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INTRODUCTION
Lung cancer is the deadliest cancer because it is one 

of the most chronic types of cancer in the world [1–3] and can 
occur in men and women [4,5]. This disease based on basal 
epithelial cells is classified into two types, namely non-small 
cell lung cancer (NSCLC) and small cell lung cancer (SCLC) 
[6]. NSCLC accounts for around 85% of lung cancer cases, 
with details of 40% adenocarcinoma, 5%–10% large cell 
carcinoma, and the remaining 30% originating from squamous 
cells. Meanwhile, SCLC will account for 15% of all cancers 
consisting of normal, undifferentiated small cells by 2030 [3,7]. 

Lung cancer could be caused by tobacco smoking, 
environmental exposures (such as second-hand smoke, air 

pollution, and radon), exposure to asbestos and arsenic, and 
epigenetic changes [8]. Commonly used treatments for lung 
cancer include surgery, radiation therapy, chemotherapy, molecular 
targeted therapy including epidermal growth factor receptors or 
anaplastic lymphoma kinase inhibition, and immunotherapy [9,10]. 
Although advanced treatment methods have been developed, the 
prognosis for lung cancer remains very unsatisfactory. Recent 
research reports that chemical compounds extracted from natural 
products are potential and effective for the treatment of lung cancer. 
Drug formulations from natural ingredients, namely paclitaxel, 
doxorubicin, and camptothecin, have been reported to have high 
efficacy in the treatment of lung cancer [11]. Therefore, targeted 
cancer therapy with specific signaling using natural compounds 
is promising and is being developed into pre-clinical and clinical 
trials [12]. Specifically, treatment with various combinations of 
natural compounds shows good effectiveness and safety levels in 
the treatment of lung cancer, which were tested in vivo [13], so they 
are promising in the development of bioactive compounds derived 
from natural ingredients.
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ABSTRACT
Lung cancer raises a serious concern because of its position as the second global deathliest disease in both men and 
women. Conventional treatments emphasize chemotherapy and radiation or their combination, which is considered 
to be ineffective due to harmful side effects in patients. In this work, we did a bioinformatic investigation using 
the pharmacological network and molecular docking approaches to evaluate the potency of natural compounds 
isolated from the leaves of Coleus amboinicus, Lour, i.e., 16-hydroxy-7α-acetoxyroyleanone and 16-acetoxy-
7α-hydroxyroyleanone. The activity of both active compounds against lung cancer was predicted using disease 
databases and genes. A total of 77 core targets were identified from the analysis using STRING and built using 
Cytoscape. Gene ontology, and kyoto encyclopedia of genes, and genome analysis of cancer pathways targeting 
PGTS2 and peroxisome proliferator-activated receptor gamma were employed because of their critical functions 
in cancer therapy. The validated molecular docking analysis illustrates the possibility of interactions that occur 
between active compounds of target proteins in the treatment of lung cancer. This research has not yet been able to 
demonstrate its potential in the treatment of lung cancer, and further research is needed to prove it through in vitro 
and in vivo examinations before pre-clinical and clinical tests in the future.
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The predicted target gene data was downloaded in CSV format, 
and the data was filtered and integrated using Microsoft Excel 
software. Predicted target components were imported to UniProt 
for the normalization process, followed by the restriction to the 
human species. Afterward, all target proteins were retrieved and 
corrected according to common names. Anticancer lung targets 
of the active compounds were imported into Cytoscape (3.10.1) 
to generate “target-active compounds” tissue. The link between 
the active compound and the target is called a node, and the 
correlation between the active compound and the target is 
called an edge. Information on proteins involved in lung cancer 
was obtained using the National Center for Biotechnology 
Information GeneCards database (https://www.genecards.org/), 
TTD (https://db.idrblab.net/ttd/), OMIM (https://www.omim.
org/), and DisGeNET using the keyword “lung cancer.” Both 
information on active compound components and treatment 
target components in lung cancer were processed using 
VENNY 2,1 (https://bioinfogp.cnb.csic.es/tools/venny/index.
html) to obtain Venn diagrams of active compounds and with 
lung cancer as the component targets [12,20,21].

