Home >Current Issue

Volume: 9, Issue: 7, July, 2019
DOI: 10.7324/JAPS.2019.90709

Research Article

Anti-inflammatory properties of bergenin in mice

Guilherme A. L. Oliveira1, Andreza K. S. Araujo1, Gabriella Pacheco1, Ana P. Oliveira1, Jelson L. Carvalho1, Letícia S. Chaves1, Gabrielle C. Sousa1, André L. F. Lopes1, Priscila C. Silva1, Ana Carolina M. Leódido1, Kerolayne M. Nogueira1, Luan K. M. Souza1, Thiago L. Araújo1, Lucas A. D. Nicolau2, Jand Venes R. Medeiros1

  Author Affiliations


Inflammation is a protective biological reaction against infection and has undesirable effects. Although bergenin (BG), a C-glycoside derivative of 4-O-methyl gallic acid, has many pharmacological properties, no study has demonstrated the activity of BG in inflammatory mediators, such as histamine and prostaglandin E2 (PGE2). The present study investigated the anti-inflammatory activity of BG obtained from Peltophorum dubium Taub, in edema models induced by carrageenan and inflammatory mediators in Swiss mice. The assessment of its toxicity was also conducted. The evaluations of this study indicated that the pre-treatment with BG (25 mg/kg) significantly reduced edema induced by carrageenan, compound 48/80, histamine, and PGE2 (p < 0.05). Also, pre-treatment with BG inhibited the recruitment of leukocytes and neutrophils, reducing adhesion and rolling of these cells, myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, and vascular permeability. Treatment with BG (2,000 mg/kg) showed no toxic signs in hippocratic screening, weight of animals, water and feed intake, vital organs weight and histopathological evaluation, and hematological and biochemical parameters. In conclusion, these results show that the BG obtained from P. dubium Taub has anti-inflammatory activity against different models of inflammation, reducing neutrophil migration and damage caused by oxidative stress and lipid peroxidation. BG did not present toxic effects in the evaluated parameters.


Inflammation, edema, flavonoids, toxicity.

Citation: Oliveira GAL, Araujo AKS, Pacheco G, Oliveira AP, Carvalho JL, Chaves LS, Sousa GC, Lopes ALF, Silva PC, Leódido ACM, Nogueira KM, Souza LKM, Araújo TL, Nicolau LAD, Medeiros JVR. Anti-inflammatory properties of bergenin in mice. J Appl Pharm Sci, 2019; 9(07):069–077.

Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost, 2008; 6:1453-60. https://doi.org/10.1111/j.1538-7836.2008.03087.x

Akram M, Kim KA, Kim ES, Syed AS, Kim CY, Lee JS, Bae ON. Potent antiinflammatory and analgesic actions of the chloroform extract of Dendropanax morbifera mediated by the Nrf2/HO-1 pathway. Biol Pharm Bull, 2016; 39:728-36. https://doi.org/10.1248/bpb.b15-00823

Almeida AAC, Silva RO, Nicolau LAD, de Brito TV, de Sousa DP, Barbosa ALR, de Freitas RM, Lopes LS, Medeiros JVR, Ferreira PMP. Physio-pharmacological investigations about the anti-inflammatory and antinociceptive efficacy of (+)-limonene epoxide. Inflammation, 2017; 40:511-22. https://doi.org/10.1007/s10753-016-0496-y

Ashour ML, Youssef FS, Gad HA, El-Readi MZ, Bouzabata A, Abuzeid RM, Mansour S, Wink M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J Pharm Pharmacol, 2018; 70:952-63. https://doi.org/10.1111/jphp.12904

Bajracharya GB. Diversity, pharmacology and synthesis of bergenin and its derivatives: potential materials for therapeutic usages. Fitoterapia, 2015; 101:133-52. https://doi.org/10.1016/j.fitote.2015.01.001

Barth CR, Funchal GA, Luft C, Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol, 2016; 46:964-70. https://doi.org/10.1002/eji.201545520

Bhatia D, Paliwal SK. Membrane stabilization, inhibition of 'histamine and prostaglandin synthesis' mediated anti inflammatory response of some indigenous plants. Int J Pharmacogn, 2014; 1:660-7.

Bradley PPMD, Priebat DMD, Christensen RDMD, Rothstein MD. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol, 1982; 78:206-8. https://doi.org/10.1111/1523-1747.ep12506462

Brito GA, Souza MH, Melo-Filho AA, Hewlett EL, Lima AA, Flores CA, Ribeiro RA. Role of pertussis toxin A subunit in neutrophil migration and vascular permeability. Infect Immun, 1997; 65:1114-8.

