Anti-proliferative activity and apoptotic induction of tannins extracted from Quercus infectoria on oral cancer KB cell lines

Fazil Ahmad Krishna Mohan Surapaneni Abeer Mohammed Al-Subaie Balu Kamaraj   

Open Access   

Published:  Apr 09, 2024

DOI: 10.7324/JAPS.2024.174009
Abstract

The present study aimed to evaluate the phytochemicals in Quercus infectoria ethanolic extract and to test the cytotoxic effect on an oral cancer cell line KERATIN-HeLa cells (KB cells). The cytotoxic potential of tannins extracted from Q. infectoria was tested by cell cycle analysis, transforming growth factor (TGF)-beta expression, matrix metalloproteinase (MMP) by fluorescent activated cell sorte, Caspase 3, and Caspase 9 expression by ELISA in KB cell lines treated with the extract. Specific protein (Bcl-2) and the gene expression in the KB cell line upon tannin treatment were detected by western blot and RT-PCR technique. The Caspase 3 and 9 enzymatic activity was carried out using the ELISA method. Virtual screening and molecular docking analysis were conducted to know the binding affinity against the targets matrix metalloproteinase-2 (MMP-2), NF-kB, and RhoA, which are targets of oral cancer cells. Preliminary screening of Q. infectoria indicates it primarily contains tannins and glycosides. The IC50 value of the ethanolic extract was determined to be 76.82 μg/ml. Analysis of the cell cycle revealed that the extract induced dose-dependent arrest in the G0/G1 phase. It is also revealed that KB cell treatment with the extract led to downregulation of the anti-apoptotic protein Bcl-2. Moreover, TGF beta expression was downregulated, and Caspase 3 and Caspase 9 were up-regulated in a dose-dependent manner. In addition, the extract induced mitochondrial membrane potential and MMP induction. Virtual screening and molecular docking revealed that tannins have a favorable binding affinity against MMP-2, NF-kB p65, and RhoA. The study identified that “6-O-digalloyl-1,2,3,4 tetra-O-galloyl-β-D-glucose,” a gallotannin in Q. infectoria, is responsible for the anti-cancer activity. The results of our study found that Q. infectoria extracts have anti-proliferative and apoptotic induction activity, which can help in novel drug discovery and development to alleviate cancer.


Keyword:     Q. infectoria MTT assay bioactive compounds apoptosis cell cycle analysis


Citation:

Ahmad F, Surapaneni KM, Al-Subaie AM, Kamaraj B. Anti-proliferative activity and Apoptotic induction of tannins extracted from Quercus infectoria on Oral cancer KB cell lines. J Appl Pharm Sci. 2024. Online First. http://doi.org/10.7324/JAPS.2024.174009

Copyright: © The Author(s). This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

HTML Full Text

Reference

1. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448–51. doi: https://doi.org/10.21037/jtd.2017.02.75.

2. Gupta PC, Murti PR, Bhonsle RB, Mehta FS, Pindborg JJ. Effect of cessation of tobacco use on the incidence of oral mucosal lesions in a 10-yr follow-up study of 12,212 users. Oral Dis.1995;1:54–8. doi: https://doi.org/10.1111/j.1601-0825.1995.tb00158.x.

3. John J, Nagappan N. Antimicrobial efficacy of herbal and chlorhexidine mouth rinse a systemic review. J Dent Med.2013;2:5–10. doi: https://doi.org/10.9790/0853-0240510.

4. Katiyar C, Gupta A, Kanjilal S, Katiyar S. Drug discovery from plant sources: an integrated approach. Ayu.2012;33:9–10. doi: https://doi.org/10.4103/0974-8520.100295.

5. Vickers A, Zollman C, Lee R. Herbal medicine. West J Med.2001;175:125–8. doi: https://doi.org/10.1136/ewjm.175.2.125.

6. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacogn Rev. 2012;6(11):1–5. doi: https://doi.org/10.4103/0973-7847.95849.

7. Safarzadeh E, Sandoghchian Shotorbani S, Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv Pharm Bull.2014;4(5):421–7. doi: https://doi.org/10.5681/apb.2014.062.

8. Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther.2010;17(8):523–31. doi: https://doi.org/10.1038/cgt.2010.18.

9. Sarkar FH, Banerjee S, Li Y. Pancreatic cancer: pathogenesis, prevention and treatment. Toxicol Appl Pharmacol. 2007;224(3):326–36. doi: https://doi.org/10.1016/j.taap.2006.11.007.

