Home >Current Issue

Volume: 9, Issue: 8, August, 2019
DOI: 10.7324/JAPS.2019.90817



Review Article

Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics

Shailja Jain, Saravan Krishna Cherukupalli, Arisha Mahmood, Srividya Gorantla, Vamshi Krishna Rapalli, Sunil Kumar Dubey, Gautam Singhvi

  Author Affiliations


Abstract

Nanotechnology has become an outgrowing field in novel drug delivery system. It confers several merits over conventional formulations like increased solubility and bioavailability, targeted drug delivery and a decreased dose of the drug. The selection of appropriate method for the preparation of nanoparticulate system depends on the physicochemical characteristics of the drug to be loaded and polymer. This review has covered the most widely acceptable preparation techniques for polymeric and lipidic nanoparticles including nanoprecipitation, milling, extrusion, supercritical fluid technology, salting out, gelation, sonication, high-pressure homogenization, and solvent emulsification methods. Nanocarriers, the traditional nano-formulation drug delivery systems, encountered some major problems in process scale-up, reproducibility, and stability during storage. To circumvent these problems a new approach has emerged which are “In situ or self-assembled nanoparticles drug delivery system.” Such approaches comprise experimentation with different types of polymers, surfactants or novel process in order to prepare a pre-concentrate of drug formulation, which on entering into an aqueous medium (gastrointestinal fluid, blood) will form nanoparticles. The in situ nanoformulations can be the futuristic approach in nanocarriers to overcome the problems associated with the scale-up process and also minimize the cost of production. This review focuses on different preparation techniques for polymeric and lipidic nanocarriers preparation, in situ nanoformulation approaches and release characteristics of stimuli responsive nanoformulation.

Keywords:

Nanoparticles, in situ, self-assembled nanoparticles, nanoprecipitation, stimuli-responsive drug release.



Citation: Jain S, Cherukupalli SK, Mahmood A, Gotantla S, Rapalli VK, Dubey SK, Singhvi G. Emerging nanoparticulate systems: Preparation techniques and stimuli responsive release characteristics. J Appl Pharm Sci, 2019; 9(08): 130–143.


Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Abdelwahab SI, Taha, Sheikh, How, El-Sunousi, Abdullah, Eid, Umar Yagoub. Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration. Int J Nanomedicine, 2013; 8:2163-72; doi:10.2147/IJN.S44108 https://doi.org/10.2147/IJN.S44108

Abdurahman R, Yang CX, Yan XP. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem Commun (Camb), 2016; 52:13303-6; doi:10.1039/c6cc07616e https://doi.org/10.1039/C6CC07616E

Ahlin Grabnar P, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsul, 2011; 28:323-35; doi:10.3109/02652048.2011.569763 https://doi.org/10.3109/02652048.2011.569763

Akbari Z, Amanlou M, Karimi-Sabet J, Golestani A, Shariaty Niassar M. Production of ibuprofen-loaded solid lipid nanoparticles using rapid expansion of supercritical solution. J Nano Res, 2015; 31:15-29; doi:10.4028/www.scientific.net/JNanoR.31.15 https://doi.org/10.4028/www.scientific.net/JNanoR.31.15

Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov, 2017; 16:315-37; doi:10.1038/nrd.2016.268 https://doi.org/10.1038/nrd.2016.268

Beloqui A, Solinís MÁ, Rieux A des, Préat V, Rodríguez-Gascón A. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm, 2014; 468: 105-11; doi:10.1016/j.ijpharm.2014.04.027 https://doi.org/10.1016/j.ijpharm.2014.04.027

Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. In: Natural polymer drug delivery systems, Springer International Publishing, Cham, Switzerland, pp 33-93, 2016; doi:10.1007/978-3-319-41129-3_2 https://doi.org/10.1007/978-3-319-41129-3_2

Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology-towards biomedical applications. Adv Drug Deliv Rev, 2008; 60:299-327; doi:10.1016/j.addr.2007.09.001 https://doi.org/10.1016/j.addr.2007.09.001

Cai J, Huang H, Song W, Hu H, Chen J, Zhang L Li P, Wu R, Wu C. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm, 2015; 495:728-37; doi:10.1016/j.ijpharm.2015.09.055 https://doi.org/10.1016/j.ijpharm.2015.09.055

