Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, with limited treatment options in advanced stages. Traditional medicine has long provided alternative therapeutic avenues, particularly in Southeast Asia. YA-KAE-KASAI-LIN-KRA-BUE (KLB), a formulation found in the ancient Phaetsat Songkhro scripture of Thai traditional medicine, has been historically used to treat “Kasai,” a term referring to chronic diseases, including liver disorders. This study investigates the anti-HCC potential of KLB, assessing its antioxidant activity, cytotoxicity against HepG2 liver cancer cells, and biomolecular changes through advanced analytical methods, including gas chromatography-mass spectrometry and FTIR profiling. The KLB formulation demonstrated significant antioxidant properties, with Garcinia hanburyi and Senna siamea contributing the highest levels of phenolics and flavonoids, correlating with enhanced antioxidant activity. Cytotoxicity assays using Sulforhodamine B (SRB) revealed that KLB satu exhibited potent anti-proliferative effects on HepG2 cells at concentrations as low as 0.2–0.4 μg/ml, surpassing the efficacy of gemcitabine at similar dosages. Mechanistic studies showed that KLB induced S-phase cell cycle arrest and promoted apoptosis in HepG2 cells. FTIR analysis of ethanolic KLB satu extract highlighted significant biomolecular alterations, including increased lipid content and reduced nucleic acid/DNA intensity. Structural changes in proteins, particularly the shift of the β-sheet peak (1635 cm-1) and the emergence of an α-helix structure at 1654 cm-1, suggest potential alterations in protein conformation linked to apoptotic processes. These findings underscore the therapeutic potential of KLB as a natural agent for liver cancer treatment, providing scientific validation for its traditional use. The study also highlights the relevance of combining traditional knowledge with modern scientific techniques for the discovery of novel anti-cancer agents.
Promchiang J, Aukkanimart R, Sriraj P. Anti-hepatocellular carcinoma and antioxidant activities of a Thai traditional liver disease formulation: GC-MS and FTIR profiling. J Appl Pharm Sci. 2025. Online First. https://doi.org/10.7324/JAPS.2025.219038
1. Ministry of Public Health. The Announcement to Define the Thailand National Traditional Medicine Textbook and Thailand National Traditional Pharmacopoeia. Bangkok, Thailand: Department for Development of Thai Traditional and Alternative Medicine, Ministry of Public Health, Royal Thai Government Gazette.; 2016.
2. Songpol C, Aimmanas A, Pranee C, Somkiat P, Songpol P, Rungtip J. Toxicity study on a Thai traditional medicine: Ya-Kae-Ka-Sai-Lin- Kra-Bue. J Thai Trad Alt Med. 2004;3(1):42.
3. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines (Basel). 2018;5(3):93. doi: https://doi/10.3390/medicines5030093
4. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019;8(4):96. doi: https://doi/10.3390/plants8040096
5. Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001;73(2):239– 44. doi: https://doi.org/10.1016/S0308-8146(00)00324-1
6. Wong FC, Yong AL, Ting EPS, Khoo SC, Ong HC, Chai TT. Antioxidant, metal chelating, anti-glucosidase activities and phytochemical analysis of selected tropical medicinal plants. Iran J Pharm Res. 2014;13(4):1409.
7. Yapasert R, Sripanidkulchai B, Teerachaisakul M, Banchuen K, Banjerdpongchai R. Anticancer effects of a traditional Thai herbal recipe Benja Amarit extracts against human hepatocellular carcinoma and colon cancer cell by targeting apoptosis pathways. J Ethnopharmacol. 2020;254:112732. doi: https://doi/10.1016/j. jep.2020.112732
8. Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, et al. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. Environ Pollut. 2017;220:1127–37. doi: https://doi/10.1016/j.envpol.2016.11.022
9. Zhang XH, Zou ZQ, Xu CW, Shen YZ, Li D. Myricetin induces G2/M phase arrest in HepG2 cells by inhibiting the activity of the cyclin B/Cdc2 complex. Mol Med Rep. 2011;4(2):273–7. doi: https://doi/10.3892/mmr.2011.417
10. Cui H, Bashar MA, Rady I, El-Naggar HA, El-Maoula A, Lamiaa M, et al. Antiproliferative activity, proapoptotic effect, and cell cycle arrest in human cancer cells of some marine natural product extract. Oxid Med Cell Longev. 2020;2020:7948705. doi: https://doi/10.1155/2020/7948705
11. Junhom C, Weerapreeyakul N, Tanthanuch W, Thumanu K. FTIR microspectroscopy defines early drug resistant human hepatocellular carcinoma (HepG2) cells. Exp Cell Res. 2016;340(1):71–80. doi: https://doi/10.1016/j.yexcr.2015.12.007
12. Nguyen QV, Eun JB. Antioxidant activity of solvent extracts from Vietnamese medicinal plants. J Med Plant Res. 2011;5(13):2798– 811.
