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INTRODUCTION
Cephalosporin class antibiotics are widely used due 

to their broad activity against gram-positive and negative 
bacteria. In 2003, the sales of cephalosporin antibiotics were the 
highest in the world [1]. WHO Global Antimicrobial Resistance 
Surveillance System report in 2019 stated that cephalosporins 
(generations 3, 4, and 5) were one of the five antibiotics included 
in the Highest Priority Category [2]. A survey that collected 
antibiotic consumption data from 204 countries from 2018 to 
2020 showed that there was a large increase in the consumption 
of third-generation cephalosporin antibiotics in North Africa, 
Central Asia, and South Asia [3]. As well as other beta-
lactam antibiotics, resistance to cephalosporins has emerged. 
Nonetheless, researchers continue to work on modifying their 
side chains due to their promising potential activities, such 
as cefiderocol discovered in 2018 and then approved by the 

US Food and Drug Administration for complicated urinary 
infections and pyelonephritis in 2019 [4,5].

Cephalosporin class antibiotics are synthesized from 
a precursor named 7-aminocephalosporanic acid (7-ACA) 
obtained from the deacetylation of cephalosporin C, a natural 
antibiotic isolated from fungi Acremonium chrysogenum in 
1945 by Giuseppe Brotzu [1,6]. Synthesis of 7-ACA can be 
carried out enzymatically from cephalosporin C through two 
stages involving D-amino acid oxidase (DAAO) and Glutaryl 
7-ACA acylase (GA) enzymes. The two-stage synthesis process 
is costly so researchers are trying to find another method to 
simplify the process so 7-ACA can be directly synthesized from 
cephalosporin C [6].

Researchers found that there is a GA enzymes that 
naturally have the activity to directly convert cephalosporin 
C into 7-ACA. Some types of GA enzymes that are known to 
have cephalosporin C acylase (CA) activity are GA enzymes 
produced by Pseudomonas sp. SE83 (1987), V22 (1987), and 
N176 (1992). However, the activity of these GA enzymes 
toward cephalosporin C is very low, approximately about 4% 
compared to Glutaryl-7-ACA [6–9]. Therefore, increasing the 
strength of its bond with cephalosporin C is necessary so that 
its activity increases and becomes more suitable for industrial 
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use of relatively simpler and cheaper tools because the reagents 
involved are safe for the environment; better quality because of 
specific results, hence contamination of the final product can be 
avoided [6].

It has been previously mentioned that at the beginning, 
bioconversion of cephalosporin C to 7-ACA involves two 
stages (Fig. 2). In the first stage, DAAO converts cephalosporin 
C into keto-adipoyl-7-ACA, hydrogen peroxide released 
automatically induces oxidative decarboxylase to form Glutaryl 
7-ACA. In the second stage, 7-ACA is formed with the help 
of GA. The bioconversion of cephalosporin C to 7-ACA using 
a two-stage reaction is more efficient than using a chemical 
reaction. However, the presence of hydrogen peroxide resulting 
from the DAAO enzyme reaction also has a negative effect on 
affecting stability of the GA enzyme. Several ways have been 
found to overcome this problem, such as the use of catalase [11] 
and the replacement of DAAO with D-amino acid transaminase 
from Bacillus licheniformis ATCC 9945 [12]. 

As research progressed, the two-stage bioconversion 
was replaced with a simpler and more efficient one-stage 
reaction. One-stage bioconversion can be performed by 
cephalosporin CA enzyme. As shown in Figure 1, CA breaks 
the amide bond connecting the cephem core to the acyl group 
[13]. CA and GA mechanisms of action are similar because 
they act on the same site (Fig. 3), but only some classes of 
GA that have CA activity can act directly on cephalosporin C 
substrates, namely GA classes I and III. GA enzymes that have 
CA activity are produced by several microorganisms including 
Pseudomonas sp. strain N176 [7,14], Pseudomonas sp. V22 [7], 
and Pseudomonas sp. strain SE83 [8,15]. However, GA activity 
toward cephalosporin C is naturally very low [6].