Campardelli R, Cherain M, Perfetti C, Iorio C, Scognamiglio M, Reverchon E, Della Porta G. Lipid nanoparticles production by supercritical fluid assisted emulsion-diffusion. J Supercrit Fluids, 2013; 82:34-40; doi:10.1016/j.supflu.2013.05.020 https://doi.org/10.1016/j.supflu.2013.05.020

Canchi A, Khosa A, Singhvi G, Banerjee S, Dubey SK. Design and characterization of polymeric nanoparticles of pioglitazone hydrochloride and study the effect of formulation variables using QbD approach. Curr Nanomater, 2018; 2:162-8; doi:10.2174/24054615036661 80501115359 https://doi.org/10.2174/2405461503666180501115359

Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: influence of formulation variables on particle size reduction and physical stability. Int J Pharm, 2010; 396:210-8; doi:10.1016/j. ijpharm.2010.06.020 https://doi.org/10.1016/j.ijpharm.2010.06.020

Chattopadhyay P, Shekunov B, Yim D, Cipolla D, Boyd B, Farr S. Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system. Adv Drug Deliv Rev, 2007; 59:444-53; doi:10.1016/j. addr.2007.04.010 https://doi.org/10.1016/j.addr.2007.04.010

Chen G, Roy I, Yang C, Prasad PN. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev, 2016; 116:2826-85; doi:10.1021/acs.chemrev.5b00148 https://doi.org/10.1021/acs.chemrev.5b00148

Choi KO, Choe J, Suh S, Ko S. Positively charged nanostructured lipid carriers and their effect on the dissolution of poorly soluble drugs. Molecules, 2016; 21:672; doi:10.3390/molecules21050672 https://doi.org/10.3390/molecules21050672

Chu T, Zhang Q, Li H, Ma W, Zhang N, Jin H, Mao S. Development of intravenous lipid emulsion of tanshinone IIA and evaluation of its anti-hepatoma activity in vitro. Int J Pharm, 2012; 424:76- 88; doi:10.1016/j.ijpharm.2011.12.049 https://doi.org/10.1016/j.ijpharm.2011.12.049

Colombo AP, Briançon S, Lieto J, Fessi H. Project, design, and use of a pilot plant for nanocapsule production. Drug Dev Ind Pharm, 2001; 27:1063-72; doi:10.1081/DDC-100108369 https://doi.org/10.1081/DDC-100108369

Corrias F, Lai F. New methods for lipid nanoparticles preparation. Recent Pat Drug Deliv Formul, 2011; 5: 201-13. https://doi.org/10.2174/187221111797200597

Couvreur P. Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev, 2013; 65:21-23; doi:10.1016/j. addr.2012.04.010 https://doi.org/10.1016/j.addr.2012.04.010

Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C, 2017; 80:771-84; doi:10.1016/j.msec.2017.06.004 https://doi.org/10.1016/j.msec.2017.06.004

Cui X, Liu R, Liu Z, Shen X, Wang Q, Tan X. Cationic Poly- L-Lysine-Fe2O3/SiO2 nanoparticles loaded with small interference RNA: application to silencing gene expression in primary rat neurons. J Nanosci Nanotechnol, 2014; 14:2810-5. https://doi.org/10.1166/jnn.2014.8554

De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release, 2003; 89:101-12. https://doi.org/10.1016/S0168-3659(03)00098-1

Demirdöğen RE, Emen FM, Ocakoglu K, Murugan P, Sudesh K, Avşar G. Green nanotechnology for synthesis and characterization of poly(3-hydroxybutyrate- co -3-hydroxyhexanoate) nanoparticles for sustained bortezomib release using supercritical CO 2 assisted particle formation combined with electrodeposition. Int J Biol Macromol, 2018; 107:436-45; doi:10.1016/j.ijbiomac.2017.09.011 https://doi.org/10.1016/j.ijbiomac.2017.09.011

Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J, 2012; 14:282-95; doi:10.1208/s12248-012-9339-4 https://doi.org/10.1208/s12248-012-9339-4