Buadonpri W, Wichitnithad W, Rojsitthisak P, Towiwat P. Synthetic curcumin inhibits carrageenan-induced paw edema in rats. J Health Res, 2009; 23:11-6.

Cano PM, Vargas A, Lavoie JP. A real-time assay for neutrophil chemotaxis. Biotechniques, 2016; 60:245-51. https://doi.org/10.2144/000114416

Cao Y, Wang J, Su G, Wu Y, Bai R, Zhang Q, Gao X, Chun L, Chen S, Tu P, Chai X. Anti-myocardial ischemia effect of Syringa pinnatifolia Hemsl. By inhibiting expression 26 of cyclooxygenase -1 and -2 in myocardial tissues of mice. J Ethnopharmacol, 2016; 187:259-68. https://doi.org/10.1016/j.jep.2016.04.039

Chen D, Bia A, Dong X, Jiang Y, Rui B, Liu J, Yin Z, Luo L. Luteolin exhibits anti-inflammatory effects by blocking the activity of heat shock protein 90 in macrophages. Biochem Biophy Res Commun, 2014; 443:326-32. https://doi.org/10.1016/j.bbrc.2013.11.122

Chimona TS, Panayiotides JG, Papadakis CE, Helidonis ES, Velegrakis GA. Antihistamine effects on experimental middle ear inflammatory model. Eur Arch Otorhinolaryngol, 2008; 265:899-905. https://doi.org/10.1007/s00405-007-0563-y

Chintalwar G, Jain A, Sipahimalani A, Banerji A, Sumariwalla P, Ramakrishnan R, Sainis K. An immunologically active arabinogalactan from Tinospora cordifolia. Phytochemistry, 1999; 52:1089-93. https://doi.org/10.1016/S0031-9422(99)00386-6

Daham K, James A, Balgoma D, Kupczyk M, Billing B, Lindeberg ARN, Henriksson E, Garret AF, Wheelock C, Dahlen SE, Dahlén B. Effects of selective COX-2 inhibition on allergen-induced bronchoconstriction and airway inflammation in asthma. J Allergy Clin Immunol, 2014; 134:306-13. https://doi.org/10.1016/j.jaci.2013.12.002

Fayngerts SA, Wang Z, Zamani A, Sun H, Boggs AE, Porturas TP, Xie W, Lin M, Cathopoulis T, Goldsmith JR, Vourekas A, Chen YH.

Direction of leukocyte polarization and migration by the phosphoinositide-transfer protein TIPE2. Nat Immunol, 2017; 18:1353-60. https://doi.org/10.1038/ni.3866

Ferlazzo N, Cirmi S, Calapai G, Ventura-Spagnolo E, Gangemi S, Navarra M. Anti-inflammatory activity of Citrus bergamia derivatives: where do we stand? Molecules, 2016; 21:1273-2016. https://doi.org/10.3390/molecules21101273

Fezai M, Senovilla L, Jemaá M, Attia MB. Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil. J Lipids, 2013; 2013:1-7. https://doi.org/10.1155/2013/129736

Fortes ZB, Farsky SP, Oliveira MA, Leme JG. Direct vital microscopic study of defective leukocyte-endothelial interaction in diabetes mellitus. Diabetes, 1991; 40:1267-73. https://doi.org/10.2337/diab.40.10.1267

Fukumitsu S, Villareal MO, Fujitsuka T, Ainda K, Isoda H. Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF- kB inactivation. Mol Nutr Food Res, 2016; 60:399-409. https://doi.org/10.1002/mnfr.201500465

Furtado AA, Torres-Rêgo M, Lima MCJS, Bitencourt MAO, Estrela AB, Silva NS, Siqueira EMS, Tomaz JC, Lopes NP, Silva-Júnior AA, Zucolotto SM, Pedrosa MFF. Aqueous extract from Ipomoea asarifolia (Convolvulaceae) leaves and its phenolic compounds have anti-inflammatory activity in murine models of edema, peritonitis and air-pouch inflammation. J Ethnopharmacol, 2016; 192:225-35. https://doi.org/10.1016/j.jep.2016.07.048