Protein-protein interaction (PPI) analysis and screening
PPI determines the interaction relationship between 

two or more proteins based on biochemistry, hydrophobicity, and 
electrostatics. Protein is an important part of biological processes 
that occur in living things, both in healthy and diseased conditions. 
Gene and protein interconnections are represented by PPI, as this 
network is an important part of bioinformatics research [20]. The 
protein that intersects the active compound and lung cancer is 
uploaded to the STRING online site (https://string-db.org/) with 
the settings Homo sapiens with a confidence level of 0.4, and 
other parameters were selected as default. PPI relationships with 
node1, node2, and the combined score from the export file are 
imported into Cytoscape 3.10.1 to form an interaction network. 
The results of the analysis of the top target were carried out using 
the CytoHubba plugin to obtain the highest protein with the 
highest 20-degree value for the next stage [12,21].

Gene Ontology (GO) and Kyoto Encyclopedia of Genes, and 
Genomes (KEGGs) pathway analysis

GO and KEGG analyses were performed with the 
approach of biological processes, cellular components, gene 

The royleanone compounds and their derivatives 
from natural materials have been successfully isolated, 
including 7α-acetoxyroyleanone and Horminone from the 
Peltodon longipes plant, and showed a cytotoxic effect on 
pancreatic cancer cells (MIAPaca-2) and melanoma cancer 
cells (MV-3) [14,15]. Hormone compounds from the plant 
Salvia lachnocalyxdan show cytotoxicity against breast cancer 
cells (MCF-7) and human chronic myelogenous leukemia (K-
562) [16]. The compounds 16-hydroxy-7α-acetoxyroyleanone 
and 16-acetoxy-7α-hydroxyroyleanone were successfully 
isolated from the leaves of the Coleus amboinicus, Lour., plant 
and showed potential as antioxidants [17,18]. The chemical 
structure of 16-hydroxy-7α-acetoxyroyleanone and 16-acetoxy-
7α-hydroxyroyleanone is shown in Figure 1. These compounds 
belong to royleanone derivatives, which are reported to 
have potential in cancer treatment. Based on the previous 
information, we will continue to study the potential application 
of both royleanone derivatives in the treatment of lung cancer 
using bioinformatic approaches and network pharmacology as 
initial assays before further developing in vitro and in vivo tests.

MATERIALS AND METHODS

Materials
In general, the tools used in molecular docking include 

computers (Intel Core I5-10400F, 16 GB RAM DDR4, 256GB 
SSD NVME, and VGA AMD Radeon RX6600) with a Windows 
10 Home operating system, Auto Dock Tools 1.5.6, PyRx 0.8, 
PyMOL 2.3, GaussView 5.0 (MDL Information Systems, Inc.), 
and Discovery Studio 21.0 Client (DSV 19.0) software. The 
natural compounds that were studied in this study through a 
bioinformatic approach were 16-hydroxy-7-acetoxyroyleanone 
and 16-acetoxy-7α-hydroxyroyleanone. The bioinformatics 
approach to the isolated compounds used the Swiss target 
prediction database, Cytoscape 3.10.1, Online Mendelian 
Inheritance in Man (OMIM), DisGeneNet, therapeutic targets 
database (TTD), and GeneCards.

Isolated active compound
Two active compounds, named 16-hydroxy-7α-

acetoxyroyleanone and 16-acetoxy-7α-hydroxyroyleanone 
were isolated from the ethyl acetate extract of the leaves of 
the C. amboinicus, Lour., plant. The ethyl acetate extract was 
obtained from the multilevel partitioning of the methanol 
extract with n-hexane, chloroform, and ethyl acetate, as 
reported earlier [17,18]. Structures of isolated compounds were 
built with GaussView 5.0 (MDL Information Systems, Inc.) and 
optimized with Gaussian 09W using the density function theory 
(DFT) method with the B3LYP hybrid function and 3-21G(d,p) 
basis set [19].

Identification of the potential activity of active compounds 
against lung cancer

Active compounds resulting from 3-D optimization 
were opened with ChemDraw to obtain SMILE data for 
predicting target genes and molecular docking. SMILE active 
compound structure data was uploaded to the Swiss target 
prediction database (http://www.swisstargetprediction.ch/). 

Figure 1. Royleanone compounds isolated from the ethyl acetate extract of C. 
amboinicus, Lour., leaves.
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functionality, cellular components, and molecular functions. 
The results of bioinformatic analysis of STRING data [12,21] 
were obtained by importing active compounds intercept targets 
with lung cancer to result in the molecular mechanisms of active 
compounds in the treatment of lung cancer.

