
Development of effective therapeutics has been 
constrained by challenges such as poor drug solubility, 
non-specific biodistribution, and systemic toxicity. 

Recent advancements in targeted drug delivery systems and 
nanomedicine have significantly addressed these limitations 
by enabling the precise localization of therapeutic agents 
to diseased tissues [1]. This not only enhances therapeutic 
efficacy but also minimizes adverse effects. These innovations 
are foundational to the paradigm of precision medicine, which 
aims to personalize treatments to individual patients based on 
disease-specific and patient-specific characteristics. Central 
to this paradigm are target-based therapies, which focus on 
modulating specific molecular targets implicated in disease 
pathogenesis. These therapies have shown remarkable success 
in oncology, immunology, and infectious diseases, supported 
by significant scientific evidence from genomic, proteomic, and 
metabolomic studies [2–4].

Complementing this approach is  pan-target-based 
therapy, which involves simultaneous modulation of multiple 
targets or pathways. Pan-target-based therapy represents a 
transformative shift in biomedical science—redirecting the 
therapeutic lens from organ-specific diseases toward shared 
molecular mechanisms that transcend traditional diagnostic 
boundaries [5]. Originally conceptualized within precision 
oncology, where tumor-agnostic drugs such as larotrectinib 
(targeting NTRK fusions) and pembrolizumab (MSI-high 
tumors) garnered tissue-agnostic Food and Drug Administration 
(FDA) approvals, the scope of pan-targeting has expanded 
dramatically [6]. Currently, this paradigm is influencing diverse 
fields, from infectious disease and autoimmunity to metabolic 
and neurodegenerative disorders. What unites these efforts is the 

fundamental recognition that many diseases, while phenotypically 
distinct, are underpinned by convergent molecular dysfunctions—
providing opportunities for cross-indication therapeutic design. 
This strategy is particularly valuable in complex or heterogeneous 
diseases where single-target interventions may be insufficient. 
The integration of these approaches with advanced drug delivery 
platforms—such as nanoparticles, liposomes, and antibody-
drug conjugates—further enhances specificity and therapeutic 
outcomes. Together, these innovations represent a transformative 
shift toward more personalized, effective, and safer treatments, 
underscoring the importance of continued research and clinical 
validation in the field of precision therapeutics.

The era of precision medicine demands more than 
isolated molecular targeting—it calls for a paradigm shift. 
Pan-target-based therapy is not just a scientific evolution; it is 
a strategic rethinking of the disease approach. By focusing on 
shared molecular dysfunctions across conditions, we unlock 
the potential for therapies that transcend traditional boundaries. 
This convergence is not theoretical—it is already reshaping 
oncology, infectious disease, and neurodegeneration. The 
question is no longer if pan-targeting works, but how broadly we 
can apply it.

Targeted drug delivery systems: precision in therapeutics
Targeted drug delivery systems represent a 

transformative approach in pharmacotherapy, engineered to 
transport therapeutic agents directly to pathological sites while 
minimizing systemic exposure [7–12]. These systems are 
designed to enhance drug specificity, improve pharmacokinetic 
profiles, and reduce off-target effects [1]. Among the most 
prominent strategies are ligand-directed systems, which 
exploit molecular recognition by conjugating ligands—such 
as folic acid or antibodies—to carriers that bind selectively 
to overexpressed receptors on diseased cells. This mechanism 
is particularly effective in oncology, where tumor cells often 
exhibit unique surface markers. Stimuli-responsive carriers 
further refine this precision by releasing drugs in response to 
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suggest a promising trajectory toward personalized therapeutics 
with improved specificity and minimized adverse effects.