Gao XJ, Guo MY, Zhang ZC, Wang TC, Cao YG, Zhang NS. Bergenin plays an anti-inflammatory role via the modulation of MAPK and NF-κB signaling pathways in a mouse model of LPS-induced mastitis. Inflamm, 2015; 38:1142-50. https://doi.org/10.1007/s10753-014-0079-8

Gomes BS, Neto BPS, Lopes EM, Cunha FVM, Araújo AR, Wanderley CWS, Wong DVT, Júnior RCPL, Ribeiro RA, Sousa DP, Medeiros JVR, Oliveira RCM, Oliveira FA. Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem Biol Interact, 2017; 273:73-81. https://doi.org/10.1016/j.cbi.2017.05.019

Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front immunol, 2015; 5:678. https://doi.org/10.3389/fimmu.2014.00678

Herenius MM, Oliveira AS, Wijbrandts CA, Gerlag DM, Tak PP, Lebre MC. Anti-TNF therapy reduces serum levels of chemerin in rheumatoid arthritis: a new mechanism by which anti-TNF might reduce inflammation. PLoS One, 2013; 8:57802. https://doi.org/10.1371/journal.pone.0057802

Herr N, Mauler M, Witsch T, Stallmann D, Schmitt S, Mezger J, Bode C, Duerschmied D. Acute fluoxetine treatment induces slow rolling of leukocytes on endothelium in mice. PLoS One, 2014; 9:88316. https://doi.org/10.1371/journal.pone.0088316

Herrmann F, Lindemann A, Gauss J, Mertelsmann R. Cytokine-stimulation of prostaglandin synthesis from endogenous and exogenous arachidonic acids in polymorphonuclear leukocytes involving activation and new synthesis of cyclooxygenase. Eur J Immunol, 1990; 20:2513-6. https://doi.org/10.1002/eji.1830201124

Huang GJ, Deng JS, Huang SS, Chang C, Chang TN, Shie PH, Kuo YH. Anti-inflammatory Activities of 6β-Acetoxy-7α- hydroxyroyleanone from Taiwania cryptomerioides Hayata ex vivo and in vivo. J Agric Food Chem, 2011; 59:11211-8. https://doi.org/10.1021/jf200576f

Intini FP, Zajac J, Novohradsky V, Saltarella T, Pacifico C, Brabec V, Giovanni N, Kasparkova J. Novel antitumor platinum(ii) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: synthesis and dual mechanisms of antiproliferative effects. Inorg Chem, 2017; 56:1483-97. https://doi.org/10.1021/acs.inorgchem.6b02553

Jang M, Jeong SW, Cho SK, Ahn KS, Lee JH, Yang DC, Kim JC. Anti-inflammatory effects of an ethanolic extract of guava (Psidium guajava L.) leaves in vitro and in vivo. J Med Food, 2014; 17:678-85. https://doi.org/10.1089/jmf.2013.2936

Jin J, Chang Y, Wei W, He YF, Hu SS, Wang D, Wu YJ. Prostanoid EP1 receptor as the target of (−)-epigallocatechin- 3-gallate in suppressing hepatocellular carcinoma cells in vitro. Acta Pharmacol Sin, 2012; 33:701-9. https://doi.org/10.1038/aps.2012.13

Kalokasidis K, Molyva D, Mirtsou V, Kokkas B, Goulas A. Evidence for the contribution of tumour necrosis factor in edema formation induced by histamine in the hind paw of the rat. Inflamm Res, 2009; 58:437-40. https://doi.org/10.1007/s00011-009-0047-1

Kim SH, Choi CH, Kim SY, Eun JS, Shin TY. Anti-allergic effects of Artemisia iwayomogi on mast cell-mediated allergy model. Exp Biol Med, 2005; 230:82-8. https://doi.org/10.1177/153537020523000111

Kiraly AJ, Soliman E, Jenkins A, Van Dross RT. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostag Leukotr Ess, 2016; 104:44-53. https://doi.org/10.1016/j.plefa.2015.11.006

Kwiecien S, Jasnos K, Magierowski M, Sliwowski Z, Pajdo R, Brzozowski B, Mach T, Wojcik D, Brzozowski T. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury. J Physiol Pharmacol, 2014; 65:613-22.

Maling HM, Webster ME, Williams MA, Anderson Junior W. Inflammation induced by histamine, serotonin, bradykinin and compound 48-80 in the rat: antagonists and mechanisms of action. J Pharmacol Exp Ther, 1974; 191:300-10.