Molecular docking approach
Molecular docking is a rational drug design method 

based on exploring the interaction between ligands (active 
compounds) and receptors (proteins). The interactions were 
studied to predict the binding affinity of active compounds 
for proteins, as well as the intermolecular patterns conferring 
biological activity [22,23]. Molecular docking could be carried 
out using AutoDock Vina, developed by the Scripps Research 
Institute, for semi-flexible molecular docking computing. 
AutoDock Vina uses complex gradient algorithms and multi-
threaded techniques to produce predictions that are more 
accurate and faster when compared to AutoDock 4 [21]. The 
optimized active compounds were tethered to three cancer 
proteins obtained from the KEGG cancer pathway. The protein 
codes were traced to the PDB database (https://www.rcsb.
org/) and selected specifically for lung cancer. The best protein 
crystal structures were selected, and the PDB database was 
downloaded. Protein PDB files of active compounds and ligand 
molecules are imported into the AutoDock tool for molecular 
docking. AutoDock Vina was run to bind the active compound 
treated to the target protein ten times, and the lowest binding 
energy for each docking was taken as the final result. Complexes 
were then observed and plotted using PyMOL [21].

RESULTS AND DISCUSSION

Optimization of active compounds
Two active compounds, namely 16-hydroxyroyleanone-

7α-acetoxyroyleanone and 16-acetoxy-7α-hydroxyroyleanone, 
were prepared by optimizing their structure to obtain the most 
stable energy with Gaussian 09W using the DFT method with 
B3LYP hybrid function and 6-31G(d,p) basis set. Their structures 
are then validated with AutoDockTools, as shown in Table 1. 

The optimizing process of the compounds was carried out to 
obtain thermal stability and molecular charge as well as their 
biochemical behavior based on quantum mechanics calculations 
[24]. The results of molecular optimization are expected to have 
the same molecular structure in the human body.

Identification of active compounds against lung cancer
The Swiss Target Prediction results had the densest 50 

targets from 16-acetoxy-7α-hydroxyroyleanone (Compound 1) 
and 54 targets from 16-hydroxy-7α-acetoxyroyleanone 
(Compound 2). At the same time, the combined prediction of 
both active compounds produced 104 targets. Predictions of 104 
total targets were analyzed by eliminating targets so they were 
not doubled to obtain a total of 77 targets. The resulting active 
compound-target network was formed using Cytoscape 3.10.0 
software (Fig. 2a). Based on validation results from various 
databases, 18,404 protein targets associated with lung cancer 
were identified. Both 16-acetoxy-7α-hydroxyroyleanone and 
16-hydroxyroyleanone-7α-acetoxyroyleanone have intercepted 
77 potential targets that are predicted to be related to lung 
cancer proteins (Fig. 2b).

Target analysis of PPI networks
The total targets predicted (77 targets) that had 

intercepts with lung cancer were analyzed and then imported 
into a string to build a PPI network by selecting Homo sapiens 
organisms with a confidence of 0.40 (Fig. 3a). Intercepts of 
active target-compounds were imported into Cytoscape 3.10.0 
to construct and obtain a network map of potential target 
interactions (Fig. 3b). The results of the analysis showed that 
there were 77 nodes (proteins) and 214 edges (interactions). 
Based on the linkages informing the PPI, the 10 highest 
(highest to lowest) interaction targets include prostaglandin-
endoperoxide synthase-2 (PTGS2), peroxisome proliferator-
activated receptor gamma (PPARG), ACE, MMP2, ITGB1, 
SERPINE1, REN, ITGB3, PPARA, KDR and they were 
considered to have the best relationship prediction for lung 
cancer.

Table 1. The active compounds isolated from the ethyl acetate extract of C. amboinicus, Lour leaves.

Active compounds Energy (kJ/mol) Dipole 
moment Compounds name

C22H30O6

−1,300.609 3.4830 16-acetoxy-7α-hidroxyroyleanone (Syn. 16-hydroxy-7-O-
acetylhorminone)

C22H30O6

−1,301.125 2.8532 16-hidroxy-7α-acetoxyroyleanone (Syn. 16-acetoxyhorminone)
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GO and the KEGG pathway analysis
GO and KEGG pathways were analyzed to explore 

the mechanisms of 77 targets in the treatment of lung cancer 
using a bioinformatics database (ShinyGO 0.77). GO and 
KEGG results of active compounds against lung cancer are 
displayed in Figure 4. The analysis is carried out on biological 
processes, cellular components, molecular functions, and the 
KEGG pathway of the potential targets of active compounds in 
the treatment of lung cancer, which are shown in Figure 4a–d, 
respectively.