Nanomedicine: harnessing nanoscale materials for therapeutic 
innovation

Nanomedicine utilizes materials at the nanoscale (1–
100 nm) to design therapeutics and diagnostics with enhanced 
physicochemical properties. Key nanostructures include 
liposomes, dendrimers, metallic nanoparticles, and polymeric 
micelles [20]. Liposomes, for example, encapsulate drugs to 
improve solubility and stability, while dendrimers offer high 
drug-loading capacity and tunable surface chemistry. Metallic 
nanoparticles provide dual functionality in targeted delivery and 
imaging due to their optical and magnetic properties. Polymeric 
micelles, formed through self-assembly, enable controlled drug 
release and improved biodistribution [1]. These nanostructured 
systems allow precise control over drug release kinetics and 
cellular uptake, making them versatile tools in therapeutic 
design. Their ability to navigate biological barriers and deliver 
payloads with high specificity has revolutionized treatment 
paradigms across multiple disease domains.

Nanomedicine is no longer niche—it is foundational. 
Its ability to navigate biological barriers and deliver payloads 
with precision is unmatched. However, the field must evolve 
from incremental improvements to disruptive innovation. 
Can we design nanocarriers that adapt in real time to disease 
dynamics? The future lies in theranostics and personalized 
payloads—not just smarter delivery, but smarter decisions.

Successful case studies in precision therapeutics

Glioblastoma treatment
Recent advancements in nanotechnology have 

enabled the development of smart nanoparticles tailored 
for glioblastoma multiforme (GBM), a highly aggressive 
brain tumor. A collaborative study involving from India and 
Thailand focused on optimizing nanoparticle size and surface 
chemistry to enhance BBB penetration and drug release 
kinetics. These nanoparticles demonstrated reduced off-target 
toxicity and improved bioavailability in preclinical models. 
Notably, tumor-specific drug accumulation led to extended 
survival rates compared to conventional therapies [21–23]. 
The use of inorganic and hybrid nanoparticles in GBM therapy 
is gaining traction, with ongoing clinical trials validating 
their efficacy [24]. Nanobody-based delivery systems have 
emerged as a promising approach for treating autoimmune 
diseases such as rheumatoid arthritis and lupus. These systems 
utilize single-domain antibodies with high specificity and low 
immunogenicity. In early-phase clinical trials, patients treated 
with nanobody-based therapeutics showed a 40% reduction 
in disease activity scores compared to those receiving 
standard treatments [25,26]. The precision targeting offered 
by nanobodies minimizes systemic exposure and enhances 
therapeutic outcomes, marking a significant advancement in 
autoimmune disease management.

Glioblastoma remains one of the most formidable 
challenges in neuro-oncology. The use of smart nanoparticles 
to breach the BBB represents a significant advancement, 

specific environmental cues. For instance, the acidic pH of tumor 
microenvironments or the enzymatic activity within endosomes 
can trigger drug release, ensuring localized therapeutic action 
[13]. Biodegradable polymeric vehicles, such as poly (lactic-
co-glycolic acid) (PLGA), offer controlled release profiles and 
biocompatibility, degrading into non-toxic byproducts. These 
innovations collectively contribute to the evolution of precision 
therapeutics, enabling more effective and safer treatment 
modalities [14].

Targeted drug delivery is no longer a futuristic 
concept—it is a clinical reality. From ligand-directed carriers 
to stimuli-responsive systems, the precision of modern 
pharmacotherapy is redefining safety and efficacy. But we must 
ask: Are we doing enough to translate these innovations beyond 
oncology? The same principles that guide tumor targeting 
could revolutionize treatment in autoimmunity, central nervous 
system (CNS) disorders, and infectious diseases. It is time to 
broaden the lens.

Clinical applications of targeted delivery
The clinical translation of targeted drug delivery 

systems has been most impactful in oncology. FDA-approved 
formulations like liposomal doxorubicin (Doxil®) and albumin-
bound paclitaxel (Abraxane®) exemplify the success of 
ligand-conjugated nanoparticles in achieving tumor-specific 
accumulation [15,16]. Recent advancements, as reported by 
Mamidi et al. [17], highlight the utility of stimuli-responsive 
nanomaterials that leverage endogenous (pH and enzymes) 
and exogenous (light and temperature) triggers to overcome 
biological barriers and enhance drug retention in tumor tissues 
[17]. In CNS disorders, the blood-brain barrier (BBB) remains 
a formidable obstacle. Nanoparticles engineered to traverse the 
BBB have enabled targeted delivery of neuroprotective agents, 
offering new avenues for treating Alzheimer’s and Parkinson’s 
diseases [18,19]. Infectious diseases also benefit from 
nanocarrier-based strategies, particularly in combating resistant 
pathogens. Lipid nanoparticles, as used in mRNA vaccines for 
COVID-19, underscore the clinical viability of this approach. 
Additionally, autoimmune diseases such as rheumatoid arthritis 
and lupus are being addressed through nanobody-based delivery 
systems, which demonstrate enhanced targeting and reduced 
immunogenicity in preclinical models.