10. Asase A.Ghana’s herbal medicine industry: prospects, challenges and ways forward from a developing country perspective.Front Pharmacol.2023;14:1267398. doi: https://doi.org/10.3389/fphar.2023.1267398

11. Buenz EJ, Schnepple DJ, Bauer BA, Elkin PL, Riddle JM, Motley TJ. Techniques: bioprospecting historical herbal texts by hunting for new leads in old tomes. Trends Pharmacol Sci. 2004;25(9):494–8. doi: https://doi.org/10.1016/j.tips.2004.07.003.

12. Basri DF, and Fan SH. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol.2005;37:26–69. doi: https://doi.org/10.4103/0253-7613.13851

13. Fatima S, Farooqi AHA, Kumar R, Kumar TS, and Khanuja SPS. Antibacterial activity of possessed by medicinal plants used in tooth powders. J Med Aromat Plant Sci.2002;22:187–9.

14. Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakiuchi N, Shimotohno K. Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res. 2000;14(7):510–6. doi: https://doi.org/10.1002/1099-1573(200011)14:7<510::aid-ptr646>3.0.co;2-b.

15. Redwane A, Lazrek HB, Bouallam S, Markouk M, Amarouch H, Jana M. Larvicidal activity of extracts from Quercus lusitania var. infectoria galls (Oliv.). J Ethnopharmacol. 2002;79(2):261–3. doi: https://doi.org/10.1016/s0378-8741(01)00390-7.

16. Bhalodia NR, Shukla VJ. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. J Adv Pharm Technol Res. 2011;2(2):104–9 doi: https://doi.org/10.4103/2231-4040.82956.

17. Kaur G, Hamid H, Ali A, Alam MS, Athar M. Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J Ethnopharmacol. 2004;90(2-3):285–92. doi: https://doi.org/10.1016/j.jep.2003.10.009.

18. Dar MS, Ikram M. Studies on Quercus infectoria; isolation of syringic acid and determination of its central depressive activity. Planta Med. 1979;35(2):156–61. doi: https://doi.org/10.1055/s-0028-1097197.

19. Reena Gupta and Jitendra Gupta. Practical manual of pharmacognosy. 1st ed. Agra, UP: Narain Publishers & Distributors; 2022.

20. Kokate CK. Practical pharmacognosy.5th ed. New Delhi, India: Vallabh prakashan; 2014.

21. Umachigi SP, Jayaveera KN, Ashok Kumar CK, Kumar GS, Vrushabendra swamy BM, Kishore Kumar DV, et al. Studies on wound healing properties of Quercus infectoria. Trop J Pharm Res. 2008;7(1):913–9. doi: https://doi.org/10.4314/tjpr.v7i1.14677

22. Umthong S, Phuwapraisirisan P, Puthong S, Chanchao C. In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines. BMC Complement Altern Med. 2011;11:37. doi: https://doi.org/10.1186/1472-6882-11-37.

23. Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25(3):435–57. doi: https://doi.org/10.1007/s10555-006-9006-2.

24. Roselló-Díez A, Ros MA, Torres M. Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science. 2011;27;332(6033):1086–8. doi: https://doi.org/10.1126/science.1199489.

25. Green H, Tseng H. Basonuclin: a zinc finger protein of epithelial cells and reproductive germ cells. In: Iuchi S, Kuldell N. editors. Zinc finger proteins. Molecular biology intelligence unit. Boston, MA: Springer; 2005. doi: https://doi.org/10.1007/0-387-27421-9_28

26. Zhou J, Wu SG, Sun JY, Li FY, Lin HX, Chen QH, et al. Comparison of clinical outcomes of squamous cell carcinoma, adenocarcinoma, and adenosquamous carcinoma of the uterine cervix after definitive radiotherapy: a population-based analysis. J Cancer Res Clin Oncol. 2017;143(1):115–22. doi: https://doi.org/10.1007/s00432-016-2246-9.

27. Jiang X, Wu J, Wang J, Huang R. Tobacco and oral squamous cell carcinoma: a review of carcinogenic pathways. Tob Induc Dis. 2019;17:29. doi: https://doi.org/10.18332/tid/105844.

28. Allard WF, DeVol EB, Te OB. Smokeless tobacco (shamma) and oral cancer in Saudi Arabia. Community Dent Oral Epidemiol. 1999;27(6):398–405. doi: https://doi.org/10.1111/j.1600-0528.1999.tb02038.x.

