Home >Current Issue

Volume: 9, Issue: 7, July, 2019
DOI: 10.7324/JAPS.2019.90711



Research Article

The effect of metformin and P38 MAPK inhibitor on diabetic bone porosity in non-obese type 2 diabetic rats

Punyanuch Adulyaritthikul1, Jantira Sanit1, Nuttikarn Nokkaew1, Kantapich Kongpol1, Podsawee Mongkolpathumrat1, Sakarat na Lampang2, Catleya Rojviriya3, Sarawut Kumphune4

  Author Affiliations


Abstract

Hyperglycemia enhances bone resorption and impairment. Controlling blood glucose via metformin benefits bone cells. Hyperglycemia enhances basal phosphorylation of p38 mitogen-activated protein kinase (MAPK), which aggravates bone resorption. Therefore, the aim of this study was to assess the osteoprotective effects of metformin and p38 MAPK inhibitor in non-obese T2DM rats. In this study, non-obese T2DM (Goto-kakizaki, GK) rats were divided into four groups, including DM group, metformin treatment, SB203580 treatment, and metformin combined with SB203580. Wistar rats were used as control group. Femur, tibia, and iliac rat bones were collected to determine bone porosity via synchrotron radiation microtomography. Primary osteoblasts were isolated from calvaria to investigate cell proliferation and osteoblast function, including alkaline phosphatase (ALP) expression and calcium deposition. The results showed that diabetes increase bone porosity. Treatment with metformin significantly reduced porosity in trabecular and cortical bone of the femur, tibia, and iliac, while SB203580 significantly reduced porosity in cortical bone. A combination group showed significantly reduced bone porosity only in trabecular bone of the femur. Isolated osteoblasts showed lower growth rates. Treatment with metformin significantly increased cell proliferation, ALP expression, and calcium deposition. In summary, metformin treatment improved bone quality by reducing bone porosity, increasing cell proliferation, and improving osteoblast characteristics.

Keywords:

Goto-kakizaki, hyperglycemia, metformin, osteoporosis, p38 MAPK, type 2 diabetes.



Citation: Adulyaritthikul P, Sanit J, Nokkaew N, Kongpol K, Mongkolpathumrat P, Lampang SN, Rojviriya C, Kumphune S. The effect of metformin and P38 MAPK inhibitor on diabetic bone porosity in non-obese type 2 diabetic rats. J Appl Pharm Sci, 2019; 9(07):082–090.


Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Ahmad T, Ohlsson C, Saaf M, Ostenson CG, Kreicbergs A. Skeletal changes in type-2 diabetic Goto-Kakizaki rats. J Endocrinol, 2003; 178:111-6. https://doi.org/10.1677/joe.0.1780111

Akash MS, Rehman K, Chen S. Goto-Kakizaki rats: its suitability as non-obese diabetic animal model for spontaneous type 2 diabetes mellitus. Curr Diabetes Rev, 2013; 9:387-96. https://doi.org/10.2174/15733998113099990069

Borges JL, Bilezikian JP, Jones-Leone AR, Acusta AP, Ambery PD, Nino AJ, Grosse M, Fitzpatrick LA, Cobitz AR. A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naive type 2 diabetes mellitus patients. Diabetes Obes Metab, 2011; 13:1036-46. https://doi.org/10.1111/j.1463-1326.2011.01461.x

Braun T, Lepper J, Ruiz HG, Hofstetter W, Siegrist M, Lezuo P, Gaestel M, Rumpler M, Thaler R, Klaushofer K, Distler JH, Schett G, Zwerina J. Mitogen-activated protein kinase 2 regulates physiological and pathological bone turnover. J Bone Miner Res, 2013; 28:936-47. https://doi.org/10.1002/jbmr.1816

Caverzasio J, Higgins L, Ammann P. Prevention of trabecular bone loss induced by estrogen deficiency by a selective p38alpha inhibitor. J Bone Miner Res, 2008; 23:1389-97. https://doi.org/10.1359/jbmr.080410

Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ, 2005; 172:213-26. https://doi.org/10.1503/cmaj.1031414

Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol, 2006; 536:38-46. https://doi.org/10.1016/j.ejphar.2006.02.030

de L II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA. Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Osteoporos Int, 2005; 16:1713-20. https://doi.org/10.1007/s00198-005-1909-1

Dede AD, Tournis S, Dontas I, Trovas G. Type 2 diabetes mellitus and fracture risk. Metabolism, 2014; 63:1480-90. https://doi.org/10.1016/j.metabol.2014.09.002

Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, Smith RJ, Smith SR. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab, 2011; 96:1654-63. https://doi.org/10.1210/jc.2011-0585

Gao Y, Li Y, Xue J, Jia Y, Hu J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol, 2010; 635:231-6. https://doi.org/10.1016/j.ejphar.2010.02.051

Hegazy SK. Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women. J Bone Miner Metab, 2015; 33:207-12. https://doi.org/10.1007/s00774-014-0581-y

Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS, Koh JT. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone, 2011; 48:885-93. https://doi.org/10.1016/j.bone.2010.12.003

Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O'Neill MC, Zinman B, Viberti G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med, 2006; 355:2427-43. https://doi.org/10.1056/NEJMoa066224

Kalyani RR, Golden SH, Cefalu WT. Diabetes and aging: unique considerations and goals of care. Diabetes Care, 2017; 40:440-3. https://doi.org/10.2337/dci17-0005

Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun, 2008; 375:414-9. https://doi.org/10.1016/j.bbrc.2008.08.034

Kao WH, Kammerer CM, Schneider JL, Bauer RL, Mitchell BD. Type 2 diabetes is associated with increased bone mineral density in Mexican-American women. Arch Med Res, 2003; 34:399-406. https://doi.org/10.1016/j.arcmed.2002.07.001

Kashima S, Inoue K, Matsumoto M, Akimoto K. Prevalence and characteristics of non-obese diabetes in Japanese men and women: the Yuport Medical Checkup Center Study. J Diabetes, 2015; 7:523-30. https://doi.org/10.1111/1753-0407.12213

Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, Leone CW, Morgan EF, Gerstenfeld LC, Einhorn TA, Graves DT. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res, 2007; 22:560-8. https://doi.org/10.1359/jbmr.070115

Kerckhofs G, Durand M, Vangoitsenhoven R, Marin C, Van der Schueren B, Carmeliet G, Luyten F P, Geris L, Vandamme K. Changes in bone macro- and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography. Sci Rep, 2016; 6:35517. https://doi.org/10.1038/srep35517

Kumphune S, Chattipakorn S, Chattipakorn N. Roles of p38- MAPK in insulin resistant heart: evidence from bench to future bedside application. Curr Pharm Des, 2013; 19:5742-54. https://doi.org/10.2174/1381612811319320009

Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z, Yu Q, Zillikens MC, Gao X, Rivadeneira F. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol, 2012; 27:319-32. https://doi.org/10.1007/s10654-012-9674-x

Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC. Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem, 2011; 112:2902-9. https://doi.org/10.1002/jcb.23206

Mastrandrea LD, Wactawski-Wende J, Donahue RP, Hovey KM, Clark A, Quattrin T. Young women with type 1 diabetes have lower bone mineral density that persists over time. Diabetes Care, 2008; 31:1729-35. https://doi.org/10.2337/dc07-2426

Moseley KF. Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes, 2012; 19:128-35. https://doi.org/10.1097/MED.0b013e328350a6e1

Nakagami H, Morishita R, Yamamoto K, Yoshimura SI, Taniyama Y, Aoki M, Matsubara H, Kim S, Kaneda Y, Ogihara T. Phosphorylation of p38 mitogen-activated protein kinase downstream of Bax-caspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes, 2001; 50:1472-81. https://doi.org/10.2337/diabetes.50.6.1472

Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol, 2017; 13:208-19. https://doi.org/10.1038/nrendo.2016.153

Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care, 2001; 24:1192-7. https://doi.org/10.2337/diacare.24.7.1192

Petit MA, Paudel ML, Taylor BC, Hughes JM, Strotmeyer ES, Schwartz AV, Cauley JA, Zmuda JM, Hoffman AR, Ensrud KE. Bone mass and strength in older men with type 2 diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res, 2010; 25:285-91. https://doi.org/10.1359/jbmr.090725

Pramojanee SN, Phimphilai M, Kumphune S, Chattipakorn N, Chattipakorn SC. Decreased jaw bone density and osteoblastic insulin signaling in a model of obesity. J Dent Res, 2013; 92:560-5. https://doi.org/10.1177/0022034513485600

Redman AM, Johnson JS, Dally R, Swartz S, Wild H, Paulsen H, Caringal Y, Gunn D, Renick J, Osterhout M, Kingery-Wood J, Smith RA, Lee W, Dumas J, Wilhelm SM, Housley TJ, Bhargava A, Ranges GE, Shrikhande A, Young D, Bombara M, Scott WJ. p38 kinase inhibitors for the treatment of arthritis and osteoporosis: thienyl, furyl, and pyrrolyl ureas. Bioorg Med Chem Lett, 2001; 11:9-12. https://doi.org/10.1016/S0960-894X(00)00574-6

Rodríguez-Carballo E, Gámez B, Sedó-Cabezón L, Sánchez- Feutrie M, Zorzano A, Manzanares-Céspedes C, Rosa JL, Ventura F. The p38α MAPK function in osteoprecursors is required for bone formation and bone homeostasis in adult mice. PLoS One, 2014; 9:e102032. https://doi.org/10.1371/journal.pone.0102032

Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK signaling in osteoblast differentiation. Front Cell Dev Biol, 2016; 4:40. https://doi.org/10.3389/fcell.2016.00040

Sampayo C, Alves Agripino A, Stilwell D, Vidal B, Fernando A, Silva Lima B, Vaz MF, Canhão H, Cristina Marques M. Chronic hyperglycemia modulates rat osteoporotic cortical bone microarchitecture into less fragile structures. Int J Endocrincol, 2017; 2017:9. https://doi.org/10.1155/2017/4603247