The success of liposomal doxorubicin and Abraxane® 
is proof that smart delivery works. However, the real opportunity 
lies in expanding these platforms to underserved areas—
neurodegeneration, resistant infections, and autoimmune 
conditions. The clinical promise is clear, but translation requires 
bold investment and regulatory agility. We must move from proof-
of-concept to global impact. Despite their promise, targeted 
drug delivery systems face several translational challenges. 
The scalability of complex formulations, regulatory scrutiny 
regarding safety and reproducibility, and the integration of 
diagnostics for real-time monitoring remain significant hurdles. 
Future research must prioritize the development of modular and 
adaptable platforms that can be tailored to individual patient 
biomarkers and disease phenotypes. Advances in stimuli-
responsive systems, as emphasized by Mamidi et al. [17], 
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though further progress is necessary. We must accelerate 
clinical validation and explore combinatorial strategies that 
integrate nanomedicine with immunotherapy and AI-guided 
dosing. Survival gains are promising; now we need systemic 
change.

Neglected tropical diseases
The Drugs for Neglected Diseases Initiative (DNDi) 

has made substantial progress in drug discovery for diseases 
like Chagas and leishmaniasis. By designing molecules 
with high binding specificity to parasitic proteins, DNDi has 
developed over 20 new chemical entities. A notable success 
includes a novel oral formulation for visceral leishmaniasis, 
which achieved a 95% cure rate in phase II trials [27,28]. This 
formulation offers a safer and more accessible alternative to 
existing treatments, addressing critical gaps in global health 
equity.

The DNDi’s success in developing oral formulations 
for visceral leishmaniasis represents a notable achievement in 
scientific innovation and global health equity? Global health 
must prioritize pan-target strategies that serve the underserved. 
Neglected diseases deserve more than innovation—they 
deserve urgency.

Expanding the therapeutic horizon: communicable and non-
communicable applications

In the realm of non-communicable diseases, the utility 
of pan-targeted agents is exemplified by SGLT2 inhibitors. 
Initially developed for glycemic control in type 2 diabetes, these 
agents now demonstrate efficacy in chronic kidney disease and 
heart failure, independent of diabetic status [29–31]. Similarly, 
JAK-STAT pathway inhibitors, used in autoimmune conditions 
like rheumatoid arthritis, have found application in severe viral 
infections such as COVID-19, where they mitigate cytokine-
driven hyperinflammation. These repurposing successes 
underscore the value of targeting conserved inflammatory 
and metabolic circuits across disease types [31–33]. Pan-
target strategies are also gaining traction in infectious disease 
through host-directed therapies (HDTs). Rather than targeting 
pathogens directly, HDTs aim to modulate host pathways such 
as autophagy, epigenetic regulation, and immune checkpoints—
mechanisms co-opted by multiple pathogens, including 
Mycobacterium tuberculosis, HIV, and SARS-CoV-2 [32–35]. 
This approach is particularly valuable in the context of rising 
antimicrobial resistance, where conventional pathogen-specific 
strategies falter.

The repurposing of SGLT2 inhibitors and JAK-STAT 
blockers across disease types is a testament to the power of 
pan-targeting. These agents reveal a deeper truth: inflammation 
and metabolism are universal languages in pathology. We must 
design trials that reflect this convergence, not siloed endpoints. 
The future of therapeutics is cross-indication.

