Home >Current Issue

Volume: 9, Issue: 5, May, 2019
DOI: 10.7324/JAPS.2019.90502

Research Article

Anti-diabetic drug, metformin, and the p38 inhibitor (SB203580) reduces internal organs oxidative stress in non-obese type 2 diabetic rats

Nuttikarn Nokkaew1 2, Jantira Sanit1 2, Podsawee Mongkolpathumrat1 2, Siyamon Boontawee3, Supanut Ithipruchyabun3, Wannapa Plangklang3, Punyanuch Adulyaritthikul1 2, Kantapich Kongpol1 2, Sarawut Kumphune1 2 3

  Author Affiliations


Diabetic complications caused by hyperglycemia and oxidative stress, which can activate p38 mitogen-activated protein kinase (p38 MAPK), and aggravate complications via the enhancement of reactive oxygen species (ROS) generation. Recently, metformin or p38 MAPK inhibitors could reduce ROS production in particularly protein carbonylation, in diabetic vessel. However, the combinatorial effect of metformin and SB203580 on internal organ oxidative stress in non-obese (lean) type 2 diabetes mellitus (T2DM) is still uncleared. In this study, Goto-Kakizaki rats were divided into four groups, including control diabetic group, metformin-treated group, p38 MAPK inhibitor (SB203580)-treated group, and combination between metformin and p38 MAPK inhibitor (SB203580). Internal organ protein from kidney, pancreas, liver, and brain was determined for protein carbonyl (PC) content by spectrophotometric 2, 4-Dinitrophenylhydrazine assay. There was an increase in PC content levels in the serum and internal organs of T2DM. Metformin ameliorated PC content in serum and internal organs. However, SB203580 could only reduce the PC content in the liver. The combination of metformin and SB203580 could synergistically reduce the PC content levels in serum but not the internal organs. In summary, metformin provided the greatest potential for reducing oxidative stress, while SB203580 or combined metformin with SB203580 could not reduce oxidative stress in the internal organs of non-obese type 2 diabetic rats.


Diabetic complications, internal organ stress, oxidative stress, protein carbonyl, metformin, p38 MAPK inhibitor.

Citation: Nokkaew N, Sanit J, Mongkolpathumrat P, Boontawee S, Ithipruchyabun S, Plangklang W, Adulyaritthikul P, Kongpol K, Kumphune S. Anti-diabetic drug, metformin, and the p38 inhibitor (SB203580) reduces internal organs oxidative stress in non-obese type 2 diabetic rats. J Appl Pharm Sci, 2019; 9(05):012–020.

Copyright: The Author(s). This is an open access article distributed under the Creative Commons Attribution Non-Commercial License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Abdelsaid M, Prakash R, Li W, Coucha M, Hafez S, Johnson MH, Fagan SC, Ergul A. Metformin treatment in the period after stroke prevents nitrative stress and restores angiogenic signaling in the brain in diabetes. Diabetes, 2015; 64:1804-17. https://doi.org/10.2337/db14-1423

Alhaider AA, Korashy HM, Sayed-Ahmed MM, Mobark M, Kfoury H, Mansour MA. Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression. Chem Biol Interact, 2011; 192:233-42. https://doi.org/10.1016/j.cbi.2011.03.014

Almogbel E, Rasheed N. Protein mediated oxidative stress in patients with diabetes and its associated neuropathy: correlation with protein carbonylation and disease activity markers. J Clin Diagn Res, 2017; 11:BC21-5. https://doi.org/10.7860/JCDR/2017/23789.9417

Boffetta P, McLerran D, Chen Y, Inoue M, Sinha R, He J, Gupta PC, Tsugane S, Irie F, Tamakoshi A, Gao Y-T, Shu X-O, Wang R, Tsuji I, Kuriyama S, Matsuo K, Satoh H, Chen C-J, Yuan J-M, Yoo K-Y, Ahsan H, Pan W-H, Gu D, Pednekar MS, Sasazuki S, Sairenchi T, Yang G, Xiang Y-B, Nagai M, Tanaka H, Nishino Y, You S-L, Koh W-P, Park SK, Shen C-Y, Thornquist M, Kang D, Rolland B, Feng Z, Zheng W, Potter JD. Body mass index and diabetes in Asia: a cross-sectional pooled analysis of 900,000 individuals in the Asia Cohort Consortium. PLoS One, 2011; 6:e19930. https://doi.org/10.1371/journal.pone.0019930