CEPHALOSPORIN CA AND ITS STRUCTURAL 
MODIFICATION

Cephalosporin CA belongs to N-terminal nucleophile 
aminohydrolase (Ntn hydrolase) superfamily based on the 
structural classification of proteins classification [16]. The 
open reading frame gene structure of this superfamily members 
consists of a signal peptide, followed by α subunit, spacer, and β 
subunit [17]. Members of this superfamily have several specific 
characteristics, such as: 

a.  Enzymes structure are composed of four layers 
consisting of α-helices and β-sheets forming 
heterodimer (αβ) or heterotetramer (αββα) structures 
[18].

b.  Enzymes are expressed as inactive precursors and 
then undergo autoproteolytic reaction to become 
active enzymes after being translocated to the 
periplasm [18,19].

c.  N-terminal residue of β-chain plays two catalytic 
functions for amide bond hydrolysis, as a 
nucleophile and proton donor. Ser170 residue plays 
a role in this process [18,19].

Relative activity of wild-type CA produced by 
Pseudomonas sp. strain N176, Pseudomonas sp. V22, 
Pseudomonas sp. strain SE83 (acyII) toward cephalosporin 
C when compared to Glutaryl-7-ACA substrate were 2.4%, 
3.2%, and ~4% respectively [6,7]. To obtain higher CA activity, 

applications. To achieve this goal, several methods can be used, 
such as modification of enzyme structure and optimization 
of enzyme expression in certain host organisms, such as 
Escherichia coli. This article aims to discuss the importance of 
cephalosporin CA enzyme, obstacles faced in its expression in 
E. coli, and strategies for optimization.

CEPHALOSPORIN C
Cephalosporin C was the second beta-lactam class 

antibiotic discovered and used in clinical therapy after penicillin. 
Cephalosporin C was discovered in 1945 by a doctor named 
Giuseppe Brotzu. He found that a fungus from seawater near 
a sewage drain in the city of Cagliari (Italy) had antibacterial 
activity against Staphylococcus aureus, Vibrio cholera, and 
Bacillus anthracis. The fungus was initially identified as 
Cephalosporium acremonium but later was reclassified as A. 
chrysogenum. In 1953, Guy Newton and Edward Abraham 
from Oxford isolated and purified the antibacterial substance 
produced by the fungus which was initially named as Penicillin 
N. In 1962, Robert Morin from Lily Company discovered a 
process that could break the D-α-amino adipoyl group on the 
side chain of cephalosporin C and produce 7-ACA. This became 
an inspiration for the development of cephalosporin-class 
antibiotics with better activity. The advantage of cephalosporin 
antibiotics over penicillins in their development is that 
cephalosporin C can be modified by two sites, unlike penicillins 
which only have one site. The two sites are the 7-amino group 
and C3 atom in the acetoxy group (Fig. 1). However, modifying 
the side chain of cephalosporin C by chemical reaction is not 
easy. The reaction requires harsh conditions and produces toxic 
by-products that require complicated elimination processes 
[6,10].

ROLE OF CEPHALOSPORIN CA 
The use of CA enzymes to directly convert 

cephalosporin C into 7-ACA provides many advantages, such 
as not resulting in toxic chemicals, i.e., trimethoxychlorosilane, 
phosphate pentachloride, dichloromethane, dimethylaniline, 
and others; reactions are selective, so that the use of temporary 
protective groups is not necessary; low energy consumption 
allows the reactions to occur at temperatures 20°C–30°C; the 

Figure 1. Structure of cephalosporin C. Cephalosporin C consists of D-amino 
adipic acid 7-ACA groups. The 7-amino group and C3 on the acetoxy group 
which are key sites for modification of cephalosporin-class antibiotics are 
indicated by red arrows. Modified from Pollegioni et al. 2013 [6].



 Rasyidah et al. / Journal of Applied Pharmaceutical Science 14 (10); 2024: 015-024 017

modification of enzyme structure is necessary, i.e., through 
mutation techniques by involving knowledge of the relationship 
between structure and function of GA presented in Table 1. 