The role of pan-biomarkers in mechanism-guided therapy
Critical to the efficacy and precision of pan-targeted 

approaches is the emergence of pan-biomarkers—molecular 
indicators that predict therapeutic response across multiple 
disease states. Biomarkers such as PD-L1 expression, IL-6, 

C-reactive protein, and tumor mutational burden have already 
demonstrated cross-disease relevance, from oncology to chronic 
infection to cardiovascular inflammation [36–38]. Moreover, 
advances in multiomics and single-cell analysis are enabling the 
discovery of deeper, context-independent molecular signatures, 
including epigenetic marks, non-coding RNAs, and metabolic 
fingerprints. These biomarkers are not only diagnostic but 
increasingly theranostic, guiding both therapy selection and 
monitoring response. For instance, circulating tumor DNA 
(ctDNA) and exosomal RNA are being explored not only in 
cancer but in viral and inflammatory disease monitoring, 
offering real-time, non-invasive windows into disease dynamics 
[39,40]. The evolution of such biomarkers will be pivotal for 
stratifying patients in pan-indication clinical trials and refining 
therapeutic windows.

Pan-biomarkers are the compass guiding mechanism-
based therapy. From PD-L1 to ctDNA, these indicators are 
reshaping how we stratify patients and monitor response. But 
discovery must be matched by deployment. Multiomics and 
single-cell analytics are powerful—only if they inform real-
time decisions. The next frontier is not identification, but 
integration.

Innovations in drug delivery: toward smart and selective 
therapeutics

The promise of pan-targeted agents must be matched 
by delivery technologies capable of precise, context-specific 
action. Here, advanced drug delivery systems have emerged as 
key enablers. Ligand-directed platforms, leveraging molecules 
such as folate or transferrin, allow for cell-type-specific targeting. 
pH-sensitive carriers and redox-responsive systems provide 
controlled release in acidic or oxidative microenvironments 
typical of tumors and inflamed tissues. Biodegradable polymers 
such as PLGA and PEGylated nanostructures extend circulation 
time and improve drug tolerability [41]. These systems are 
particularly valuable in diseases requiring localized delivery—
such as intra-articular release in autoimmune arthritis or 
macrophage-targeted delivery in intracellular infections. By 
coupling molecular selectivity with anatomical precision, such 
platforms are expanding the therapeutic index and facilitating 
safer, broader application of multitarget drugs [42].

Smart delivery systems are the unsung heroes of 
pan-target therapy. Ligand-directed platforms and stimuli-
responsive carriers offer anatomical precision—but are we 
leveraging them fully? Diseases like arthritis and tuberculosis 
demand localized solutions. Let us move beyond systemic 
exposure to site-specific action.

Nanomedicine as the chassis for cross-disease therapies
Nanomedicine is rapidly emerging as a versatile 

and powerful platform for cross-disease therapies, offering 
innovative solutions for complex medical challenges across 
oncology, infectious diseases, and chronic inflammatory 
conditions [20]. The unique properties of nanostructured 
carriers—such as liposomes, dendrimers, metallic nanoparticles, 
and polymeric micelles—enable them to encapsulate a wide 
range of therapeutic agents, including small molecules, 
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biologics, and nucleic acids. This versatility makes them ideal 
for combination therapies and targeted delivery [20,43].

In oncology, nanocarriers have significantly improved 
the delivery of chemotherapeutic agents by enhancing tumor 
penetration and reducing systemic toxicity. The use of 
stealth liposomes, such as those in the FDA-approved drug 
Doxil, exemplifies how nanomedicine can minimize immune 
clearance and improve drug accumulation at tumor sites [44]. 
These carriers also facilitate the co-delivery of multiple agents, 
enabling synergistic effects and overcoming drug resistance.

For infectious diseases, nanomedicine offers 
solutions to stabilize labile antimicrobials and transport them 
across biological barriers. This is particularly valuable in 
treating infections where conventional drugs fail due to poor 
bioavailability or rapid degradation [45,46]. Nanocarriers can 
be engineered to release their payloads in response to specific 
stimuli, ensuring that antimicrobials reach the site of infection 
effectively and with minimal systemic exposure. 