Dong Y, Ng WK, Shen S, Kim S, Tan RBH. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydr Polym, 2013; 94:940-5; doi:10.1016/j.carbpol.2013.02.013 https://doi.org/10.1016/j.carbpol.2013.02.013

Douglas KL, Tabrizian M. Effect of experimental parameters on the formation of alginate-chitosan nanoparticles and evaluation of their potential application as DNA carrier. J Biomater Sci Polym Ed, 2005; 16:43-56. https://doi.org/10.1163/1568562052843339

Dua K, Chellappan DK, Singhvi G, de Jesus Andreoli Pinto T, Gupta G, Hansbro PM. Targeting microRNAs using nanotechnology in pulmonary diseases. Panminerva Med, 2018a; 60:230-1; doi:10.23736/ S0031-0808.18.03459-6

Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, Shastri MD, Chellappan DK, Maurya PK, Satija S, Mehta M, Gulati M, Hansbro N, Collet T, Awasthi R, Gupta G, Hsu A, Hansbro PM. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem Biol Interact, 2019; 299:168-78; doi:10.1016/J.CBI.2018.12.009 https://doi.org/10.1016/j.cbi.2018.12.009

Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TDJA, Gupta G, Hansbro PM. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother, 2018b; 107:1218-29; doi:10.1016/J.BIOPHA.2018.08.101 https://doi.org/10.1016/j.biopha.2018.08.101

Ekambaram P, Abdul A, Sathali H, Priyanka K. Solid lipid nanoparticles: a review. Sci Revs Chem Commun, 2012; 2:80-102.

El-Salamouni NS, Farid RM, El-Kamel AH, El-Gamal SS. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int J Pharm, 2015; 496:976-83; doi:10.1016/j.ijpharm.2015.10.043 https://doi.org/10.1016/j.ijpharm.2015.10.043

Emami J, Rezazadeh M, Varshosaz J, Tabbakhian M, Aslani A. Formulation of LDL targeted nanostructured lipid carriers loaded with paclitaxel: a detailed study of preparation, freeze drying condition, and in vitro cytotoxicity. J Nanomater, 2012; 2012:1-10; doi:10.1155/2012/358782 https://doi.org/10.1155/2012/358782

Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res, 2013; 73:1524-35; doi:10.1158/0008-5472.CAN-12-2796 https://doi.org/10.1158/0008-5472.CAN-12-2796

Fan W, Lu N, Xu C, Liu Y, Lin J, Wang S, Shen Z, Yang Z, Qu J, Wang T, Chen S, Huang P, Chen X. Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano, 2017; 11:5864-72; doi:10.1021/acsnano.7b01505 https://doi.org/10.1021/acsnano.7b01505

Fattahi A, Karimi-Sabet J, Keshavarz A, Golzary A, Rafiee- Tehrani M, Dorkoosh FA. Preparation and characterization of simvastatin nanoparticles using rapid expansion of supercritical solution (RESS) with trifluoromethane. J Supercrit Fluids, 2016; 107:469-78; doi:10.1016/j. supflu.2015.05.013 https://doi.org/10.1016/j.supflu.2015.05.013

Fornaguera C, Feiner-Gracia N, Calderó G, García-Celma MJ, Solans C. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale, 2015; 7:12076-84; doi:10.1039/ C5NR03474D https://doi.org/10.1039/C5NR03474D

Garg NK, Singh B, Sharma G, Kushwah V, Tyagi RK, Jain S, Katare OP. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv, 2015; 5:62989-99; doi:10.1039/C5RA12459J https://doi.org/10.1039/C5RA12459J

Gilca IA, Popa VI, Crestini C. Obtaining lignin nanoparticles by sonication. Ultrason Sonochem, 2015; 23:369-75; doi:10.1016/j. ultsonch.2014.08.021 https://doi.org/10.1016/j.ultsonch.2014.08.021

Girdhar V, Patil S, Banerjee S, Singhvi G. Nanocarriers for drug delivery: mini review. Curr Nanomedicine, 2018; 8:88-99; doi:10.2174/24 68187308666180501092519 https://doi.org/10.2174/2468187308666180501092519

Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm Dev Technol, 2013; 18:22-38; doi:10.3109/10837450.2012.726998 https://doi.org/10.3109/10837450.2012.726998