The enrichment results identified the 20 pathways 
associated with active compound targets in the treatment of 
lung cancer that have been analyzed according to the KEG 

pathways from potential targets of active compounds. The 
targets associated with each of these pathways are described 
in Table 2. Based on the cancer pathway, there are 14 targets 
related to the cancer pathway, i.e., MMP2, PTGER2, ITGAV, 
PPARG, PTGER4, GSTM1, MMP1, NOS2, PTGS2, PIM1, 
EDNRB, ITGB1, BCL2, and AGTR1. The two targets with the 
highest interaction between active compounds and lung cancer 
in the cancer pathway are found in PTGS2 and PPARG.

In silico and molecular docking
The two best target interactions of active compounds 

for the treatment of lung cancer are selected based on the 
results of KEGG pathways analysis, namely PTGS2 and 

Figure 2. Identification of active-target compounds: (a) Active-target combined network with Cytoscape 3.10.0 and (b) intercept Venn diagram 
of each compound against lung cancer targets.

Figure 3. Analysis of PPI: (a) PPI network built from intercept prediction of active-target compounds using strings, and (b) proteins (nodes) that 
are linked by interactions (edges) with one another, and blue color represents the highest PPI top 10.ç
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Figure 4. GO and KEG analysis of active compounds for the treatment of lung cancer was built using the ShinyGO 0.77 database: 
(a) Biological processes, (b) cellular components, (c) molecular functions, and (d) KEGG pathways from potential targets of active 
compounds in the treatment of lung cancer.

Table 2. Pathways related to active compounds and lung cancer.

Entry Pathways Term Targets

1. Renin-angiotensin system hsa04614 REN, ACE, AGTR2, CTSA, MME, AGTR1

2. Circadian rhythm hsa04710 PRKAB1, PRKAG1, PRKAA1, PRKAA2

3. Hypertrophic cardiomyopathy hsa05410 ITGB4, PRKAB1, ITGAV, ITGB7, ACE, PRKAG1, PRKAA1, 
PRKAA2, ITGB1, ITGA4, ITGB3

4. PPAR signaling pathway hsa03320 FABP4, PPARG, FABP5, MMP1, FABP3, PPARA

5. Arrhythmogenic right ventricular cardiomyopathy hsa05412 ITGB4, ITGAV, ITGB7, ITGB1, ITGA4, ITGB3

6. Glucagon signaling pathway hsa04922 PYGL, PRKAB1, PRKAG1, PRKAA1, PRKAA2, PPARA

7. Adipocytokine signaling pathway hsa04920 PRKAB1, PRKAG1, PRKAA1, PRKAA2, PPARA

8. Renin secretion hsa04924 PTGER2, REN, ACE, PTGER4, AGTR1

9. ECM-receptor interaction hsa04512 ITGB4, ITGAV, ITGB7, ITGB1, ITGA4, ITGB3

10. Insulin resistance hsa04931 PYGL, PRKAB1, PRKAG1, PRKAA1, PRKAA2, PTPN1, PPARA

11. Dilated cardiomyopathy hsa05414 ITGB4, ITGAV, ITGB7, ITGB1, ITGA4, ITGB3

12. Fluid shear stress and atherosclerosis hsa05418 MMP2, ITGAV, KDR, GSTM1, PRKAA1, PRKAA2, BCL2, ITGB3

13. Longevity regulating pathway hsa04211 PRKAB1, PPARG, PRKAG1, PRKAA1, PRKAA2

14. Neuroactive ligand-receptor interaction hsa04080 OPRD1, PTGER2, THRA, AVPR1A, PTGER4, OXTR, CCKBR, 
C5AR1, AVPR2, GRIN1, AGTR2, EDNRB, THRB, OPRM1, GPR35, 
AGTR1