In 2007, Shin et al performed a six-point mutation of 
CA (acyII) encoding gene from Pseudomonas sp. SE83 resulting 
S12 variant (CAs12). The mutations are by replacing Val121α 
to Ala, Gly139α to Ser, Phe58β to Asn, Ile75β to Thr, Ile176β 
to Val, and Ser471β to Cys. CAs12 has specific activity toward 
cephalosporin C 5.8 units/mg protein, which was increased 

8.5-fold compared to wild-type CA. In addition, there was also 
an increase in Ki value from 0.4 to 1.9 µM which indicates a 
reduction of 7-ACA production inhibition [20]. In 2012, Wang 
et al. published their findings that the replacement of alanine 
at position 675 with glycine was able to increase the specific 
activity of CA to 11.3 U/mg protein. The chemical structures 
of alanine and glycine are shown in Figure 4. The mutation is 
in the cavity associated with substrate transport in CA from 
Pseudomonas sp. SE83 [21]. The absence of a methyl group 
on the amino acid glycine as on alanine, probably widened the 
cavity so that cephalosporin C could more easily enter and bind 
to the active side of CA.

ESCHERICHIA COLI AS EXPRESSION HOST

Advantages of E. coli as expression host
The selection of the host organism is the first thing to be 

determined in the stages of the recombinant protein expression 
process. Host organisms will affect the overall technology used. 
Some host microorganisms that can be used for recombinant 
protein expression include bacteria, yeast, filamentous fungi, 
and unicellular algae. Those host microorganisms have their 
advantages and disadvantages. One of the most popular host 
microorganisms used in recombinant protein production is E. 
coli [22–24]. The advantages of E. coli are well characterized; 
fast growth kinetics (on optimal growth media has a doubling 
time of 20 minutes), easy-to-obtain cultures with large cell 
densities (theoretically on liquid media E. coli can reach a cell 
density of 200 g dry cell weight/L or 1 × 1013 live bacterial 
cells/ml; in batch cultures on LB media at 37°C the growth 
limit is lower, which is less than 1 × 1010 cells/ml); and DNA 
transformation can be performed quickly and easily [25–28].

Figure 2. Bioconversion of cephalosporin C to 7-ACA. One-stage bioconversion of cephalosporin C to 7-ACA (top) using cephalosporin C acylase (CA) enzyme. 
While, two-stage bioconversion (bottom) using DAAO) and GA enzyme. Modified from Pollegioni et al. 2013 [6].

Figure 3. GA and CA action sites in their substrate. GA with Glutaryl-7-ACA 
as substrate (top) and cephalosporin C-acylase (CA) with cephalosporin C as 
substrate (bottom) have the same site of action in their substrate, that is amide 
bond connecting the cephem nucleus to the acyl group indicated by the red 
arrow. Modified from Fritz-Wolf et al. 2002 [13].
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Various E. coli strains have specific characteristics 
according to their intended use. For expression purposes, there 
are two commonly used E. coli strains, namely E. coli BL21 
(DE3) and K-12 derivatives. Escherichia coli BL21 (DE3) 
is characterized by lacking Lon protease, an enzyme that 
can degrade proteins, which is advantageous for stabilizing 
recombinant proteins [29]; missing the gene encoding 
Escherichia coli outer membrane protease (OmpT) protease that 
degrades extracellular proteins. The presence of OmpT disrupts 
the stability of proteins isolated by cell lysis [30]; mutations 
in hsdSB are beneficial for maintaining plasmid stability from 
DNA methylation and degradation; and λDE3 prophage inserted 
in chromosome BL21 contains a gene encoding T7 RNA 
polymerase enabling certain genes placed under T7 promoter 
on the plasmid being expressed [31]. 

Disadvantages of E. coli as expression hosts
Besides its various advantages, the use of E. coli in 

general and E. coli BL21 (DE3) in particular for recombinant 

protein production also has several obstacles (Table 2) that need 
to be overcome so that the expression of recombinant proteins 
in E. coli can be maximized [31,32].