Gu X, Zhang W, Liu J, Shaw JP, Shen Y, Xu Y, Lu H, Wu Z. Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech, 2011; 12:1200-8; doi:10.1208/s12249-011-9668-0 https://doi.org/10.1208/s12249-011-9668-0

Guo P, Hsu TM, Zhao Y, Martin CR, Zare RN. Preparing amorphous hydrophobic drug nanoparticles by nanoporous membrane extrusion. Nanomedicine, 2013; 8:333-41; doi:10.2217/nnm.12.119 https://doi.org/10.2217/nnm.12.119

Guo P, Huang J, Zhao Y, Martin CR, Zare RN, Moses MA. Nanomaterial Preparation by Extrusion through Nanoporous Membranes. Small, 2018; 14:1703493; doi:10.1002/smll.201703493 https://doi.org/10.1002/smll.201703493

Hari Balakrishanan M, Rajan M. Size-controlled synthesis of biodegradable nanocarriers for targeted and controlled cancer drug delivery using salting out cation. Bull Mater Sci, 2016; 39(1):69-77. https://doi.org/10.1007/s12034-015-0946-4

Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation from a copovidone-based amorphous solid dispersion. Mol Pharm, 2016; 13:1467- 81; doi:10.1021/acs.molpharmaceut.5b00863 https://doi.org/10.1021/acs.molpharmaceut.5b00863

Haser A, Cao T, Lubach J, Listro T, Acquarulo L, Zhang F. Melt extrusion vs. spray drying: the effect of processing methods on crystalline content of naproxen-povidone formulations. Eur J Pharm Sci, 2017; 102:115-25; doi:10.1016/j.ejps.2017.02.038 https://doi.org/10.1016/j.ejps.2017.02.038

Häuser M, Langer K, Schönhoff M. pH-Triggered release from surface-modified poly(lactic- co -glycolic acid) nanoparticles. Beilstein J Nanotechnol, 2015; 6:2504-12; doi:10.3762/bjnano.6.260 https://doi.org/10.3762/bjnano.6.260

Hong W, Chen DW, Zhao XL, Qiao MX, Hu HY. Preparation and study in vitro of long-circulating nanoliposomes of curcumin. Zhongguo Zhong Yao Za Zhi, 2008; 33:889-92.

Hurwitz M, Stauffer P. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol, 2014; 41:714-29; doi:10.1053/j.seminoncol.2014.09.014 https://doi.org/10.1053/j.seminoncol.2014.09.014

Irby D, Du C, Li F. Lipid-drug conjugate for enhancing drug delivery. Mol Pharm, 2017; 14:1325-38; doi:10.1021/acs. molpharmaceut.6b01027 https://doi.org/10.1021/acs.molpharmaceut.6b01027

Jafari S, Maleki-Dizaji N, Barar J, Barzegar-Jalali M, Rameshrad M, Adibkia K. Methylprednisolone acetate-loaded hydroxyapatite nanoparticles as a potential drug delivery system for treatment of rheumatoid arthritis: In vitro and in vivo evaluations. Eur J Pharm Sci, 2016; 91:225- 35; doi:10.1016/j.ejps.2016.05.014 https://doi.org/10.1016/j.ejps.2016.05.014

Jin Q, Li H, Jin Z, Huang L, Wang F, Zhou Y, Liu Y, Jiang C, Oswald J, Wu J, Song X. TPGS modified nanoliposomes as an effective ocular delivery system to treat glaucoma. Int J Pharm. 2018; 553:21-8; doi:10.1016/j.ijpharm.2018.10.033 https://doi.org/10.1016/j.ijpharm.2018.10.033

Jindal AB, Bachhav SS, Devarajan PV. In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: an in vivo proof of concept. Int J Pharm, 2017; 521:196-203; doi:10.1016/j.ijpharm.2017.02.024 https://doi.org/10.1016/j.ijpharm.2017.02.024

Kapse SV, Gaikwad RV, Samad A, Devarajan PV. Self nanoprecipitating preconcentrate of tamoxifen citrate for enhanced bioavailability. Int J Pharm, 2012; 429:104-12; doi:10.1016/J. IJPHARM.2012.02.042 https://doi.org/10.1016/j.ijpharm.2012.02.042