13. Koffi C, Soleti R, Nitiema M, Mallegol P, Hilairet G, Chaigneau J, et al. Ethanol extract of leaves of Cassia siamea lam protects against diabetes-induced insulin resistance, hepatic, and endothelial dysfunctions in ob/ob Mice. Oxid Med Cell Longev. 2019;2019:6560498. doi: https://doi/10.1155/2019/6560498
14. Panthong A, Norkaew P, Kanjanapothi D, Taesotikul T, Anantachoke N, Reutrakul V. Anti-inflammatory, analgesic and antipyretic activities of the extract of gamboge from Garcinia hanburyi Hook f. J Ethnopharmacol. 2007;111:335–40. doi: https://doi/10.1016/j.jep.2006.11.038
15. Dalcorso G, Manara A, Piasentin S, Furini A. Nutrient metal elements in plants. Metallomics. 2014;6:1770–88. doi: https://doi.org/10.1039/C4MT00173G
16. Murthy HN, Dalawai D, Dewir YH, Ibrahim A. Phytochemicals and biological activities of Garcinia morella (Gaertn.) Desr.: a review. Molecules. 2020;25(23):1–15. doi: https://doi.org/10.3390/molecules25235690
17. Zhao X, Chen R, Shi Y, Zhang X, Tian C, Xia D. Antioxidant and anti-inflammatory activities of six flavonoids from Smilax glabra Roxb. Molecules. 2020;25(22):5295. doi: https://doi/10.3390/molecules25225295
18. Khan M, Khan Yusufzai S, Kimin L, Jabi N. Determination of chemical composition, total flavonoid content, total phenolic content and antioxidant capacity of various crude extracts of Manihot esculenta crantz leaves. Int J Res Appl Sci Eng Technol. 2018;6:2433–43. doi: https://doi/10.22214/ijraset.2018.4413
19. Khalighi-Sigaroodi F, Ahvazi M, Hadjiakhoondi A, Taghizadeh M, Yazdani D, Khalighi-Sigaroodi S, et al. Cytotoxicity and antioxidant activity of 23 plant species of leguminosae family. Iran J Pharm Sci. 2012;11(1):295–302.
20. Domnic G, Jeng Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, et al. Combinations of indole based alkaloids from Mitragyna speciosa (Kratom) and cisplatin inhibit cell proliferation and migration of nasopharyngeal carcinoma cell lines. J Ethnopharmacol. 2021;279:114391. doi: https://doi/10.1016/j. jep.2021.114391
21. Mu R, Lu N, Wang J, Yin Y, Ding Y, Zhang X, et al. An oxidative analogue of gambogic acid-induced apoptosis of human hepatocellular carcinoma cell line HepG2 is involved in its anticancer activity in vitro. Eur J Cancer Prev. 2010;19(1):61–7. doi: https://doi/10.1097/CEJ.0b013e328333fb22
22. Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004;53(3):153–9. doi: https://doi/10.1007/s00262-003-0474-8
23. Sa F, Gao JL, Fung KP, Zheng Y, Lee SM, Wang YT. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem Biol Interact. 2008;171(1):1–14. doi: https://doi.org/10.1016/j.cbi.2007.08.012
24. Hawry?kiewicz A, Ptaszy?ska N. Gemcitabine peptide-based conjugates and their application in targeted tumor therapy. Molecules (Basel, Switzerland). 2021;26(2):364. doi: https://doi.org/10.3390/molecules26020364
25. Mahavorasirikul W, Viyanant V, Chaijaroenkul W, Itharat A, Na- Bangchang K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement Altern Med. 2010;10(1):1–8. doi: https://doi.org/10.1186/1472-6882-10-55
26. Kaewnoonual N, Pradidarcheep W. Effect of benja-ammarit dispensatory for treatment of hepatocellular carcinoma in rat. Bangkok, Thailand: Srinakharinwirot University; 2019.
27. Choi HJ, Lim DY, Park JHY. Induction of G1 and G2/M cell cycle arrests by the dietary compound 3,3’-diindolylmethane in HT-29 human colon cancer cells. BMC Gastroenterol. 2009;9(1):39. doi: https://doi.org/10.1186/1471-230X-9-39
28. Haneef J, M P, Thankayyan R SK, Sithul H, Sreeharshan S. Bax translocation mediated mitochondrial apoptosis and caspase dependent photosensitizing effect of Ficus religiosa on cancer cells. PLOS One. 2012;7(7):e40055. doi: https://doi.org/10.1371/journal.pone.0040055
29. Satyanarayana A, Hilton MB, Kaldis P. p21 Inhibits Cdk1 in the Absence of Cdk2 to Maintain the G1/S Phase DNA Damage Checkpoint. Mol Biol Cell. 2008;19(1):65–77. doi: https://doi.org/10.1091/mbc.E07-06-0525
30. Chen YC, Shen SC, Lee WR, Hsu FL, Lin HY, Ko CH, et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol. 2002;64(12):1713–24. doi: https://doi.org/10.1016/s0006-2952(02)01386-2
31. Samarakoon SR, Thabrew I, Galhena PB, Tennekoon KH. Modulation of apoptosis in human hepatocellular carcinoma (HepG2 cells) by a standardized herbal decoction of Nigella sativa seeds, Hemidesmus indicus roots and Smilax glabra rhizomes with anti-hepatocarcinogenic effects. BMC Complement Altern Med. 2012;12:25. doi: https://doi.org/10.1186/1472-6882-12-25
32. Gasparri F, Muzio M. Monitoring of apoptosis of HL60 cells by Fourier-transform infrared spectroscopy. Biochem J. 2003;369(2):239–48. doi: https://doi.org/10.1042/BJ20021021
33. Holman HY, Martin MC, Blakely EA, Bjornstad K, McKinney WR. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation-based Fourier transform IR spectromicroscopy. Biopolymers. 2000;57(6):329–35. doi: https://doi.org/10.1002/1097-0282(2000)57:6<329::AID-BIP20>3.0.CO;2-2
Year
Month