The first obstacle is low production of recombinant 
proteins or no production at all. This is caused by two things, either 
the expression of toxic proteins or bias codons. To determine 
the expression of toxic proteins, we can monitor the growth of 
cells containing empty plasmids and plasmids containing the 
gene to be expressed. If there is a slowdown of growth in cells 
with plasmids containing the gene to be expressed, it can be 
confirmed that there is toxic protein production. Toxic proteins 
can be produced before and after induction [31]. Meanwhile, 
codon bias occurs when the frequency of foreign codons is 
high, resulting in a lack of tRNA. Consequently, the expression 
and activity of the recombinant protein become lower [33]. In 
general, this first obstacle has been overcome by the use of an 
appropriate promoter system in the expression host used, host 
modification, and codon optimization [31]. 

The second and third obstacles, namely inclusion body 
formation and inactive protein production, are more difficult to 
overcome thus being the main disadvantages of using E. coli 
as a host for heterologous protein expression. There were many 
solution options that required optimization to find the one that 
best suits the expected expression conditions [31,32,34]. In the 
next section, we will discuss how to minimize the formation of 
inclusion bodies and increase the activity of the proteins produced 
using chaperones and osmolytes as well as optimization of 
fermentation conditions and transcriptional control.

PRODUCTION STRATEGY OF CEPHALOSPORIN CA 
IN E. COLI

Due to the widespread use of  E. coli as a host 
expression system, several strategies need to be implemented to 

Table 1. Structure and function relationships of Gas. Adapted from Pollegioni et al. [6].

Aspects Residue Specific role of residues References

Active side and 
Bonding with GL-7-
ACA

Arg57β Electrostatically interacts with negative charge on the carboxylic group of glutaryl [19]

Tyr178α, Tyr33β Forms a hydrogen bond with O atom on the carboxylic group of glutaryl [19]

Leu24β, Val70β, Gln50β and 
Phe177β

Hydrophobic interaction with aliphatic glutaryl chain [19]

Arg184α Forms a hydrogen bond with acetoxymethyl group at C3 position [19]

Specificity to GL-7-
ACA

Tyr178α, Tyr33β, and Arg57β Forming a cavity on the active side thus increase the bond with cephalosporin C, it is 
necessary to enlarge the cavity [because α-amino adipil group of cephalosporin C is 
larger than glutaryl group of Glutaryl-7-ACA) by mutating and adding His and Glu 
amino acids that are able to bind to the positive charge on α-amino adipil group of 
cephalosporin C (mutation recommendations: Leu24βArg, Gln50βArg, Thr176βAsp, 
and Phe177βHis)

[13]

Catalysis Ser1β (Ser170) Attacks carbonyl groups on amide bonds [58]

His23β and Glu455β At physiological pH in the unprotonated state, it acts to stabilize the positive charge of 
tetrahedral intermediates formed during catalysis on α-amino group by Ser1β

[13]

Val70β[NH), Asn244β NH2 ) 
and His23β(NH)

Forms a negatively charged oxyanion hole, which will form two hydrogen bonds with 
oxygen and promote the change of tetrahedral intermediates to 7-ACA

[58,59]

Maturation His23β (His192) and Glu455β 
(Glu624)

Forms a catalytic complex with water that will attack the peptide bond between 
Gly198α (Gly169) and Ser1β (Ser170) in the first reaction

[60,61]

Glu188α (Glu159) Activates water molecules to attack the peptide bond between Gly189α (Gly160) and 
Asp190α (Asp161) in the second reaction resulting in spacer breakage

[61]

Figure 4. Chemical structure of alanine and glycine. The only difference in the 
chemical structure of alanine and glycine is the presence of a methyl group.
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and glutaredoxin-glutaredoxin reductase (gor) systems, leading 
to reduction reactions instead of oxidation [37]. 