Keck C, Muller R. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm, 2006; 62:3-16; doi:10.1016/j.ejpb.2005.05.009 https://doi.org/10.1016/j.ejpb.2005.05.009

Kefeng X, Weiqiang W, Dedong H, Zhihui H, Yanpeng Q, Yan L. Preparation of cefquinome nanoparticles by using the supercritical antisolvent process. J Nanomater, 2015; 2015:1-6; doi:10.1155/2015/767945 https://doi.org/10.1155/2015/767945

Keraliya RA, Patel C, Patel P, Keraliya V, Soni TG, Patel RC, Patel MM. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm, 2012; 2012:1-9; doi:10.5402/2012/528079 https://doi.org/10.5402/2012/528079

Khinast J, Baumgartner R, Roblegg E. Nano-extrusion: a one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase. AAPS PharmSciTech, 2013; 14:601-4; doi:10.1208/ s12249-013-9946-0 https://doi.org/10.1208/s12249-013-9946-0

Khosa A, Singhvi G, Saha RN, Gupta G. Drug delivery to the CNS. Panminerva Med, 2018; 60:226; doi:10.23736/S0031-0808.18. 03471-7 https://doi.org/10.23736/S0031-0808.18.03471-7

Kluge J, Mazzotti M. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites. Int J Pharm, 2012; 436, 394-402; doi:10.1016/j. ijpharm.2012.06.048 https://doi.org/10.1016/j.ijpharm.2012.06.048

Kohli AG, Kierstead PH, VendittoVJ, Walsh CL, Szoka FC. Designer lipids for drug delivery: from heads to tails. J Control Release, 2014; 190:274-87; doi:10.1016/j.jconrel.2014.04.047 https://doi.org/10.1016/j.jconrel.2014.04.047

Koo JS, Lee SY, Nam S, Azad MOK, Kim M, Kim K, Chae BJ, Kang WS, Cho HJ. Preparation of cupric sulfate-based self-emulsifiable nanocomposites and their application to the photothermal therapy of colon adenocarcinoma. Biochem Biophys Res Commun, 2018; 503:2471-7; doi:10.1016/j.bbrc.2018.07.002 https://doi.org/10.1016/j.bbrc.2018.07.002

Kumar S, Kaur P, Bernela M, Rani R, Thakur R. Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int J Biol Macromol, 2016; 93:988-94; doi:10.1016/J. IJBIOMAC.2016.09.042 https://doi.org/10.1016/j.ijbiomac.2016.09.042

Kunjachan S, Jose S. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques. Asian J Pharm, 2010; 4:148; doi:10.4103/0973-8398.68467 https://doi.org/10.4103/0973-8398.68467

Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH. Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloids Surfaces A Physicochem Eng Asp, 2001; 182:123-30; doi:10.1016/S0927-7757(00)00825-6 https://doi.org/10.1016/S0927-7757(00)00825-6

Laaksonen T, Liu P, Rahikkala A, Peltonen L, Kauppinen EI, Hirvonen J, Järvinen K, Raula J. Intact nanoparticulate indomethacin in fast-dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res, 2011; 28:2403-11; doi:10.1007/s11095-011- 0456-z https://doi.org/10.1007/s11095-011-0456-z

LaManna CM, Lusic H, Camplo M, McIntosh TJ, Barthélémy P, Grinstaff MW. Charge-Reversal Lipids, Peptide-Based Lipids, and Nucleoside-Based Lipids for Gene Delivery. Acc Chem Res, 2012; 45:1026-38; doi:10.1021/ar200228y https://doi.org/10.1021/ar200228y

Lee S, Nam S, Choi Y, Kim M, Koo J, Chae BJ, Kang WS, Cho HJ, Lee SY, Nam S, Choi Y, Kim M, Koo JS, Chae BJ, Kang WS, Cho HJ. Fabrication and characterizations of hot-melt extruded nanocomposites based on zinc sulfate monohydrate and soluplus. Appl Sci, 2017; 7:902; doi:10.3390/app7090902 https://doi.org/10.3390/app7090902

