliori GB, Casco N, Jorge AL, Palmero DJ, Alffenaar JW, Denholm J, et al. Tuberculosis and COVID-19 co-infection: description of the global cohort. Eur Respir J. 2022;59:1–15. doi: https://doi.org/10.1183/13993003.02538-2021
30. Center for Disease Control and Prevention (CDC). Tuberculosis (TB) TB and HIV coinfection. Atlanta, GA: CDC; n.d. 1–2 pp.
31. Olivier C, Luies L. WHO goals and beyond: managing HIV/TB co-infection in South Africa. SN Compr Clin Med. 2023;5:251. doi: https://doi.org/10.1007/s42399-023-01568-z
32. Li D, Peng X, Hou S, Li T, Yu XJ. A tuberculosis outbreak during the COVID-19 pandemic—Hubei Province, China, 2020. China CDC Wkly. 2021;3:562–5. doi: https://doi.org/10.46234/ccdcw2021.145
33. Li J, Zhang Y, Liu JH, Zhao J, Yang S, Li Y. Impact of COVID-19 epidemic on tuberculosis control in Jingzhou city. Chinese J Public Heal. 2022;38:1340–4. doi: https://doi.org/10.11847/zgggws1137669
34. Shen X, Sha W, Yang C, Pan Q, Cohen T, Cheng S, et al. Continuity of TB services during the COVID-19 pandemic in China. Int J Tuberc Lung Dis. 2021;25:81–3. doi: https://doi.org/10.5588/IJTLD.20.0632
35. Wang X, He W, Lei J, Liu G, Huang F, Zhao Y. Impact of COVID-19 pandemic on pre-treatment delays, detection, and clinical characteristics of tuberculosis patients in Ningxia Hui Autonomous Region, China. Front Public Heal. 2021;9:644536. doi: https://doi.org/10.3389/fpubh.2021.644536
36. Effendy L, Mertaniasih NM, Soedarsono S, Endraswari P. An initiative report on hospitalized pulmonary TB patients co-infected by SARS-CoV-2 during the COVID-19 pandemic from tertiary referral hospitals in Surabaya. Indones J Trop Infect Dis. 2023;11:112–20. doi: https://doi.org/10.20473/ijtid.v11i2.38940
37. Fournier P, Dubourg G, Raoult D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014;6:114. doi: https://doi.org/10.1186/s13073-014-0114-2
38. SFDPH/TB Control. Provider information and guidelines for interpretation what is it ? GeneXpert ® MTB/RIF 2010:8524.
39. WHO. Key facts tuberculosis. Geneva, Switzerland: WHO; 2023. 2–7 pp.
40. CDC. Tuberculosis (TB). Atlanta, GA: CDC; 2022. 1–7 pp.
41. World Health Organization (WHO). WHO consolidated guidelines on tuberculosis. Geneva, Switzerland: WHO; 2022.
42. Centers for Disease Control and Prevention. Reported tuberculosis in the United States, 2013 2014. Atlanta, GA: CDC; 2020. 9 p.
43. Liu J, Zhang Y, Cai J, Shao L, Jiang X, Yin X, et al. Clinical and microbiological characteristics of Klebsiella pneumoniae co-infections in pulmonary tuberculosis: a retrospective study. Infect Drug Resist. 2023;16:7175–85. doi: https://doi.org/10.2147/IDR.S421587
44. Ishikawa S, Igari H, Yamagishi K, Takayanagi S, Yamagishi F. Microorganisms isolated at admission and treatment outcome in sputum smear-positive pulmonary tuberculosis. J Infect Chemother. 2019;25:45–9. doi: https://doi.org/10.1016/j.jiac.2018.10.005
45. Swanepoel J, van der Zalm MM, Preiser W, van Zyl G, Whittaker E, Hesseling AC, et al. SARS-CoV-2 infection and pulmonary tuberculosis in children and adolescents: a case-control study. BMC Infect Dis. 2023;23:442. doi: https://doi.org/10.1186/s12879-023-08412-8
46. Tadolini M, Codecasa LR, García-García JM, Blanc FX, Borisov S, Alffenaar JW, et al. Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. Eur Respir J. 2020;56:764–5. doi: https://doi.org/10.1183/13993003.01398-2020.
47. Williams BD, Ferede D, Abdelaal HFM, Berube BJ, Podell BK, Larsen SE, et al. Protective interplay: Mycobacterium tuberculosis diminishes SARS-CoV-2 severity through innate immune priming. Front Immunol. 2024;15:1424374. doi: https://doi.org/10.3389/fimmu.2024.1424374
48. Navasardyan I, Miwalian R, Petrosyan A, Yeganyan S, Venketaraman V. HIV–TB coinfection: current therapeutic approaches and drug interactions. Viruses. 2024;16:321. doi: https://doi.org/10.3390/v16030321
Year
Month