Marino A, Paterniti I, Cordaro M, Morabito R, Campolo M, Navarra M, Esposito E, Cuzzocrea S. Role of natural antioxidants and potential use of bergamot in treating rheumatoid arthritis. Pharma Nutr, 2015; 3:53-9. https://doi.org/10.1016/j.phanu.2015.03.002

Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008; 454:428-35. https://doi.org/10.1038/nature07201

Mitra S, Mukherjee K, Biswas S, Banerjee ER. Prophylactic use of fisetin in thioglycollate-induced peritonitis in mice. Biol Syst, 2015; 4:1-2. https://doi.org/10.4172/2329-6577.1000144

Muller WA. How endothelial cells regulate transmigration of leukocytes in the inflammatory response. Am J Pathol, 2014; 184:886-96. https://doi.org/10.1016/j.ajpath.2013.12.033

Nishikawa H, Kitani S. Tea catechins have dual effect on mast cell degranulation induced by compound 48/80. Int Immunopharmacol, 2008; 8:1207-15. https://doi.org/10.1016/j.intimp.2008.04.010

Nunes-Neto PA, Peixoto-Sobrinho TJDS, Silva Júnior ED, Silva JL, Oliveira ARS, Pupo AS, Araújo AV, Costa-Silva JH, Wanderley AG. The effect of Schinus terebinthifolius Raddi (Anacardiaceae) Bark extract on histamine- induced paw edema and ileum smooth muscle contraction. Evid Based Complement Alternat Med, 2017; 2017:1-10. https://doi.org/10.1155/2017/1416375

Nunomura RCS, Oliveira VG, da Silva SL, Nunomura SM. Characterization of bergenin in Endopleura uchi bark and its anti-inflammatory activity. J Braz Chem Soc, 2009; 20:1060-4. https://doi.org/10.1590/S0103-50532009000600009

Odobasic D, Kitching AR, Holdsworth SR. Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase. J Immunol Res Ther, 2016; 2016:1-11. https://doi.org/10.1155/2016/2349817

OECD. Organization for economic Cooperantion and Development. Acute Toxic Class Method (Test No. 423), 2001; 423:1-14.

Offergeld R, Reinecker C, Gumz E, Schrum S, Treiber R, Neth RD, Gohla SH. Mitogenic activity of high molecular polysaccharide fractions isolated from the cuppressaceae Thuja occidentalis L. enhanced cytokine-production by thyapolysaccharide, g-fraction (TPSg). Europe PMC, 1992; 6:189-91.

Oliveira CM, Nonato FR, Lima FO, Couto RD, David JP, David JM, Soares MBP, Villarreal CF. Antinociceptive properties of bergenin. J Nat Prod, 2011; 74:2062-8. https://doi.org/10.1021/np200232s

Oliveira GAL, Oliveira GLS, Nicolau LAD, Mafud AC, Batista LF, Mascarenhas YP, Souza LKM, David JM, Pinto LS, Alves CQ, Medeiros JVR. Bergenin from Peltophorum dubium: isolation, characterization, and antioxidant activities in non-biological systems and erythrocytes. Med Chem, 2017; 13:592-603. https://doi.org/10.2174/1573406413666170306120152

Oliveira GAL, Oliveira, GLS, Rezende Junior LM. Cell toxicity and hemolytic potential of an isolated molecule from Peltophorum dubium (Spreng). Toxicol Lett, 2015; 2:192. https://doi.org/10.1016/j.toxlet.2015.08.555

Pérez MJ, Cuello AS, Zampini IC, Ordoñez RM, Alberto MR, Quispe C, Hirschmann-Schmeda G, Isla MI. Polyphenolic compounds and anthocyanin content of Prosopis nigra and Prosopis alba pods flour and their antioxidant and antiinflammatory capacities. Food Res Int, 2014; 64:762-71. https://doi.org/10.1016/j.foodres.2014.08.013

Perkins JR, Sanak M, Canto G, Blanca M, Cornejo-García JA. Unravelling adverse reactions to NSAIDs using systems biology. Trends Pharmacol, 2015; 36:172-80. https://doi.org/10.1016/j.tips.2014.12.003

Pietrosimone KM, Liu P. Contributions of neutrophils to the adaptive immune response in autoimmune disease. World J Transl Med, 2015; 4:60-8. https://doi.org/10.5528/wjtm.v4.i3.60

Ren X, Ma S, Wang J, Tian S, Fu X, Liu X, Li Z, Zhao B, Wang X. Comparative effects of dexamethasone and bergenin on chronic bronchitis and their anti-inflammatory mechanisms based on NMR metabolomics. Mol Biosyst, 2016; 12:1938-47. https://doi.org/10.1039/C6MB00041J

Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, de Diego Diaz B, Hajdu C, Miller G, David G. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest, 2014; 124:2125-35. https://doi.org/10.1172/JCI72619

Rosa SIG, Rios-Santos F, Balogun SO, de Oliveira Martins DT. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine, 2016; 23:9-17. https://doi.org/10.1016/j.phymed.2015.11.003

Sancilio LF. Evans blue-carrageenan pleural effusion as a model for the assay of nonsteroidal antirheumatic drugs. J Pharmacol Exp Ther, 1969; 168:199-204.

Shah MR, Arfan M, Amin H, Hussain Z, Qadir MI, Choudhary MI, VanDerveer D, Mesaik MA, Soomro S, Jabeen A, Khan IU. Synthesis of new bergenin derivatives as potent inhibitors of inflammatory mediators NO and TNF-alpha. Bioorg Med Chem Lett, 2012; 22:2744-7. https://doi.org/10.1016/j.bmcl.2012.02.096

Silva IS, Nicolau LA, Sousa FB, de Araújo S, Oliveira AP, Araújo TS, Souza LKM, Martins CS, Aquino PEA, Carvalho LL, Silva RO, Rolim-Neto PJ, Medeiros JVR. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn in mice. Int J Biol Macromol, 2017; 105:1105-16. https://doi.org/10.1016/j.ijbiomac.2017.07.142

Silva RO, Damasceno SRB, Silva IS, Silva VG, Brito FC, Teixeira AEA, Nunes GBL, Camara CA, Filho JMB, Gutierrez SJC, Ribeiro RA, Souza MHLP, Barbosa ALR, Freitas RM, Medeiros JVR. Riparin A, a compound from Aniba riparia, attenuate the inflammatory response by modulation of neutrophil migration. Chem Bio Interacions, 2015; 5:55-63. https://doi.org/10.1016/j.cbi.2015.01.029

Silva RO, Sousa FB, Damasceno SR, Carvalho NS, Silva VG, Oliveira FR, Sousa DP, Aragão KS, Barbosa AL, Freitas RM, Medeiros JV. Phytol, a diterpene alcohol, inhibits the inflammatory response by reducing cytokine production and oxidative stress. Fundam Clin Pharmacol, 2014; 28:455-64. https://doi.org/10.1111/fcp.12049

Silva VG, Silva RO, Damasceno SRB, Carvalho NS, Prudêncio RS, Aragão KS, Guimarães MA, Campos SA, Veras LMC, Godejohanns M, Leite JRSA, Barbosa ALR, Medeiros JVR. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. J Nat Prod, 2013; 76:1071-7. https://doi.org/10.1021/np400099m

Singh P, Singh I, Sudhan ZA, Yadav P. Bioflavonoids and natural health: an overview. IOSR JDMS, 2015; 14:84-7.

Singh TP, Schön MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P. Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. PLoS One, 2013; 8:51752. https://doi.org/10.1371/journal.pone.0051752

Sousa-Neto BP, Gomes BS, Cunha FV, Arcanjo DD, Gutierrez SJ, Souza MF, Almeida FR, Oliveira FA. Antiedematogenic activity of the indole derivative N-salicyloyltryptamine in animal models. Anais Acad Brasil Ciências, 2018; 90:185-94. https://doi.org/10.1590/0001-3765201720160502

Sullivan PW, Ghushchyan VH, Globe G, Schatz M. Oral corticosteroid exposure and adverse effects in asthmatic patients. J Allergy Clin Immunol, 2018; 141:110-6. https://doi.org/10.1016/j.jaci.2017.04.009

Taams LS. Inflammation and immune resolution. Clin Exp Immunol, 2018; 193:1-2. https://doi.org/10.1111/cei.13155

Takahashi H, Kosaka M, Watanabe Y, Nakade K, Fukuyama Y. Synthesis and neuroprotective activity of bergenin derivatives with antioxidant activity. Bioorg Med Chem, 2003; 11:1781-8. https://doi.org/10.1016/S0968-0896(02)00666-1

Thao NP, Luyen BTT, Widowati W, Fauziah N, Maesaroh M, Herlina T, Manzoor Z, Ali L, Koh YS, Kim YH. Anti-inflammatory flavonoid C-glycosides from Piper aduncum leaves. Planta Med, 2016; 82:1475-81. https://doi.org/10.1055/s-0042-108737

