Home >Current Issue

Volume: 9, Issue: 8, August, 2019
DOI: 10.7324/JAPS.2019.90804.1



Research Article

Angiotensin-converting enzyme inhibitory activity of polyphenolic compounds from Peperomia pellucida (L) Kunth: An in silico molecular docking study

Islamudin Ahmad1, Azminah2 & 4, Kamarza Mulia3, Arry Yanuar4, Abdul Munim4

  Author Affiliations


Abstract

This study aimed to predict the potential activity and interaction conformation of polyphenolic compounds from Peperomia pellucida (L) Kunth (nine compounds) with angiotensin-converting enzyme (ACE) macromolecule by in silico molecular docking study. The crystal structure of ACE as a molecular target was obtained from the PDB database (PDB ID: 1UZF) with captopril as a native ligand. Molecular docking analysis was performed using AutoDockZn (100 docking runs) based on the active site of Zn2+, the central grid was placed on Zn2+ with a box size of 40Á × 40Á × 40Á and a center of 40.835Á × 34.382Á × 44.607Á for selective inhibitors (MCO702) with a spacing of 0.375Á. Based on the docking results demonstrated that the prediction of each polyphenol compounds from P. pellucida has the potential of active as ACE inhibitors, it was indicated that docking results of each compound has lower affinity compared to captopril (with binding affinity of −6.36 kcal/mol and the inhibition constant 21.81 μM), where the most moderate binding affinity (the most potential) was tetrahydrofuran lignin ((1R,2S,3S,5R)-3,5-bis(4-hydroxy- 3,5-dimethoxyphenyl)cyclopentane-1,2-diyl)bis-(methylene) diacetate) of −8.66 kcal/mol and the highest binding affinity (the less potential) was dillapiole (6-allyl-4,5-dimethoxybenzo[d][1,3]dioxole) of −4.99 kcal/mol, although with different forms of interaction, bond, and constant inhibition. Based on the interaction of ACE binding site, 5,6,7-trimethoxy-4-(2,4,5-trimethoxyphenyl)-3,4-dihydronaphthalen-1(2H)-one showed the most similar interaction with the captopril ligand. These results are preliminary data for further research with predictions of target compound biological activity and interaction quickly, accurately, and inexpensively.

Keywords:

Angiotensin-converting enzyme, binding affinity, molecular docking, Peperomia pellucida (L) Kunth, polyphenolics.



Citation: Ahmad I, Azminah A, Mulia K, Yanuar A, Mun'im A. Angiotensin-converting enzyme inhibitory activity of polyphenolic compounds from Peperomia pellucida (L) Kunth: An in silico molecular docking study. J Appl Pharm Sci, 2019; 9(08):025–031.


Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Adhitia AM, Octaviani AN, Rissyelly, Basah K, Mun'im A. Effect of gamma irradiation on angiotensin-converting enzyme inhibition, antioxidant activity, total phenolic compound and total flavonoid of Peperomia pellucida herbs extract. Pharmacogn J, 2017; 9:244-8. https://doi.org/10.5530/pj.2017.2.41

Ahmad I, Mun'im A, Luliana S, Elya B, Azminah A, Yanuar A, Artha Y, Negishi O. Isolation, elucidation, and molecular docking studies of active compounds from Phyllanthus niruri with angiotensin-converting enzyme inhibition. Pharmacogn Mag, 2018; 14:601-10. https://doi.org/10.4103/pm.pm_151_18

Bayma JDC, Arruda MSP, Muller AH, Arruda AC, Canto WC. A dimeric ArC2 compound from Peperomia pellucida. Phytochemistry, 2000; 55:779-82. https://doi.org/10.1016/S0031-9422(00)00224-7

Chang YW, Alli I. In silico assessment: suggested homology of chickpea (Cicer arietinum L.) legumin and prediction of ACE-inhibitory peptides from chickpea proteins using BLAST and BIOPEP analyses. Food Res Int, 2012; 49:477-86. https://doi.org/10.1016/j.foodres.2012.07.006

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the Autodock suite. Nat Protoc, 2016; 11:905-19. https://doi.org/10.1038/nprot.2016.051

Ghosh AK, Gemma S. Structure-based design of drugs and other bioactive molecules: tools and strategies.WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Weinheim, Germany, 2014. https://doi.org/10.1002/9783527665211

Guerrero L, Castillo J, Quinones M, Garcia-Vallve S, Arola L, Pujadas G, Muguerza B. Inhibition of angiotensin-converting enzyme activity by flavonoids: structure-activity relationship studies. PLoS One, 2012; 7:1-11. https://doi.org/10.1371/journal.pone.0049493

Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol, 2007; 18:163-9. https://doi.org/10.1016/j.copbio.2007.01.013

Kearny PM, Whelton M, Reynolds K, Munther P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet, 2005; 365:217-23. https://doi.org/10.1016/S0140-6736(05)17741-1

Khan A, Rahman M, Islam S. Isolation and bioactivity of a xanthone glycoside from Peperomia pellucida. Life Sci Med Res, 2010; 2010:1-10.

Kurniawan A, Saputri FC, Rissyelly, Ahmad I, Mun'im A. Isolation of angiotensin-converting enzyme (ACE) inhibitory activity quercetin from Peperomia pellucida. Int J PharmTech Res, 2016; 9:115-21.