Chaperones are key in protein quality control that helps 
proteins achieve their final structure. Examples of chaperones 
include GroEL/GroES, DnaK/DnaJ, and ClpB [34]. High 
protein expression in the cytosol as occurs in the production of 
recombinant proteins causes the protein quality control system 
in the cell to become saturated resulting in misfolding [35,38]. 
To overcome this, chaperone co-expression can be performed. 
DnaK/DnaJ binds to the hydrophobic part of the polypeptide 
thus preventing aggregation and maintaining solubility. GroEL/
GroES binds to the polypeptide and helps its folding [39]. ClpB 
helps in the prevention of aggregation and also resolubilization 
of aggregated proteins in bacteria This chaperone is naturally 
produced by Mycobacterium tuberculosis to encounter several 
stresses within the host [40]. Utilization of chemical chaperones, 
also called osmolytes, can be carried out in vitro by adding 
osmolytes to the protein isolate or mimicking in vivo conditions 
by adding osmolytes to the culture medium. Examples of 
osmolytes are proline, glycine betaine, and trehalose [41,42].

Proline (Fig. 5) plays an important role in bacteria. It 
can be used as an osmoprotectant, a stabilizer of protein, and 

increase efficiency in the production of recombinant proteins, 
as described in this chapter.

Minimizing inclusion body formation: chaperones and 
osmolytes

Inclusion bodies are protein aggregates that form 
when foreign genes are expressed in E. coli. Inclusion bodies 
can arise as a result of E. coli losing spatiotemporal control. 
Recombinant proteins are expressed in a microenvironment 
that is different from the source organism, in terms of pH, 
osmolarity, redox potential, cofactor availability, and folding 
mechanism. In addition, high expression levels lead to high 
hydrophobic stretching that causes interactions at similar parts 
between proteins [35,36]. Inclusion bodies can also form due 
to errors in disulfide bond formation. In E. coli, the majority 
of disulfide bonds occur in the periplasm because cysteine 
oxidation occurs in the periplasm. Cysteine residues are part 
of the catalytic site of many enzymes. Enzymes that undergo 
maturation in the periplasm and fail to translocate will remain 
in the cytosol and consequently fail to form disulfide bonds. 
This occurs because cytosol has more negative redox potential 
that is controlled by thioredoxin-thioredoxin reductase (trxB) 

Table 2. Obstacles to recombinant protein production in E. coli and solutions. Adapted from Francis and Page [32] and Rosano and Ceccarelli [31].

Obstacles Causes Solutions

Low or no production Toxic proteins before 
induction

• Basal induction control (glucose addition when using lac-based promoters, using pLysS/pLysE host 
strains in the T7 system, using promoters with tighter regulation capabilities)

• Lower plasmid copy number

Toxic proteins after induction • Control the level of induction (promoter or host strain used, e.g. Lemo21 (DE3), lacY): Lemo21 
(DE3), lacY)-

• Lower plasmid copy number

• Direct protein expression to the periplasm

Codon bias • Codon optimization (codon frequency in cDNA and adjusted to the host strain used)

• Increase biomass (media formulation, aeration)

Formation of an 
inclusion body

Errors in disulfide bond 
formation

• Directing proteins to the periplasm

• Using E. coli strains with oxidative cytoplasmic environments, for example: Origami (Novagen) 
and Shuffle (NEB) strains with trxB-  and gor- features

Folding error • Co-expression of chaperones

• Media supplementation with chemical chaperones and cofactors

• Removing the inducer and adding new chloramphenicol-supplemented medium to stop the protein 
expression rate

• Lowering the rate of protein expression (lowering the temperature, adjusting the concentration of 
inducer)

Inactive protein Insoluble protein Protein fusion with solubility enhancer 

Requires post-translation 
stage

Replacing host microorganisms

Imperfect folding • Lowering the temperature

• Monitor the formation of disulfide bonds

• Performing folding in vitro

cDNA mutations • Sequencing of plasmids before and after induction

• Using host strains with recA features- 

• Plasmid transformation is carried out every time expression will be carried out
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help cells to survive a variety of stresses. Escherichia coli can 
naturally synthesize proline from glutamate which is tightly 
controlled via the feedback inhibition mechanism of γ-glutaryl 
kinase reaction. Moreover, accumulation of proline also can be 
achieved by active transport across plasma membrane via three 
transporter systems, that is putP, proP, and proW [43].