Lin YM, Wu JY, Chen YC, Su YD, Ke WT, Ho HO, Sheu MT. In situ formation of nanocrystals from a self-microemulsifying drug delivery system to enhance oral bioavailability of fenofibrate. Int J Nanomedicine, 2011; 6:2445-57; doi:10.2147/IJN.S25339 https://doi.org/10.2147/IJN.S25339

Loh ZH, Kumar Samanta A, Wan P, Heng S. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J Pharm Sci, 2015; 10:255-74; doi:10.1016/j.ajps.2014.12.006 https://doi.org/10.1016/j.ajps.2014.12.006

Luan J, Zhang D, Hao L, Qi L, Liu X, Guo H, Li C, Guo Y, Li T, Zhang Q, Zhai G. Preparation, characterization and pharmacokinetics of Amoitone B-loaded long circulating nanostructured lipid carriers. Colloids Surfaces B Biointerfaces, 2014; 114:255-60; doi:10.1016/j. colsurfb.2013.10.018 https://doi.org/10.1016/j.colsurfb.2013.10.018

Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein−nanoparticle interactions: opportunities and challenges. Chem Rev, 2011; 111:5610-37; doi:10.1021/cr100440g https://doi.org/10.1021/cr100440g

Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm, 2012; 2012:436763; doi:10.5402/2012/436763 https://doi.org/10.5402/2012/436763

Manouras T, Vamvakaki M. Field responsive materials: photo-, electro-, magnetic- and ultrasound-sensitive polymers. Polym Chem, 2017; 8:74-96; doi:10.1039/C6PY01455K https://doi.org/10.1039/C6PY01455K

Martinho N, Damgé C, Reis CP. Recent advances in drug delivery systems. J Biomater Nanobiotechnol, 2011; 02:510-26; doi:10.4236/ jbnb.2011.225062 https://doi.org/10.4236/jbnb.2011.225062

Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev, 2001; 47: 165-96. https://doi.org/10.1016/S0169-409X(01)00105-3

Mendoza-Muñoz N, Quintanar-Guerrero D, Allémann E. The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat Drug Deliv Formul, 2012; 6:236-49. https://doi.org/10.2174/187221112802652688

Miller WH, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res, 2002; 62:3893-903.

Mo R, Jiang T, DiSanto R, Tai W, Gu Z. ATP-triggered anticancer drug delivery. Nat Commun, 2014; 5:3364; doi:10.1038/ncomms4364 https://doi.org/10.1038/ncomms4364

Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H. Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci, 2008; 317:458-468; doi:10.1016/j.jcis.2007.09.081 https://doi.org/10.1016/j.jcis.2007.09.081

Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol, 2012; 7:779-86; doi:10.1038/nnano.2012.207 https://doi.org/10.1038/nnano.2012.207

Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm, 2010; 385:113-42; doi:10.1016/j.ijpharm.2009.10.018 https://doi.org/10.1016/j.ijpharm.2009.10.018

Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev, 2007; 59:522-30; doi:10.1016/J.ADDR.2007.04.012 https://doi.org/10.1016/j.addr.2007.04.012

Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine, 2007; 2:129-41.

Nagavarma BVN, Yadav H, Ayaz A, S Vasudha L, G Shivakumar H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res, 2012; 5(3):16-23.

Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem, 2016; 27:2225-38; doi:10.1021/acs. bioconjchem.6b00437 https://doi.org/10.1021/acs.bioconjchem.6b00437

Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull, 2015; 5:305-13; doi:10.15171/apb.2015.043 https://doi.org/10.15171/apb.2015.043

Ortega AL, Mena S, Estrela JM. Glutathione in cancer cell death. Cancers (Basel), 2011; 3:1285-310; doi:10.3390/cancers3011285 https://doi.org/10.3390/cancers3011285

Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech, 2014; 15:1527-34; doi:10.1208/s12249-014-0177-9 https://doi.org/10.1208/s12249-014-0177-9

Parhi R, Suresh P, Preparation and characterization of solid lipid nanoparticles-a review. Curr Drug Discov Technol, 2012; 9:2-16. https://doi.org/10.2174/157016312799304552

Patil P, Chavanke daksha WM. A review on ionotropic gelation method: Novel approach for controlled gastroretentive gelispheres. Int J Pharm Pharm, 2012; Sci 4:27-32.

