Naringin (NAR), a citrus flavonoid has been reported to have anti-inflammatory, antitumor, antiviral, antiadipogenic, and cardioprotective qualities. However, because of its poor aqueous solubility, therapeutic applications of NAR are limited. The present research involves development of nanocarriers of NAR using biocompatible natural polymer chitosan and tripolyphosphate using ionic gelation method. Surface morphology studies indicated the structure of the prepared nanocarriers with an entrapment of more than 80% and appreciable average size range of around 100 nm. Drug release studies suggested that the drug released at a controlled manner with around of around 65% over a period of 6 hours with a burst release of around 20% in the first hour. 3-(4, 5-dimethythiazol2-yl)-2, 5-diphenyl tetrazolium bromide test using HEK 293 cells demonstrated that highest concentration of NAR loaded nanocarriers (100 μM) showed optimal viability and cells were not harmed by nanocarriers. In-vivo anti-inflammatory activity study suggested that prepared formulation (50 mg/kg) significantly reduced development of carrageenan induced paw edema, comparable with diclofenac treated rats (10 mg/kg) but significantly enhanced for rats treated with NAR only (50 mg/kg). Together, the results suggested that chitosan based nanocarriers could be an efficient tool to deliver naringin thus ensuring better bioavailability to enhance its therapeutic potential.
Chaki R, Basak S, Sharma A, Nasare VD, Ghosh N, Mandal SC. Biocompatible nanocarriers of bioactive flavonoid naringin: Design, formulation, and comprehensive characterization. J Appl Pharm Sci. 2025. Online First. http://doi.org/10.7324/JAPS.2025.222894
1. Teeranachaideekul V, Müller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC): effects of formulation parameters on physicochemical stability. Int J Pharm. 2007;340(1–2):198–206. doi: https://doi.org/10.1016/j.ijpharm.2007.03.034
2. Siddiqui IA, Sanna V. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy. Mol Nutr Food Res. 2016;60(6):1330–41. doi: https://doi.org/10.1002/mnfr.201500928
3. Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Samad NA, et al. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomedicine. 2020;15:2439–83. doi: https://doi.org/10.2147/IJN.S246498
4. Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: an overview. Pharm Biol. 2016;54(12):3203–10. doi: https://doi.org/10.1080/13880209.2016.1216133
5. Wang H, Xu YS, Wang ML, Cheng C, Bian R, Yuan H, et al. Protective effect of naringin against the LPS-induced apoptosis of PC12 cells: implications for the treatment of neurodegenerative disorders. Int J Mol Med. 2017;39(4):819–30. doi: https://doi.org/10.3892/ijmm.2017.2884
6. Zhao H, Liu M, Liu H, Suo R, Lu C. Naringin protects endothelial cells from apoptosis and inflammation by regulating the Hippo-YAP pathway. Biosci Rep. 2020;40(3):BSR20193431. doi: https://doi.org/10.1042/BSR20193431
7. Heidary Moghaddam R, Samimi Z, Moradi SZ, Little PJ, Xu S, Farzaei MH. Naringenin and naringin in cardiovascular disease prevention: a preclinical review. Eur J Pharmacol. 2020;887:173535. doi: https://doi.org/10.1016/j.ejphar.2020.173535
8. Gan J, Deng X, Le Y, Lai J, Liao X. The development of naringin for use against bone and cartilage disorders. Molecules. 2023;28(9):3716. doi: https://doi.org/10.3390/molecules28093716
9. Bajgai B, Suri M, Singh H, Hanifa M, Bhatti JS, Randhawa PK, et al. Naringin: a flavanone with a multifaceted target against sepsis-associated organ injuries. Phytomedicine 2024;130:155707. doi: https://doi.org/10.1016/j.phymed.2024.155707
10. Tang W, Wei Y, Lu W, Chen D, Ye Q, Zhang C, et al. Fabrication, characterization of carboxymethyl konjac glucomannan/ovalbumin-naringin nanoparticles with improving in vitro bioaccessibility. Food Chem X. 2022;16:100477. doi: https://doi.org/10.1016/j. fochx.2022.100477
11. Im AE, Eom S, Seong HJ, Kim H, Cho JY, Kim D, et al. Enhancement of debitterness, water-solubility, and neuroprotective effects of naringin by transglucosylation. Appl Microbiol Biotechnol. 2023;107(20):6205–17. doi: https://doi.org/10.1007/s00253-023- 12692-6
12. Ge X, Jiang F, Wang M, Chen M, Li Y, Phipps J, et al. Naringin@ Metal-Organic framework as a multifunctional bioplatform. ACS Appl Mater Interfaces. 2023;15(1):677–83. doi: https://doi.org/10.1021/acsami.2c18503
13. Lee J, Kim K, Son J, Lee H, Song JH, Lee T, et al. Improved productivity of naringin oleate with flavonoid and fatty acid by efficient enzymatic esterification. Antioxidants (Basel). 2022;11(2):242. doi: https://doi.org/10.3390/antiox11020242
14. Jafernik K, ?adniak A, Blicharska E, Czarnek K, Ekiert H, Wi?cek AE, et al. Chitosan-based nanoparticles as effective drug delivery systems: a review. Molecules. 2023;28(4):1963. doi: https://doi.org/10.3390/molecules28041963
15. Gulbake A, Jain SK. Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv. 2012;9(6):713–29. doi: https://doi.org/10.1517/17425247.2012.682670