29. Popova L, Ling PM. Alternative tobacco product use and smoking cessation: a national study. Am J Public Health. 2013;103(5):923–30. doi: https://doi.org/10.2105/AJPH.2012.301070.

30. Nagpal M, Singh S, Singh P, Chauhan P, Zaidi MA. Tumor markers: a diagnostic tool. Natl J Maxillofac Surg. 2016;7(1):17–20. doi: https://doi.org/10.4103/0975-5950.196135.

31. Grismaldo A, Sobrevia L, Morales L. Role of platelet-derived growth factor c on endothelial dysfunction in cardiovascular diseases. Biochim Biophys Acta Gen Subj. 2022;1866(10):130188. doi: https://doi.org/10.1016/j.bbagen.2022.130188.

32. Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13 doi: https://doi.org/10.1038/cdd.2017.169.

33. Lee T, Teng TZJ, Shelat VG. Carbohydrate antigen 19-9—tumor marker: past, present, and future. World J Gastrointest Surg. 2020;12(12):468–90. doi: https://doi.org/10.4240/wjgs.v12.i12.468.

34. Zin NNINM, Rahimi WNAWM, Bakar NA. A review of Quercus infectoria (Olivier) galls as a resource for anti-parasitic agents: In Vitro and In Vivo studies. Malays J Med Sci. 2019;26(6):19–34. doi: https://doi.org/10.21315/mjms2019.26.6.3.

35. Ahmed AA, Salih FA. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. BMC Complement Altern Med. 2019;19(1):177. doi: https://doi.org/10.1186/s12906-019-2594-5.

36. Burlacu E, Nisca A, Tanase C. A comprehensive review of phytochemistry and biological activities of Quercus Species. Forests. 2020;11:904. doi: https://doi.org/10.3390/f11090904

37. Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel). 2017;6(4):42. doi: https://doi.org/10.3390/plants6040042

38. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018(6):pdb-rot095505. doi: https://doi.org/10.1101/pdb.prot095505.

39. Gomez-Flores R, Verástegui-Rodríguez L, Quintanilla-Licea R, Tamez-Guerra P, Monreal-Cuevas E, Tamez-Guerra R, et al. Antitumor properties of Gymnosperma glutinosum leaf extracts. Cancer Invest. 2009;27(2):149–55. doi: https://doi.org/10.1080/07357900802192190.

40. Ghasemian M, Mahdavi M, Zare P, Ali Hosseinpour Feizi M. Spiroquinazolinone-induced cytotoxicity and apoptosis in K562 human leukemia cells: alteration in expression levels of Bcl-2 and Bax. J Toxicol Sci. 2015;40(1):115–26. doi: https://doi.org/10.2131/jts.40.115.

41. Bhattacharyya S, Ghosh H, Covarrubias-Zambrano O, Jain K, Swamy KV, Kasi A, et al. Anticancer activity of novel difluorinated curcumin analog and its inclusion complex with 2-Hydroxypropyl-β-Cyclodextrin against pancreatic cancer. Int J Mol Sci. 2023;24(7):6336. doi: https://doi.org/10.3390/ijms24076336

42. Riedlinger T, Liefke R, Meier-Soelch J, Jurida L, Nist A, Stiewe T, et al. NF-κB p65 dimerization and DNA-binding is important for inflammatory gene expression. FASEB J. 2019;33(3):4188–202. doi: https://doi.org/10.1096/fj.201801638R.

43. Bao H, Li F, Wang C, Wang N, Jiang Y, Tang Y, et al. Structural basis for the specific recognition of RhoA by the dual GTPase-activating protein ARAP3. J Biol Chem. 2016;291(32):16709–19. doi: https://doi.org/10.1074/jbc.M116.736140.

44. Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus infectoria galls. J Ethnopharmacol. 2021;273:113592. doi: https://doi.org/10.1016/j.jep.2020.113592.

45. Osterberg T, Norinder U. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors. Eur J Pharm Sci. 2001;12(3):327–37. doi: https://doi.org/10.1016/s0928-0987(00)00189-5.

46. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33. doi: https://doi.org/10.1186/1758-2946-3-33.

47. Trott O and Olson AJ. “Software news and update autoDock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.” J Comput Chem.2009;31(2):455–61. doi: https://doi.org/10.1002/jcc.21334

48. Choi ES, Kim JS, Kwon KH, Kim HS, Cho NP, Cho SD. Methanol extract of Sanguisorba officinalis L. with cytotoxic activity against PC3 human prostate cancer cells. Mol Med Rep. 2012;6(3):670–4. doi: https://doi.org/10.3892/mmr.2012.949.