Glycine-betaine (Fig. 5) is an important osmolyte for 
bacteria. Glycine-betaine is a potent osmoprotectant widely 
distributed in nature and its intracellular accumulation is 
achieved through uptake from the environment or synthesis 
from choline precursors [44]. Glycine-betaine protects bacterial 
cells from suddenly increased environmental osmolarity that 
can lead to rapid expulsion of water from the cell and result 
in decreased turgor that spurs rapid uptake of K+ ions [45]. 
K+ ions that enter the cell can affect cell physiology which 
may also affect the maturation of certain enzymes in the cell. 
In addition, osmolytes can also act as chemical chaperones by 
increasing protein stability and aiding the folding of unfolded 
polypeptides. Glycine-betaine has been reported capable of 
preventing protein aggregation in E. coli under heat stress 
[42,46]. However, the use of glycine-betaine in soil bacteria 
Ralstonia eutropha H16 is reported to have a partial inhibitory 
effect when the concentration is excessive [47]; therefore, its 
use in E. coli needs to be optimized for concentration. 

Trehalose (Fig. 5) is a non-reducing sugar found in 
bacteria and yeast. These sugars can act as osmoprotectants that 
help maintain celuller integrity under various stress conditions 
by affecting the antioxidant defense system. The special feature 
of trehalose is its ability to induce the accumulation of several 
other osmolytes, such as proline and glycine-betaine. Therefore, 
the presence of trehalose helps cells to be able to adapt to more 
varied stress conditions [48]. 

Optimization of fermentation conditions
Fermentation conditions are an important factor 

in protein production, including the CA enzyme in this 
discussion. It is known that variations in the concentration 
of isopropyl β-D-1-thiogalactopyranoside (IPTG) inducer 
and the length of fermentation time affect the expressed CA 
activity [49]. Temperature during fermentation also affects CA 
activity through its effect on inclusion body formation. Lower 
fermentation temperature leads to a reduction in inclusion 
bodies formation, thus increasing the activity of CA [50]. 
Fermentation media composition also needs to be optimized to 

obtain high CA activity, such as media type, carbon source, and 
nitrogen source.

Optimization of fermentation media for CA production 
in Pseudomonas sp. host has been reported using various types 
of media, carbon sources, and nitrogen sources (organic and 
inorganic). The types of media used were nutrient broth, minimal 
broth, casein hydrolysate broth, soybean casein digest broth, 
and Luria Bertani (LB) broth where the highest CA activity was 
obtained in fermentation using soybean casein digest broth. 
Variations of carbon sources used were galactose, dextrose, 
sucrose, fructose, and maltose where the highest CA activity 
was obtained in fermentation using galactose carbon source. 
Variations of organic nitrogen sources used were peptone, 
yeast extract, casein enzyme hydrolysate, soybean lysate, and 
meat extract where the highest CA activity was obtained in 
fermentation with peptone organic nitrogen source. While the 
variation of inorganic nitrogen sources used were ammonium 
sulfate, ammonium chloride, ammonium phosphate, and 
ammonium nitrate where the highest CA activity was obtained 
in fermentation using ammonium sulfate inorganic nitrogen 
source [51]. 

Optimization of fermentation conditions for 
CA production also has been reported in Achromobacter 
xylosooxidans. The parameters optimized were temperature, pH, 
carbon source, inorganic/organic nitrogen source, and inoculum 
level. The maximum CA activity in LB broth was achieved at 
a temperature of  30oC after 72 hours of fermentation. At a 
temperature of 30oC with a changing initial pH of 5–10, the 
highest enzyme activity was measured to be 28.9 U/ml at pH 
8.0. As a carbon source, 4 g/l galactose had the highest CA 
activity than other carbon sources used (dextrose, sucrose, 
maltose, fructose). Ammonium sulfate is the best inorganic 
nitrogen source at a concentration of 2.5 g/l, while yeast extract 
is the best organic nitrogen source at a concentration of 3 g/l. 
The optimum inoculum level used was 4% v/v although overall 
it did not give significantly different results compared to other 
parameters [52].