Bollineni RC, Fedorova M, Bluher M, Hoffmann R. Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus. J Proteome Res, 2014; 13:5081-93. https://doi.org/10.1021/pr500324y

Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes. Potential role of p38 in the downregulation of GLUT4 expression. Diabetes, 2003; 52:634-41. https://doi.org/10.2337/diabetes.52.3.634

DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Primers, 2015; 1:15019. https://doi.org/10.1038/nrdp.2015.19

Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW. Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci, 1995; 15:6377-88. https://doi.org/10.1523/JNEUROSCI.15-10-06377.1995

Erejuwa OO, Sulaiman SA, Wahab MS, Salam SK, Salleh MS, Gurtu S. Antioxidant protective effect of glibenclamide and metformin in combination with honey in pancreas of streptozotocin-induced diabetic rats. Int J Mol Sci, 2010; 11:2056-66. https://doi.org/10.3390/ijms11052056

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev, 2002; 23:599-622. https://doi.org/10.1210/er.2001-0039

Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev, 2014; 33:79-97. https://doi.org/10.1002/mas.21381

Gonzalo S, Grasa L, Arruebo M, Plaza Má, Murillo M. Inhibition of p38 MAPK improves intestinal disturbances and oxidative stress induced in a rabbit endotoxemia model. J Neurogastroenterol Motil, 2010; 22:564-e123. https://doi.org/10.1111/j.1365-2982.2009.01439.x

Jin N, Wang Q, Zhang X, Jiang D, Cheng H, Zhu K. The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus. Int Immunopharmacol, 2011; 11:1319-26. https://doi.org/10.1016/j.intimp.2011.04.015

Kumar JS, Menon VP. Effect of diabetes on levels of lipid peroxides and glycolipids in rat brain. Metabolism, 1993; 42:1435-9. https://doi.org/10.1016/0026-0495(93)90195-T

Kumphune S, Chattipakorn S, Chattipakorn N. Role of p38 inhibition in cardiac ischemia/reperfusion injury. Eur J Clin Pharmacol, 2012; 68:513-24. https://doi.org/10.1007/s00228-011-1193-2

Makar TK, Rimpel-Lamhaouar K, Abraham DG, Gokhale VS, Cooper AJL. Antioxidant defense systems in the brains of type II diabetic mice. J Neurochem, 1995; 65:287-91. https://doi.org/10.1046/j.1471-4159.1995.65010287.x

Maneewong K, Mekrungruangwong T, Luangaram S, Thongsri T, Kumphune S. Combinatorial determination of Ischemia modified albumin and protein carbonyl in the diagnosis of nonST-elevation myocardial infarction. Indian J Clin Biochem, 2011; 26:389-95. https://doi.org/10.1007/s12291-011-0118-2

Manna P, Das J, Ghosh J, Sil PC. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid. Free Radic Biol Med, 2010; 48:1465-84. https://doi.org/10.1016/j.freeradbiomed.2010.02.025

Mohamed J, Nazratun Nafizah AH, Zariyantey AH, Budin SB. Mechanisms of diabetes-induced liver damage: the role of oxidative stress and inflammation. Sultan Qaboos Univ Med J, 2016; 16:e132-41. https://doi.org/10.18295/squmj.2016.16.02.002

Muriach M, Flores-Bellver M, Romero FJ, Barcia JM. Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxid Med Cell Longev, 2014; 2014:9. https://doi.org/10.1155/2014/102158

Nokkaew N, Mongkolpathumrat P, Junsiri R, Jindaluang S, Tualamun N, Manphatthanakan N, Saleesee N, Intasang M, Sanit J, Adulyaritthikul P, Kongpol K, Kumphune S, Nernpermpisooth N. p38 MAPK inhibitor (SB203580) and metformin reduces aortic protein carbonyl and inflammation in non-obese type 2 diabetic rats. Indian J Clin Biochem, 2019; 1-7. https://doi.org/10.1007/s12291-019-0815-9