Pelegri-O'Day EM, Maynard HD. Controlled radical polymerization as an enabling approach for the next generation of protein- polymer conjugates. Acc Chem Res, 2016; 49:1777-85; doi:10.1021/acs. accounts.6b00258 https://doi.org/10.1021/acs.accounts.6b00258

Pinjari DV, Prasad K, Gogate PR, Mhaske ST, Pandit AB. Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: effect of calcination and sonication time. Ultrason Sonochem, 2015; 23:185-91; doi:10.1016/j.ultsonch.2014.10.017 https://doi.org/10.1016/j.ultsonch.2014.10.017

Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F, Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med, 2006; 2:8-21; doi:10.1016/j.nano.2005.12.003 https://doi.org/10.1016/j.nano.2005.12.003

Pradhan S, Hedberg J, Blomberg E, Wold S, Odnevall Wallinder I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanopart Res, 2016; 18:285; doi:10.1007/s11051-016-3597-5 https://doi.org/10.1007/s11051-016-3597-5

Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci, 1993; 82:912-7; doi:10.1002/jps.2600820909 https://doi.org/10.1002/jps.2600820909

Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int, 2016; 84:113-9; doi:10.1016/j. foodres.2016.03.031 https://doi.org/10.1016/j.foodres.2016.03.031

Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, Yong CS, Choi HG, Kim JO. Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym, 2014; 102:653-61; doi:10.1016/j.carbpol.2013.11.009 https://doi.org/10.1016/j.carbpol.2013.11.009

Ranpise NS, Korabu SS, Ghodake VN. Second generation lipid nanoparticles (NLC) as an oral drug carrier for delivery of lercanidipine hydrochloride. Colloids Surfaces B Biointerfaces, 2014; 116:81-7; doi:10.1016/j.colsurfb.2013.12.012 https://doi.org/10.1016/j.colsurfb.2013.12.012

Rapalli VK, Singhvi G, Dubey SK, Gupta G, Chellappan DK, Dua K. Emerging landscape in psoriasis management: from topical application to targeting biomolecules. Biomed Pharmacother, 2018; 106:707-13; doi:10.1016/j.biopha.2018.06.136 https://doi.org/10.1016/j.biopha.2018.06.136

Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol, 2009; 27:5287-97; doi:10.1200/JCO.2009.23.5556 https://doi.org/10.1200/JCO.2009.23.5556

Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design A review. J Saudi Chem Soc, 2014; 18:85- 99; doi:10.1016/J.JSCS.2012.12.009 https://doi.org/10.1016/j.jscs.2012.12.009

Sangwai M, Vavia P. Amorphous ternary cyclodextrin nanocomposites of telmisartan for oral drug delivery: improved solubility and reduced pharmacokinetic variability. Int J Pharm, 2013; 453:423-32; doi:10.1016/j.ijpharm.2012.08.034 https://doi.org/10.1016/j.ijpharm.2012.08.034

Sanli D, Bozbag SE, Erkey C. Synthesis of nanostructured materials using supercritical CO2: part I. Physical transformations. J Mater Sci, 2012; 47:2995-3025; doi:10.1007/s10853-011-6054-y https://doi.org/10.1007/s10853-011-6054-y

Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol, 2007; 7, 2833-41. https://doi.org/10.1166/jnn.2007.609

Scalia S, Franceschinis E, Bertelli D, Iannuccelli V. Comparative evaluation of the effect of permeation enhancers, lipid nanoparticles and colloidal silica on in vivo human skin penetration of quercetin. Skin Pharmacol Physiol, 2013; 26:57-67; doi:10.1159/000345210 https://doi.org/10.1159/000345210

Schubert S, Delaney Jr JT, Schubert US. Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter, 2011; 7:1581-8; doi:10.1039/C0SM00862A https://doi.org/10.1039/C0SM00862A

