Home >Current Issue

Volume: 9, Issue: 5, May, 2019
DOI: 10.7324/JAPS.2019.90505

Research Article

Injectable in situ gel of methotrexate for rheumatoid arthritis: Development, in vitro and in vivo evaluation

Tanmoy Das, Venkatesh Madhugiri Prakash, Pramod Kumar Teggin Math

  Author Affiliations


The aim of the research study was to formulate a novel, biodegradable, injectable in situ gel system of Methotrexate (MTX) in the management of rheumatoid arthritis (RA). Varying concentration of Pluronic F-127 (20% and 22% w/v) and xanthan gum (0.2%–0.6% w/v) were used in the development of the formulations. In vitro and in vivo studies were carried out for the prepared MTX in situ gels. The results demonstrated that MTX was uniformly distributed and the in situ gels were sterile and syringeable. The gels showed thermosensitivity and thermoresponsivity dependent on concentration and composition of co-polymers. The optimized formulation exhibited drug release of 95.29% at 132 hours by non-fickian diffusion mechanism. Polymer concentration and composition influenced the release of the drug from the prepared in situ gels. In vivo studies carried on Freund’s adjuvant-induced monoarthritis in male Wistar rats; results showed a significant reduction in the inflammation at the test site. The gels were biocompatible since no inflammation was observed in the synovial membrane. MTX in situ gels could be proposed as an effective delivery system management of RA in near future.


Rheumatoid arthritis, methotrexate, xanthan gum, pluronic, management.

Citation: Das T, Venkatesh MP, Kumar TMP. Injectable in situ gel of methotrexate for rheumatoid arthritis: Development, in vitro and in vivo evaluation. J Appl Pharm Sci, 2019; 9(05): 040–048.

Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Attwood D, Collet JH, Tait C. The micellar properties of the poly(oxyethylene)- poly(oxypropylene) copolymer Pluronic F- 127 in water and electrolyte solution. Int J Pharm, 1985; 26:25-33. https://doi.org/10.1016/0378-5173(85)90197-8

American College of Rheumatology. Rheumatoid arthritis [homepage on the Internet]. Available via http://www.rheumatology.org/ practice/clinical/patients/diseasesandconditions/ra.asp (Accessed 15 March 2019).

Bolong M, Cunxian S, Guilei M. Injectable thermosensitive hydrogels for intra-articular delivery of methotrexate. J Appl Polym Sci, 2011; 122:2139-45. https://doi.org/10.1002/app.34332

Bercea M, Darie RN, Morariu S. Rheological investigation of xanthan/Pluronic F127 hydrogels. Rev Roum Chim, 2013; 58:189-96.

Chauhan K, Al-Dhahir MA. Arthritis, Rheumatoid. InStatPearls Publishing, St. Petersburg, FL, 2018.

Garala K, Joshi P, Shah M, Ramkishan A, Patel J. Formulation and evaluation of periodontal in situ gel. Int J Pharm Invest, 2013; 3:29. https://doi.org/10.4103/2230-973X.108961

Garner R, Ding T, Deighton C. Management of rheumatoid arthritis. Medicine, 2014; 42:237-42. https://doi.org/10.1016/j.mpmed.2014.02.004

Herman CJ, Allen P, Hunt WC, Prasad A, Brady TJ. Use of complementary therapies among primary care clinic patients with arthritis. Prev Chronic Dis, 2004; 1:1-12.

Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics, 2014; 15:1611-35. https://doi.org/10.2217/pgs.14.116

Linda SL, John J, Weixian M, Verica R, Kishor MW, Helen MB. Methotrexate loaded Poly(L-Lactic Acid) microspheres for intra-articular delivery of MTX to the joint. J Pharm Sci, 2004; 93:943-56. https://doi.org/10.1002/jps.20031

Martin M, Bjoern L. Water self-diffusion in aqueous block copolymer solutions. Macromol, 1992; 25:5446-50. https://doi.org/10.1021/ma00046a050