Palsamy P, Sivakumar S, Subramanian S. Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact, 2010; 186: 200-10. https://doi.org/10.1016/j.cbi.2010.03.028

Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta, 2011; 1812:719-31. https://doi.org/10.1016/j.bbadis.2011.03.008

Paneni F, Beckman JA, Creager MA, Cosentino F. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J, 2013; 34:2436-43. https://doi.org/10.1093/eurheartj/eht149

Raza H, John A, Howarth FC. Increased oxidative stress and mitochondrial dysfunction in zucker diabetic rat liver and brain. Cell Physiol Biochem, 2015; 35:1241-51. https://doi.org/10.1159/000373947

Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem, 2004; 279:42351-4. https://doi.org/10.1074/jbc.R400019200

Salman ZK, Refaat R, Selima E, El Sarha A, Ismail MA. The combined effect of metformin and L-cysteine on inflammation, oxidative stress and insulin resistance in streptozotocin-induced type 2 diabetes in rats. Eur J Pharmacol, 2013; 714:448-55. https://doi.org/10.1016/j.ejphar.2013.07.002

Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. Ann Acad Med Singapore, 2010; 39:909.

Sasaki S, Inoguchi T. The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Obes Metab, 2012; 36:255-61. https://doi.org/10.4093/dmj.2012.36.4.255

Son SM. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes. Diabetes Metab J, 2012; 36:190-8. https://doi.org/10.4093/dmj.2012.36.3.190

Suzuki YJ, Carini M, Butterfield DA. Protein carbonylation. Antioxid Redox Signal, 2010; 12:323-5. https://doi.org/10.1089/ars.2009.2887

Tang Z, Fang Z, Huang W, Liu Z, Chen Y, Li Z, Zhu T, Wang Q, Simpson S, Taylor BV, Lin R. Non-obese diabetes and its associated factors in an underdeveloped area of South China, Guangxi. Int J Environ Res Public Health, 2016; 13:976. https://doi.org/10.3390/ijerph13100976

Usman UZ, Bakar ABA, Mohamed M. Metformin reduces oxidative stress status and improves plasma insulin level in streptozotocin-induced diabetic rats. JPANS, 2016; 6:120-5. https://doi.org/10.6000/1927-5951.2016.06.04.1

van den Blink B, Juffermans NP, ten Hove T, Schultz MJ, van Deventer SJ, van der Poll T, Peppelenbosch MP. p38 mitogen-activated protein kinase inhibition increases cytokine release by macrophages in vitro and during infection in vivo. J Immunol, 2001; 166:582-7. https://doi.org/10.4049/jimmunol.166.1.582

Wang S, Wang M, Wang M, Tian Y, Sun X, Sun G, Sun X. Bavachinin induces oxidative damage in HepaRG cells through p38/JNK MAPK pathways. Toxins (Basel), 2018; 10:154. https://doi.org/10.3390/toxins10040154

Wilcox G. Insulin and insulin resistance. Clin Biochem Rev, 2005; 26:19-39.

Yamagishi S-I, Nakamuraa K, Matsuia T, Inoueb H. Diabetic vascular complication. Antioxidants, 2006; 49.

Zheng J, Woo S-L, Hu X, Botchlett R, Chen L, Huo Y, Wu C. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med (Lausanne), 2015; 9:173-86. https://doi.org/10.1007/s11684-015-0384-0

Article Metrics

Similar Articles

Is Cystatin C a powerful Predictor of Cardiovascular Diseases in patients with type 2 Diabetes Mellitus? (Study on Egyptian patients)
Hesham Rafat, Sameh H. Soror, Zeinab Hassan, Ashref Ismaail

Suppressive effect of Ginkgo biloba extract (EGb 761) on topsin induced ovarian toxicity and oxidative stress in albino rats
Saber A. Sakr,Hoda A. Mahran, Asmaa M. Abdel-Maksoud

Effect of Lead, Alcohol and Vitamin E on Protein carbonyl content in rats
Harishekar .M .B, Kiran .B

Invitro studies and evaluation of metformin marketed tablets-Malaysia
Arcot Ravindran Chandrasekaran, Chan Yoke Jia, Choong Sheau Theng, Teeba Muniandy, Selvadurai Muralidharan, Sokkalingam Arumugam Dhanaraj