Sardone LD, Renlund R, Willett TL, Fantus IG, Grynpas MD. Effect of rosiglitazone on bone quality in a rat model of insulin resistance and osteoporosis. Diabetes, 2011; 60:3271-8. https://doi.org/10.2337/db10-1672

Schwartz AV. Diabetes mellitus: does it affect bone? Calcif Tissue Int, 2003; 73:515-9. https://doi.org/10.1007/s00223-003-0023-7

Schwartz AV, Chen H, Ambrosius WT, Sood A, Josse RG, Bonds DE, Schnall AM, Vittinghoff E, Bauer DC, Banerji MA, Cohen RM, Hamilton BP, Isakova T, Sellmeyer DE, Simmons DL, Shibli-Rahhal A, Williamson JD, Margolis KL. Effects of TZD use and discontinuation on fracture rates in ACCORD bone study. J Clin Endocrinol Metab, 2015; 100:4059-66. https://doi.org/10.1210/jc.2015-1215

Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour JP, Caverzasio J. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone, 2002; 30:91-8. https://doi.org/10.1016/S8756-3282(01)00660-3

Thouverey C, Caverzasio J. Focus on the p38 MAPK signaling pathway in bone development and maintenance. Bonekey Rep, 2015; 4:711. https://doi.org/10.1038/bonekey.2015.80

Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int, 2007; 18:427-44. https://doi.org/10.1007/s00198-006-0253-4

Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia, 2005; 48:1292-9. https://doi.org/10.1007/s00125-005-1786-3

Vianna AGD, de Lacerda CS, Pechmann LM, Polesel MG, Marino EC, Borba VZC, Barreto FC. Vildagliptin has the same safety profile as a sulfonylurea on bone metabolism and bone mineral density in post-menopausal women with type 2 diabetes: a randomized controlled trial. Diabetol Metab Syndr, 2017; 9:35. https://doi.org/10.1186/s13098-017-0232-2

Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S. Effects of metabolic syndrome on bone mineral density, histomorphometry and remodelling markers in male rats. PLoS One, 2018; 13:e0192416. https://doi.org/10.1371/journal.pone.0192416

Yan W, Li X. Impact of diabetes and its treatments on skeletal diseases. Front Med, 2013; 7:81-90. https://doi.org/10.1007/s11684-013-0243-9

Yaturu S, Humphrey S, Landry C, Jain SK. Decreased bone mineral density in men with metabolic syndrome alone and with type 2 diabetes. Med Sci Monit, 2009; 15:Cr5-9.

Yavropoulou MP, Yovos JG. The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens), 2007; 6:279-94. https://doi.org/10.14310/horm.2002.1111024

Zhang L, Liu Y, Wang D, Zhao X, Qiu Z, Ji H, Rong H. Bone biomechanical and histomorphometrical investment in type 2 diabetic Goto-Kakizaki rats. Acta Diabetol, 2009; 46:119-26. https://doi.org/10.1007/s00592-008-0068-1

Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones N P, Aftring R P, Viberti G, Kahn S E. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab, 2010; 95:134-42. https://doi.org/10.1210/jc.2009-0572

Article Metrics

Similar Articles

Diabetes induced internal organs inflammation in non-obese type 2 diabetic rats
Podsawee Mongkolpathumrat, Nuttikarn Nokkaew, Punyanuch Adulyaritthikul, Kantapich Kongpol, Jantira Sanit, Panyupa Pankhong, Sarawut Kumphune

Adherence to the Standard Guidelines for Prescription of Antidiabetic Agents in Patients with Type 2 DM
Qasim M. Alhadidi, Ahmed S. Sahib, Ali M. Jaffer, Maha H. Ismael, Ekhlas K. Hassan, Saja M. Shareef, Asmaa M. Shoesh, Asia S. Dawood

Invitro studies and evaluation of metformin marketed tablets-Malaysia
Arcot Ravindran Chandrasekaran, Chan Yoke Jia, Choong Sheau Theng, Teeba Muniandy, Selvadurai Muralidharan, Sokkalingam Arumugam Dhanaraj

A Micro-Computed Tomography (micro-CT) Analysis of Postmenopausal Osteoporotic Rat Models Supplemented with Ficus carica
Adlina Mohammad, Norfarah Izzaty Razaly, Mohd Dzulkhairi Mohd Rani, Muhammad Shamsir Mohd Aris, Sulaiman Md Dom, Nadia Mohd Effendy

Anti-ischemic effect of ethyl acetate extract of Aquilaria crassna by attenuation of p38-MAPK activation
Chanyatip Suwannasing, Nitchawat Paiyabhroma, Sarawut Kumphune

Comparison effect of Pioglitazone and Glimepiride alone on renal function marker in experimentally induced renal damage in diabetic rats.
Jagdish Kakadiya, Nehal Shah