Trevisan G, Rossato MF, Hoffmeister C, Muller LG, Pase C, Córdova MM, Rosa F, Tonello R, Hausen BS, Boligon AA, Moresco RN, Athayde ML, Burgger ME, Santos AR, Ferreira J. Antinociceptive and antiedematogenic effect of pecan (Carya illinoensis) nut shell extract in mice: a possible beneficial use for a by-product of the nut industry. J Basic Clin Physiol Pharmacol, 2014; 25:401-10. https://doi.org/10.1515/jbcpp-2013-0137

Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem, 1978; 86:271-8. https://doi.org/10.1016/0003-2697(78)90342-1

Vasconcelos AG, Amorim AGN, Santos RC, Souza JMT, Souza LKM, Araújo TSL, Nicolau LAD, Carvalho LL, Aquino PEA, Martins CS, Ropke CD, Soares PMG, Kuckelhaus SAS, Medeiros JVR, Leite JRSA. Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int, 2017; 99:959-68. https://doi.org/10.1016/j.foodres.2017.01.017

Wang K, Li YF, Lv Q, Li XM, Dai Y, Wei ZF. Bergenin, acting as an agonist of PPARγ, ameliorates experimental colitis in mice through improving expression of SIRT1, and therefore inhibiting NF-κB-mediated macrophage activation. Front Pharmacol, 2018; 8:981. https://doi.org/10.3389/fphar.2017.00981

Wang Q, Wu J, Wu X, Tai W, Dai N, Wu R, Han N. Anti-inflammatory and analgesic effects of two new flavone C-glycosides from Panzeria alaschanica. Monatsh Chem Chem Mon, 2015; 146:1025-30. https://doi.org/10.1007/s00706-015-1414-y

Werner I, Guo F, Kiessling AH, Juengel E, Relja B, Lamm P, Stock U, Moritz A, Beiras Fernandez A. Treatment of endothelial cell with flavonoids modulates transendothelial leukocyte migration. Phlebology, 2015; 30:405-11. https://doi.org/10.1177/0268355514531951

Wilhelm DL. Mechanisms responsible for increased vascular permeability in acute inflammation. Agents Actions, 1973; 3:297-306. https://doi.org/10.1007/BF01986484

Wilson RH, Booth AN, DeEds F. Protection by flavonoids against histamine shock. Exp Biol Med, 1951; 76:540-2. https://doi.org/10.3181/00379727-76-18549

Yang S, Yu Z, Wang L, Yuan T, Wang X, Zhang X, Wang J, Lv Y, Du G. The natural product bergenin ameliorates lipopolysaccharide-induced acute lung injury by inhibiting NF-kappaB activition. J Ethnopharmacol, 2017; 200:147-55. https://doi.org/10.1016/j.jep.2017.02.013

Yang X, Gao X, Du B, Zhao F, Feng X, Zhang H, Zhu Z, Xing J, Han Z, Tu P, Chai X. Ilex asprella aqueous extracts exert in vivo antiinflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways. J Ethnopharmacol, 2018; 225:234-43. https://doi.org/10.1016/j.jep.2018.06.037

Zygmunt M, Chłoń-Rzepa G, Sapa J. Analgesic and anti-inflammatory activity of 7-substituted purine-2, 6-diones. Pharmacol Rep, 2014; 66:996-1002. https://doi.org/10.1016/j.pharep.2014.06.015

Article Metrics

Similar Articles

Topical anti-inflammatory action of Caryocar villosum oil (Aubl)Pers.
William Kalhy, Silva Xavier, Benedito Junior Medeiros, Clarissa Silva Lima, Hugo Alexandre Favacho, Eloisa Helena de Aguiar Andrade, Railda Neyva, Moreira Araujo, Lourivaldo Silva Santos

Anti-inflammatory and antidiabetic activity of ethanolic extracts of Sterculia villosa barks on Albino Wistar rats
Md. Kamal Hossain, Md. Akhtaruzzaman Prodhan, A. S. M. Ibnul Hasan Even, Helal Morshed, Md. Monir Hossain

Coumarin: Chemical and Pharmacological Profile
P. K. Jain, Himanshu Joshi

Isolation and Elucidation of Pyrrolizidine alkaloids from tuber of Gynura pseudo-china (L.) DC
Tri Windono, Umar A. Jenie, Leonardus B. S. Kardono

Related Search:



Create Citiaion Alert via Google Scholar