49. Seneme EF, Dos Santos DC, Silva EMR, Franco YEM, Longato GB. Pharmacological and therapeutic potential of myristicin: a literature review. Molecules. 2021;26(19):5914. doi: https://doi.org/10.3390/molecules26195914.

50. Desai AG, Qazi GN, Ganju RK, El-Tamer M, Singh J, Saxena AK, et al. Medicinal plants and cancer chemoprevention. Curr Drug Metab. 2008;9(7):581–91 doi: https://doi.org/10.2174/138920008785821657

51. He Y, Zhu Q, Chen M, Huang Q, Wang W, Li Q, et al. The changing 50% inhibitory concentration (IC50) of cisplatin: a pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016;7(43):70803–21. doi: https://doi.org/10.18632/oncotarget.12223

52. Kumar S, Agnihotri N. Piperlongumine, a piper alkaloid targets Ras/PI3K/Akt/mTOR signaling axis to inhibit tumor cell growth and proliferation in DMH/DSS induced experimental colon cancer. Biomed Pharmacother. 2019;109:1462–77. doi: https://doi.org/10.1016/j.biopha.2018.10.182.

53. Koopaie M, Karimi H, Sohrabi M, Norouzi H. Cytotoxic, anti-proliferative, and apoptotic evaluation of Ramalina sinensis (Ascomycota, Lecanoromycetes), lichenized fungus on oral squamous cell carcinoma cell line; in-vitro study. BMC Complement Med Ther. 2023;23(1):296. doi: https://doi.org/10.1186/s12906-023-04118-1.

54. Yao J, Xiao J, Wei X, Lu Y. Chaetominine induces cell cycle arrest in human leukemia K562 and colon cancer SW1116 cells. Oncol Lett. 2018;16(4):4671–8. doi: https://doi.org/10.3892/ol.2018.9161.

55. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178–94. doi: https://doi.org/10.3322/canjclin.55.3.178.

56. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997;60(1):52–60. doi: https://doi.org/10.1021/np9604893. PMID: 9014353.

57. Kumar S, Agnihotri N. Piperlongumine targets NF-κB and its downstream signaling pathways to suppress tumor growth and metastatic potential in experimental colon cancer. Mol Cell Biochem. 2021;476(4):1765–81. doi: https://doi.org/10.1007/s11010-020-04044-7.

58. Melo LFM, Aquino-Martins VGQ, Silva APD, Oliveira Rocha HA, Scortecci KC. Biological and pharmacological aspects of tannins and potential biotechnological applications. Food Chem. 2023;414:135645. doi: https://doi.org/10.1016/j.foodchem.2023.135645.

59. Albinhassan TH, Saleh KA, Barhoumi Z, Alshehri MA, Al-Ghazzawi AM. Anticancer, anti-proliferative activity of Avicennia marina plant extracts. J Cancer Res Ther. 2021;17(4):879–86. doi: https://doi.org/10.4103/jcrt.JCRT_659_19.

60. Kamarudin NA, Nik Salleh NNH, Tan SC. Gallotannin-enriched fraction from Quercus infectoria galls as an antioxidant and inhibitory agent against human glioblastoma Multiforme. Plants (Basel). 2021;10(12):2581. doi: https://doi.org/10.3390/plants10122581.

61. Yusof WNSW, Abdullah H. Phytochemicals and Cytotoxicity of Quercus infectoria Ethyl Acetate Extracts on Human Cancer Cells. Trop Life Sci Res. 2020;31(1):69-84. doi: https://doi.org/10.21315/tlsr2020.31.1.5.

62. Kuczler MD, Olseen AM, Pienta KJ, Amend SR. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog Biophys Mol Biol.2021;165:3–7. doi: https://doi.org/10.1016/j.pbiomolbio.2021.05.002.

63. Wang J, Xiao H, Zhu Y, Liu S, Yuan Z, Wu J, et al. Tannic acid induces the mitochondrial pathway of apoptosis and S phase arrest in porcine intestinal IPEC-J2 Cells. Toxins (Basel). 2019;11(7):397. doi: https://doi.org/10.3390/toxins11070397

Article Metrics
59 Views 0 Downloads 59 Total

Year

Month

Related Search

By author names