16. Özba?-Turan S, Akbu?a J. Plasmid DNA-loaded chitosan/TPP nanoparticles for topical gene delivery. Drug Deliv. 2011;18(3):215– 22. doi: https://doi.org/10.3109/10717544.2011.555596
17. Hoang NH, Le Thanh T, Sangpueak R, Treekoon J, Saengchan C, Thepbandit W, et al. Chitosan nanoparticles-based ionic gelation method: a promising candidate for plant disease management. Polymers (Basel). 2022;14(4):662. doi: https://doi.org/10.3390/polym14040662
18. Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as emerging tool for enhancing solubility of poorly water-soluble drugs. BioNanoSci. 2012;2:227–50. doi: https://doi.org/10.1007/s12274-012-0131-x
19. Joshi G, Kumar A, Sawant K. Enhanced bioavailability and intestinal uptake of gemcitabine HCl loaded PLGA nanoparticles after oral delivery. Eur J Pharm Sci. 2014;60:80–9. doi: https://doi.org/10.1016/j.ejps.2014.04.003
20. Md S, Alhakamy NA, Aldawsari HM, Asfour HZ. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci. 2019;9(11):275. doi: https://doi.org/10.3390/brainsci9110275
21. Hussain RF, Nouri AME, Oliver RTD. A new approach for measurement of cytotoxicity using colorimetric assay. J Immunol Methods 1993;160:89–96. doi: https://doi.org/10.1016/0022-1759(93)90011-l
22. Mandal SC, Maity TK, Das J, Saba BP, Pal M. Anti-inflammatory evaluation of Ficus racemosa Linn. leaf extract. J Ethnopharmacol. 2000;72:87–92. doi: https://doi.org/10.1016/S0378-8741(00)00215-4
23. Mandal SC, Lakshmi SM, Kumar CK, Sur TK, Boominathan R. Evaluation of anti-inflammatory potential of Pavetta indica Linn. leaf extract (family: Rubiaceae) in rats. Phytother Res. 2003;17(8):817– 20. doi: https://doi.org/10.1002/ptr.1177
24. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28. doi: https://doi.org/10.1016/j.jconrel.2004.08.010
25. Sajjan P, Lingaraj L, Pujar M, Anandasadagopan SK. Chitosan nanoparticles as drug delivery systems: a review. J Pharm Sci Res. 2016;8(1):56–67.
26. Yadav M, Mishra P, Mishra SK. Naringin: a potential natural product in pain management. Ther Adv Endocrinol Metab. 2018;9(3):1–10. doi: https://doi.org/10.1177/2042018818778296
27. Al-Nemrawi NK, Alsharif SS, Dave RH. Preparation of chitosan-TPP nanoparticles: the influence of chitosan polymeric properties and formulation variables. Int J Appl Pharmaceutics. 2018;10(5):60–5. doi: https://doi.org/10.22159/ijap.2018v10i5.27577
28. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Drug release study of the chitosan-based nanoparticles. Heliyon. 2021;8(1):e08674. doi: https://doi.org/10.1016/j.heliyon.2021.e08674
29. Ramezani MR, Naderi-Manesh H, Rafieepour H. Cytotoxicity assessment of a gold nanoparticle-chitosan nanocomposite as an efficient support for cell immobilization: comparison with chitosan hydrogel and chitosan-gelatin. Biocell. 2014;38(1):11–6.
30. Ismail OI, Abidemi JA, Olufunmilayo OA. Analgesic and anti-inflammatory activities of Cnestis ferruginea Vahl ex DC (Connaraceae) methanolic root extract. J Ethnopharmacol. 2011;135:55–62. doi: https://doi.org/10.1016/j.jep.2011.02.009
31. Bamgbose SOA, Noamesi BK. Studies on cryptolepine II: inhibition of carrageenan-induced oedema by cryptolepine. Planta Med. 1981;42:392–6. doi: https://doi.org/10.1055/s-2007-971624
32. Lo TN, Almeida AP, Beaven MA. Dextran and carrageenan evoke different inflammatory responses in rat with respect to composition of infiltrates and effect of indomethacin. J Pharmacol Exp Ther. 1982;221:261–7.
33. Wang Y, Karmakar T, Ghosh N, Basak S, Sahoo NG. Targeting mangiferin-loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis – A case study against diabetes-mediated hyperlipidemia in rats. Food Chem. 2022;370:131376. doi: https://doi.org/10.1016/j.foodchem.2022.131376
34. Zhang X, Liu Y, Wang J, Chen Q, Li Z. Nanoparticle delivery of naringin enhances anti-inflammatory effect in animal models. J Nanomedicine. 2021;16(2):142–50. doi: https://doi.org/10.2147/IJN. S282892
35. Patel R, Mehta T, Shah S, Desai P. Flavonoid-loaded nanoparticles for anti-inflammatory therapy: a comparative study. Drug Deliv Lett. 2019;10(2):89–95. doi: https://doi.org/10.2174/22103031096661903 08094259
36. Singh A, Gupta N, Sharma R, Vashishta R. Enhanced cellular uptake and anti-inflammatory efficacy of naringin nanoparticles. Mol Pharmacol. 2020;17(4):225–33. doi: https://doi.org/10.1124/mol.118.113217
37. Gupta A, Kumar P, Aggarwal S, Khurana N. Protection of naringin from degradation using nanoparticles. J Drug Deliv Sci Technol. 2022;65:102–10. doi: https://doi.org/10.1016/j.jddst.2021.102110
38. Ahmed S, Alam M, Khan A, Hussain Z. Curcumin and flavonoid nanoparticles for targeted anti-inflammatory treatment. J Mol Med. 2020;98(5):311–20. doi: https://doi.org/10.1007/s00109-019-01817-w
39. Sharma D, Bansal R, Thakur V, Chawla P. Pharmacokinetic advantage of naringin nanoparticles in inflammation models. Nanomedicine (Lond). 2021;15(3):200–10. doi: https://doi.org/10.2217/nnm-2020-0173
Year
Month