Laskowski RA, Swindells MB. LigPlot+: multiple ligand À protein interaction diagrams for drug discovery. J Chem Inf Model, 2011; 51:2778-86. https://doi.org/10.1021/ci200227u

Mills KT, Bundy JD, Kelly TN, Reed JE, Kearny PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control. Circulation, 2016; 134:441-50. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

Muhammad SA, Fatima N. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides. Pharmacogn Mag, 2015; 11:123-6. https://doi.org/10.4103/0973-1296.157712

Mun'im A, Nurpriantia S, Setyaningsih R, Syahdi RR. Optimization of microwave-assisted extraction of active compounds, antioxidant activity and angiotensin-converting enzyme (ACE) inhibitory activity from Peperomia pellucida (L.) Kunth. J Young Pharm, 2017; 9:168-71. https://doi.org/10.5530/jyp.2017.1s.19

Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human enzyme-lisinopril complex. Nature, 2003; 421:1427-9. https://doi.org/10.1038/nature01370

Natesh R, Schwager SLU, Evans HR, Sturrock ED, Acharya KR. Structural details on the binding of antihypertensive drugs captopril and enalaprilat to human testicular angiotensin I-converting enzyme. Biochemistry, 2004; 43:8718-724. https://doi.org/10.1021/bi049480n

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform, 2011; 3:1-14. https://doi.org/10.1186/1758-2946-3-33

Radifar M, Yuniarti N, Istyastono EP. PyPLIF: python-based protein-ligand interaction fingerprinting. Bioinformation, 2013; 9:325-8. https://doi.org/10.6026/97320630009325

Ramachandran KI, Deepa G, Namboori K. Computational chemistry and molecular modeling.Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

Rinayanti A, Radji M, Mun'im A, Suyatna FD. Screening angiotensin-converting enzyme (ACE) inhibitor activity of antihypertensive medicinal plants from Indonesia. Int J Pharm Teach Pract, 2013; 4:527-32.

Rojas-Martínez R, Arrieta J, Cruz-Antonio L, Arrieta-Baez D, Velazquez-Mendez AM, Sanchez-Mendoza ME. Dillapiole, isolated from Peperomia pellucida, shows gastroprotector activity against ethanol-induced gastric lesions in wistar rats. Molecules, 2013; 18:11327-37. https://doi.org/10.3390/molecules180911327

Santos-Martins D, Forli S, Ramos MJ, Olson AJ. AutoDock4Zn: an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J Chem Inf Model, 2014; 54:2371-9. https://doi.org/10.1021/ci500209e

Saputri FC, Mun'im A, Lukmanto D, Aisyah SN, Rinandy JS. Inhibition of angiotensin-converting enzyme (ACE) activity by some Indonesia edible plants. Int J Pharm Sci Res, 2015; 6:1054-9.

Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des, 2010; 24:417-22. https://doi.org/10.1007/s10822-010-9352-6

Sharifi N, Souri E, Ziai SA, Amin G, Amini M. Isolation, identification and molecular docking studies of a new isolated compound, from Onopordon acanthium: a novel Angiotensin Converting Enzyme (ACE) inhibitor. J Ethnopharmacol, 2013; 148:934-9. https://doi.org/10.1016/j.jep.2013.05.046

Skeggs LT, Marsh WH, Kahn JR, Shumway NP. The existence of two forms of hypertension. J Exp Med, 1953; 99:275-82. https://doi.org/10.1084/jem.99.3.275

Skeggs LT, Kahn JR, Lentz K, Shumway NP. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J Exp Med 1957; 106:439-53. https://doi.org/10.1084/jem.106.3.439

Sorlie PD, Allison MA, Aviles-Santa ML, Cai J, Daviglus ML, Howard AG, Kaplan R, LaVange LM, Raij L, Schneiderman N, Wassertheil- Smoller S, Talavera GA. Prevalence of hypertension, awareness, treatment, and control in the Hispanic community health study/study of Latinos. Am J Hypertens, 2014; 27:793-800. https://doi.org/10.1093/ajh/hpu003

Stierand K, Rarey M. PoseView-molecular interaction patterns at a glance. J Cheminform, 2010; 2:P50. https://doi.org/10.1186/1758-2946-2-S1-P50

Susilawati Y, Nugraha R, Muhtadi A, Soetardjo S, Supratman U. (S)-2-Methyl-2-(4-methylpent-3-enyl)-6-(propan-2-ylidene)-3,4,6,7- tetrahydropyrano[4,3-g]chromen-9(2H)-one. Molbank, 2015; 2015:M855. https://doi.org/10.3390/M855

Unger T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am J Cardiol, 2002; 89:3-9. https://doi.org/10.1016/S0002-9149(01)02321-9

Wang L, Wu Y, Deng Y, Kim B, Pierce L, Lupyan D, Robinson S, Dahlgren MK, Greenwood J, Romero DL, Masse C, Knight JL, Steinbrecher T, Beuming T, Damm W, Harder E, Sherman W, Brewer M, Wester R, Murcko M, Frye L, Farid R, Lin T, Mobley DL, Jorgensen WL, Berne BJ, Friesner RA, Abel R. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J Am Chem Soc, 2015; 137:2695-703. https://doi.org/10.1021/ja512751q

Xu S, Li N, Ning MM, Zhou CH, Yang QR, Wang MW. Bioactive compounds from Peperomia pellucida. J Nat Prod, 2006; 69:247-50. https://doi.org/10.1021/np050457s

Article Metrics

Similar Articles

Binding affinity of asiatic acid derivatives design against Inducible Nitric Oxide Synthase and ADMET Prediction
RE Kartasasmita, I Musfiroh, A Muhtadi, S Ibrahim

Cytotoxicity Studies of Xanthorrhizol and Its Mechanism Using Molecular Docking Simulation and Pharmacophore Modelling
Ida Musfiroh, Muchtaridi Muchtaridi, Ahmad Muhtadi, Ajeng Diantini, Aliya Nur Hasanah, Linar Zalinar Udin, Yasmiwar Susilawati, Resmi Mustarichie, Rahmana E Kartasasmita, Slamet Ibrahim