Miller SC, Drabik BR. Rheological properties of poloxamer vehicles. Int J Pharm, 1984; 18:269-76. https://doi.org/10.1016/0378-5173(84)90142-X

O'Dell JR. Therapeutic strategies for rheumatoid arthritis. N Engl J Med, 2004; 350:2591-602. https://doi.org/10.1056/NEJMra040226

Oh KT, Bronich TK, Kabanov AV. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J Control Rel, 2004; 94(2-3):411-22. https://doi.org/10.1016/j.jconrel.2003.10.018

Paavola A, Yliruusi J, Rosenberg P. Controlled and durameter permeability of lidocaine and ibuprofen from injectable poloxamer based gels. J Control Rel, 1998; 52:169-78. https://doi.org/10.1016/S0168-3659(97)00206-X

Rudan I, Sidhu S, Papana A, Meng SJ, Xin-Wei Y, Wang W, Campbell-Page RM, Demaio AR, Nair H, Sridhar D, Theodoratou E. Prevalence of rheumatoid arthritis in low-and middle-income countries: a systematic review and analysis. J Glob Health, 2015; 1:5.

Schmolka IR. Artificial skin: preparation and properties of Pluronic F-127 gels for treatment of burns. J Biomed Mater Res, 1972; 6:571-82. https://doi.org/10.1002/jbm.820060609

Schwartzman S, Fleischmann R, Morgan JG. Do anti-TNF-∞ agents have equal efficacy in patients with rheumatoid arthritis. Arthr Res Ther, 2004; 6:3-11. https://doi.org/10.1186/ar1013

Sharma A, Arora S. Formulation and in vitro evaluation of ufasomes for dermal administration of Methotrexate. ISRN pharm, 2012; 2012:1-8. https://doi.org/10.5402/2012/873653

Shinde CG, Venkatesh MP, Kumar TM, Shivakumar HG. Methotrexate: a gold standard for treatment of rheumatoid arthritis. J Pain Palliat Care Pharmacother, 2014; 28:351-8. https://doi.org/10.3109/15360288.2014.959238

Singhare DS, Khan S, Yeole PG. Temperature induced in situ gel of lidocaine hydrochloride for periodontial anaesthesia. Indian Drugs, 2005; 42:519-24.

Siriporn T, John G, Frank H, Colin B. Gelation of aqueous solutions of diblock copolymers of ethylene oxide and D, L-lactide. Macromol Chem Physic, 1997; 198:3385-95. https://doi.org/10.1002/macp.1997.021981105

Sun S, Cao H, Su H, Tan T. Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull, 2009; 62: 699-711. https://doi.org/10.1007/s00289-009-0048-9

Vena GA, Cassano N, Iannone F. Update on subcutaneous methotrexate for inflammatory arthritis and psoriasis. Ther Clin Risk Manag, 2018; 14:105. https://doi.org/10.2147/TCRM.S154745

Venkatesh MP, Anis S, Pramod KTM. Design and development of an injectable in situ forming drug delivery system of methotrexate for the treatment of rheumatoid arthritis. J Drug Deliv Sci Technol, 2013; 23:445-53. https://doi.org/10.1016/S1773-2247(13)50064-5

Venkatesh MP, Purohit KL, Teggin MP, Shivakumar HG. In situ gels based drug delivery systems. Curr Drug Ther, 2011; 6:213-22. https://doi.org/10.2174/157488511796392004

Wigginton S, Chu B, Weisman M, Howell S. Methotrexate pharmacokinetics after intraarticular injection in patients with rheumatoid arthritis. Arthritis Rheum, 1980; 23:119-22. https://doi.org/10.1002/art.1780230121

Yannic BS, Robert G, Olivier JA. Novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm, 2008; 68:19-25. https://doi.org/10.1016/j.ejpb.2007.06.020

Zaki Rizkalla CM, Latif Aziz, Soliman R II. In-vitro and invivo evaluation of hydroxyzine hydrochloride microsponges for topical delivery. AAPS Pharm Sci Technol, 2011; 12:989-1001. https://doi.org/10.1208/s12249-011-9663-5

Article Metrics