Seedat N, Kalhapure RS, Mocktar C, Vepuri S, Jadhav M, Soliman M, Govender T. Co-encapsulation of multi-lipids and polymers enhances the performance of vancomycin in lipid-polymer hybrid nanoparticles: In vitro and in silico studies. Mater Sci Eng C, 2016; 61:616- 30; doi:10.1016/j.msec.2015.12.053 https://doi.org/10.1016/j.msec.2015.12.053

Shi F, Yang G, Juan Ren J, Guo T, Du Y, Feng N. Formulation design, preparation, and in vitro and in vivo characterizations of \�- Elemene- loaded nanostructured lipid carriers. Int J Nanomedicine, 2013; 8:2533; doi:10.2147/IJN.S46578 https://doi.org/10.2147/IJN.S46578

Shi LE, Fang XJ, Zhang ZL, Zhou T, Jiang D, Wu HH, Tang ZX. Preparation of nano-ZnO using sonication method and its antibacterial characteristics. Int J Food Sci Technol; 2012; 47:1866-71; doi:10.1111/ j.1365-2621.2012.03043.x https://doi.org/10.1111/j.1365-2621.2012.03043.x

Singhvi G, Banerjee S, Khosa A. Lyotropic liquid crystal nanoparticles: a novel improved lipidic drug delivery system. Org Mater as Smart Nanocarriers Drug Deliv, 2018; 471-517; doi:10.1016/B978-0-12- 813663-8.00011-7 https://doi.org/10.1016/B978-0-12-813663-8.00011-7

Sivaram AJ, Wardiana A, Howard CB, Mahler SM, Thurecht KJ. Recent Advances in the Generation of Antibody-Nanomaterial Conjugates. Adv Healthc Mater, 2018; 7:1700607; doi:10.1002/adhm.201700607 https://doi.org/10.1002/adhm.201700607

Skorik YA, Golyshev AA, Kritchenkov AS, Gasilova ER, Poshina DN, Sivaram AJ, Jayakumar R. Development of drug delivery systems for taxanes using ionic gelation of carboxyacyl derivatives of chitosan. Carbohydr Polym, 2017; 162:49-55; doi:10.1016/j.carbpol.2017.01.025 https://doi.org/10.1016/j.carbpol.2017.01.025

Song D, Thio YS, Deng Y. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym, 2011; 85:208-14; doi:10.1016/J.CARBPOL.2011.02.016 https://doi.org/10.1016/j.carbpol.2011.02.016

Tian Y, Jiang X, Chen X, Shao Z, Yang W. Doxorubicin-loaded magnetic silk fibroin nanoparticles for targeted therapy of multidrug-resistant cancer. Adv Mater, 2014; 26:7393-8; doi:10.1002/adma.201403562 https://doi.org/10.1002/adma.201403562

Tolbert SH, McFadden PD, Loy DA. New hybrid organic/ inorganic polysilsesquioxane-silica particles as sunscreens. ACS Appl Mater Interfaces, 2016; 8:3160-74; doi:10.1021/acsami.5b10472 https://doi.org/10.1021/acsami.5b10472

Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech, 2014; 15:1509-15; doi:10.1208/s12249-014-0175-y https://doi.org/10.1208/s12249-014-0175-y

Uprit S, Kumar Sahu R, Roy A, Pare A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm J, 2013; 21:379-85; doi:10.1016/j.jsps.2012.11.005 https://doi.org/10.1016/j.jsps.2012.11.005

Waghule T, Rapalli VK, Singhvi G, Manchanda P, Hans N, Dubey SK, Hasnain MS, Nayak AK. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J Drug Delivery Sci Technol, 2019; 52:303-15; doi:10.1016/j.jddst.2019.04.026 https://doi.org/10.1016/j.jddst.2019.04.026

&

Article Metrics

Similar Articles

Nano Technology: A Review
Manivannan Rangasamy

Formulation design, in vitro evaluation and stability studies on mucoadhesive buccal films of anti-anginal calcium channel blocker
Bharath Kumar.V, Ashok kumar.A, Sudheer.B, Suresh Kumar.K, Srinivasa Rao.V, Kirtinidhi.K, Hitesh R Patel, Putta Rajesh Kumar

Formulation and evaluation of Paclitaxel loaded PSA-PEG nanoparticles
Rajat Sharma, Mohd Yasir, Sanjay Bhaskar, Mohd Asif