15. Apelin signaling pathway hsa04371 SERPINE1, PRKAB1, PRKAG1, NOS2, PRKAA1, PRKAA2, AGTR1

Continued



208 Haryadi et al. / Journal of Applied Pharmaceutical Science 14 (05); 2024: 203-210

PPARG. The PTGS2 plays an important pathological role in 
the treatment of chemotherapy-resistant cancer. Moreover, 
PTGS2 has a role in increasing the response of bodies that 
are resistant to chemotherapy treatment [25,26]. Therapy for 
non-drug-resistant cancer cells could be done by inhibiting 
the expression of PTGS2. Inhibition of PTGS2 expression 
will suppress the proliferation, migration, and invasion of 
cancer cells, as well as modulate the immune response by 
impairing cell differentiation and suppressing the occurrence 
of metastases [27]. On the other hand, the PPARG target is 
the most abundant subtype expressed in adipose tissue with 
two isoforms. The inhibition of the PPARG target is able to 
inhibit cell proliferation, induce cell cycle arrest, apoptosis 
of multiple cancer cells, increase adhesion between cells, 
and immobilize the tumor microcell environment, which 
promotes both transcription and protein levels and prevents 
metastases [28,29]. In addition, PPARG also plays an 
important role in regulating the expression of various 
genes regarding glucose and lipid metabolic homeostasis, 
adipogenesis, and inflammation [30]. These two targets 
of active compounds for the treatment of lung cancer 
have two opposite directions: PPARG inhibits apoptosis, 
signaling, proliferation, and metastases, thus overcoming the 
occurrence of resistance and increasing the activity of cancer 
treatment [31,32]. 

Besides, suppressing or inhibiting the expression of the 
PTGS2 target resulted in a maximum treatment and inhibition 
of cancer invasion and metastases [31,33]. In silico testing of 
the active compounds was carried out on target proteins that 
have been reported as a therapy in cancer treatment. The protein 
codes used in this approach are 6GES (PTGS2 protein) and 
5ZMA (PPARG protein) (Table 3 and Fig. 5).

CONCLUSION
The reported bioinformatic study of two compounds 

isolated from the leaves of C. amboinicus Lour., namely 
16-acetoxy-7α-hydroxyroyleanone and 16-hydroxy-7α-

Entry Pathways Term Targets

16. Insulin signaling pathway hsa04910 PYGL, PRKAB1, PRKAG1, PRKAA1, PRKAA2, PTPN1

17. Focal adhesion hsa04510 ITGB4, ITGAV, KDR, ITGB7, ITGB1, ITGA4, BCL2, ITGB3

18. Calcium signaling pathway hsa04020 AVPR1A, OXTR, NOS2, CCKBR, GRIN1, EDNRB, AGTR1

19. PI3K-Akt signaling pathway hsa04151 ITGB4, ITGAV, KDR, ITGB7, PRKAA1, PRKAA2, ITGB1, ITGA4, 
BCL2, ITGB3

20. Pathways in cancer hsa05200 MMP2, PTGER2, ITGAV, PPARG, PTGER4, GSTM1, MMP1, NOS2, 
PTGS2, PIM1, EDNRB, ITGB1, BCL2, AGTR1

Table 3. Strength of interaction between active compounds and potential lung cancer target proteins.

Target PDB Compounds Binding Energy 
(kcal/mol)

Interacting position

H-Bonding C-H Bonding Pi-Anion Pi-Alkyl Pi-Pi T-shaped

PTGS2 6GES Compound1 −8.1 ARG189, GLN83, 
ASP353, LEU187, 

ARG165

- - - -

Compound2 −7.5 Met125 - - Leu173, 
VAL56, 
ALA69

-

PPARG 5ZMA Compound1 −6.9 ASP324 ASP324 , THR318 - PHE321 PHE321 

Compound2 −7.2 SER357, ARG383 PHE355, HIS355, 
SER351

ASP324 - -

Figure 5. 2-D interactions of molecular docking of active compounds against 
lung cancer target proteins: (a) 16-acetoxy-7α-hydroxyroyleanone and PTGS2 
receptor, (b) 16-hydroxy-7α-acetoxyroyleanone and PTGS2 receptor, (c) 
16-acetoxy-7α-hydroxyroyleanone and PPARG receptor, and (d) 16-hydroxy-
7α-acetoxyroyleanone and PPARG receptor.
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acetoxyroyleanone, suggests potential application in the treatment 
of lung cancer. The results of integrated bioinformatic analysis of 
GO, KEGG, and cancer pathways have 77 targets, with PTGS2 
and PPARG being the two main targets for treating lung disease. 
Validated molecular docking analysis revealed multiple beneficial 
interactions in the active sites of PTGS2 and PPARG receptors. 
These findings are important as initial information and need to be 
developed into further research stages. This research is still very 
limited because it was only carried out based on bioinformatic 
studies, so further testing needs to be done in vitro and in vivo 
regarding these two active compounds as therapeutic targets in 
the treatment of lung cancer. 
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