In the realm of chronic inflammatory diseases, 
nanomedicine provides spatiotemporal control over the release 
of immunomodulatory agents. This targeted approach helps 
mitigate the need for systemic immunosuppression, which 
often leads to adverse effects. Recent research highlights how 
nanomaterials suppress inflammatory signaling pathways and 
reduce the expression of pro-inflammatory cytokines such 
as reactive oxygen species, offering promising therapeutic 
outcomes in conditions such as wound healing, gastrointestinal 
disorders, and autoimmune diseases [47,48]. Moreover, 
nanomedicine is evolving toward theranostic constructs—
nanosystems that integrate both diagnostic and therapeutic 
functions. These constructs enable real-time monitoring of 
disease progression and adaptive treatment strategies, aligning 
well with pan-biomarker-guided therapies [20,47]. This dual 
functionality is particularly beneficial in personalized medicine, 
where treatment can be tailored based on dynamic biomarker 
profiles.

Nanomedicine is the chassis for upcoming cross-
disease therapies. Its versatility enables combination 
treatments, adaptive dosing, and real-time monitoring. But the 
field must embrace complexity—multiagent payloads, dynamic 
release profiles, and AI-guided modulation. The goal is not just 
delivery, but decision-making.

Computational acceleration: AI-driven design and systems 
pharmacology

There are several compelling success stories that 
demonstrate how AI-enhanced Computer-Aided Drug Design 
(CADD) has accelerated the development of cross-disease and 
multitarget therapeutics. These cases highlight the transformative 
potential of integrating AI into drug discovery pipelines [49,50]. 
One notable example is the development of Imatinib Mesylate 
(Gleevec), a targeted therapy for chronic myeloid leukemia 
(CML). Researchers used CADD techniques to identify the 
BCR-ABL fusion protein as a key driver of CML [51]. Virtual 
screening and molecular docking helped pinpoint molecules 
that could inhibit this target. Computational methods were then 
employed to optimize the lead compounds for potency, selectivity, 
and pharmacokinetics. The result was a highly effective drug that 

significantly improved patient outcomes and became a model for 
precision oncology [52,53]. 

Another success story is Oseltamivir (Tamiflu), 
an antiviral medication for influenza. Using structure-
based drug design, scientists determined the 3D structure 
of neuraminidase, a critical enzyme for viral replication 
[54–56]. AI-enhanced CADD tools facilitated the design of 
inhibitors that could bind to neuraminidase’s active site. This 
led to the development of Tamiflu, which became a frontline 
treatment for influenza worldwide [55,57]. In the realm of 
HIV treatment, Darunavir, a protease inhibitor, was designed 
using CADD to exploit the enzyme’s active site [58,59]. AI 
tools enabled precise modeling of the interaction between the 
drug and its target, resulting in a compound with high efficacy 
and resistance resilience. Darunavir is now a key component 
of antiretroviral therapy regimens [60]. More recently, AI-
driven platforms have been instrumental in developing Direct-
Acting Antiviral Agents (DAAs) for Hepatitis C Virus (HCV). 
These agents target multiple proteins involved in the HCV 
replication cycle [61–63]. Structure-based design, powered by 
AI, enabled the creation of inhibitors that bind effectively to 
these targets, leading to highly successful therapies that have 
transformed HCV treatment.

CONCLUSION
The evolution of pan-target-based therapy marks a 

significant departure from conventional, organ-centric treatment 
paradigms. By focusing on shared molecular mechanisms across 
diverse disease states, this approach offers a unified framework 
for therapeutic innovation. The integration of targeted drug 
delivery systems, nanomedicine platforms, and pan-biomarkers 
has demonstrated considerable promise in enhancing specificity, 
reducing systemic toxicity, and enabling cross-indication 
applications. Clinical successes in oncology, neurodegeneration, 
infectious diseases, and autoimmune disorders underscore the 
translational potential of these strategies. However, realizing 
their full impact requires continued investment in modular 
delivery technologies, biomarker-driven patient stratification, 
and regulatory pathways that accommodate mechanism-guided 
therapies. As biomedical research advances toward greater 
convergence, pan-target therapeutics stand poised to redefine 
precision medicine and expand its reach across global health 
landscapes.
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