In 2012, Wang et al. optimized the fermentation 
conditions for the production of mutant CA in E. coli JM109 
(DE3) host. The highest mutant CA activity (5349 U/L) was 
obtained in batch fermentation using 3 g/l lactose as an inducer 
in the semi-defined medium. Composition of semi-defined 
medium used was 50 g/l corn steep liquor; 10 g/l yeast extract; 
2.5 g/l NH4 Cl; 2.3 g/l KH2 PO4; 16.4 g/l K2 HPO4; 5 g/l 

Figure 5. Chemical chaperones structure. Chemical structure of proline, glycine-betaine, and trehalose, some chemical 
chaperones used for osmoprotectants in bacteria [42,46].
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structures and inhibit DNA to form a complex with RNA 
polymerase. Conversely, higher AT contents in the spacer 
coding sequence can lead to transcription strength increases 
[53]. 

In 2018, Ammar et al. discovered a mechanism of 
catabolite repression in E. coli toward non-glucose sugars, where 
the most favored sugar would repress the expression of genes 
involved in the metabolism of other sugars. The metabolism 
of these sugars is hierarchically organized, with lactose as the 
most preferred sugar, followed by L-arabinose, then D-xylose. 
The mechanism of catabolite repression is closely related to 
the level of cyclic adenosine 3′,5′-monophosphate (cAMP) 
[46]. In the pET expression system, there is a component 
called lac operon that functions to regulate RNA transcription, 
both stimulating (promoter) and decreasing (repressor). 
Stimulation of transcription is not only influenced by inducers 
(Fig. 6) but also cAMP levels (Fig. 7). These cAMP levels are 
influenced by the carbon source used or sugar. CAMP levels 
will increase if the carbon source used is more unfavorable, 
for example, cAMP levels when using a carbon source in the 
form of glucose are lower than when using glycerol. Inducers 
stimulate transcription by binding to the lac repressor so that its 
binding to the lac operator decreases. Meanwhile, an increase 
in cAMP level stimulates transcription through binding of the 
CAP/cAMP complex with the CAP/cAMP binding site on the 
lac promoter. Thus, full transcriptional activation can only 
be achieved if there is an inducer and there is an increase in 
cAMP levels. Escherichia coli BL21 (DE3) carries the L8-UV5 
promoter, which contains a three-point mutation of the wild-
type lac promoter (Fig. 7). This mutation reduces sensitivity to 
catabolite repression while not eliminating it [54]. 

glycerol. While the fermentation condition was using pH 7.5; 
fermentation at 28oC for 24 hours, shaker rotation speed of 200 
rpm. The inoculum concentration used was 2.5%. Inoculum 
was made using LB media containing 50 μg/ml kanamycin, 
incubation was carried out at 37oC overnight, shaker rotation 
speed of 200 rpm [21].

Transcriptional control
Reduction of GC contents in spacer coding sequences 

can increase transcription strength. Higher GC contents in the 
sequence can lead to the formation of more stable secondary 

Figure 6. Chemical Structure of IPTG, lactose, and arabinose. IPTG, lactose, 
and arabinose are inducers commonly used in protein expression using E. coli 
as organism host [56,58].

Figure 7. Transcriptional control of T7 gene in λDE3. Transcription of T7 gene is controlled by L8-UV5 lac promoter and has undergone 
three mutations compared to the wild-type lac promoter. Lac repressor (encoded by lacI) binds to lacO1 and interacts with pseudo-operators 
(lacO2 and lacO3) to prevent transcription. IPTG inducer binds to the repressor thus decreasing its affinity with lacO1 and transcription can 
occur. When cAMP levels are sufficiently high, the CAP/cAMP complex binds immediately to the upstream position of the promoter and 
leads to transcription stimulation. If the CAP/cAMP complex is not formed, the transcription level will decrease, which is called catabolite 
repression. Modified from Novy and Morris  [54].
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