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INTRODUCTION
Alzheimer’s disease (AD) is the predominant form of 

dementia, making up at least 2/3rd of dementia cases among 
individuals aged 65 and older [1]. It is predicted that 40 million 
individuals worldwide currently experience dementia and that 
by the year 2050, that figure will have doubled every 20 years 
[2]. Neurofibrillary tangles (NFTs) and plaques containing 
tau are obligatory for the diagnosis of AD [3]. By impairing 
mitochondrial activity, these aggregation complexes cause a 
pathological cascade that results in the degeneration of synapses 
and neurons [4]. Memory and cognitive impairment are caused 
by the death of the hippocampus and cortical neurons in this 
condition [5]. Different hypotheses were intended for AD. 
Khachaturian was the first to put forth the calcium hypothesis, 
arguing that persistent intracellular calcium abnormalities 
are the root causes of neurodegenerative diseases such as AD 
[6]. A recent Swedish study revealed that older women who 

regularly take calcium supplements may actually raise their 
risk of contracting dementias such as Alzheimer’s [7]. There is 
more and more evidence that the disruption of neuronal calcium 
ion (Ca2+) homeostasis that comes with ageing may be part 
of what causes AD [6]. Disrupted Ca2+ could result in synaptic 
impairments and encourage the buildup of amyloid beta (Aβ) 
plaques and NFT [8].

The amyloid precursor protein (APP) significantly 
contributes to the pathophysiology of AD in great part due to 
the sequential proteolytic cleavages that result in the production 
of β-amyloid peptides [9]. APP is cleaved by three categories of 
proteases: α-, β-, and γ-secretases. β- and γ-secretase cleave at the 
N- and C-terminal ends of the Aβ region, respectively, releasing 
Aβ, whereas α-secretase cleaves within the Aβ sequence. 
γ-Secretase performs cleavage at multiple adjacent sites, resulting 
in Aβ species comprising 39–43 amino acid residues [10]. The 
Aβ peptide, generated from β- and γ-secretase processing of 
APP, has garnered significant interest as a key factor in AD [11]. 
Under typical physiological conditions, Aβ serves a regular 
function and maintains a low concentration in vivo. Nevertheless, 
elements such as aging, oxidative stress, and genetic mutation 
lead to the disturbance of Aβ homeostasis. This disruption leads 
to the buildup and aggregation of Aβ, giving rise to the formation 
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ABSTRACT
Alzheimer’s disease (AD) is a common form of dementia marked by the development of neurofibrillary plaques 
made of tau and beta-amyloid. These aggregates have been found to interfere with mitochondrial function, resulting 
in the deterioration of synaptic and neuronal structures. Chrysin (5,7-dihydroxyflavone) is classified as an herbal 
polyphenol and can be found in various medicinal plants, honey, propolis, and other sources. Chrysin has been found 
to enhance cognitive function and exhibit strong anti-amyloidogenic and neurotrophic properties. This compound 
exhibits neuroprotective properties through its ability to inhibit amyloid fibrillation. Chrysin exhibited the ability to 
preserve the homeostasis between anti-inflammatory and pro-inflammatory cytokines. Chrysin has been observed 
to exhibit the ability to inhibit microglial activation, which suggests a potential role in promoting the survival of 
neuronal cells. The effectiveness of chrysin in preventing AD through a variety of pathways is thoroughly reviewed 
in this article, including but not limited to inhibition of amyloid aggregation, calcium activation, association with 
heavy metals, and attenuation of neuroinflammation.
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There are a significant number of studies that describe 
the preventive benefits of different polyphenols against AD 
[32]. In addition, certain polyphenolic substances have been 
noted to exhibit a capacity to impede amyloid fibrillation [33]. 
This review article provides a condensed overview of the recent 
research that has been conducted on the link between Chrysin 
and AD, as well as its possible role as a revolutionary molecule 
in many clinical applications [34]. 

Chrysin is an inherently occurring hydroxylated 
flavonoid that can be found in bee propolis, honey, and a variety 
of plants, including mushrooms, passion flowers, carrots, 
Passiflora caerulea, Pelargonium crispum, carrots, Passiflora 
incarnata, and Oroxylum indicum [35]. The chemical formula 
of chrysin is C15H10O4, and its other name is 5,7-dihydroxy-
2-phenyl-4H-1-benzopyran-4-one [36]. The significance 
of oxygenation at the C-3 position is a trait that is unique to 
flavones and can be seen to be present in chrysin. This feature 
distinguishes flavones from other types of molecules [37]. In 
contrast to the majority of flavonoids, which have either one 
(often at C-4′) or two hydroxy (C3′, C4′-di, ortho hydroxyl) 
functional groups in ring-B, these flavonoids only have one 
hydroxy group (Fig. 1) [38]. The number of hydroxyl groups 
and where they are located, in addition to the configuration of 
the polyphenol rings, may all have an influence on the inhibitory 
actions of the compound [39]. Chrysin, originally discovered 
in 1949 by Gösta Linstedt at the KTH Royal Institute of 
Technology in Stockholm, was initially derived from the wood 
of pine trees [40].

In its chemical composition, chrysin has two benzene 
rings (A and B) and a pyran-like heterocyclic ring that contains 
oxygen (Fig. 1). Because of the conjugation, the double bond 
between C2 and C3 and ring B in the chemical structure of 
chrysin is going to be coplanar with the rings A and C. Each 
of these three rings has undergone structural alterations that 
primarily influence unique biological outcomes [41]. 

Chrysin possesses a diversity of pharmacological 
effects, including anticancer, antiapoptotic, antioxidant, 
neuroprotective, anti-inflammatory, antihemolytic, and 
antihypertensive [42]. Figure 1 presents a visual representation 
of the numerous pharmacological activities that have been 
described [40]. Due to the fact that it can treat a wide variety of 
conditions through a variety of different pathways, chrysin has 
garnered a lot of interest recently for the benefits it provides 
[43]. Chrysin provides prominent neuroprotective properties 
and decreases neuroinflammation [44]. Chrysin exhibits the 
ability to overwhelm cognitive impairment and possesses 
efficacious encephalo-protective properties [45].

CHRYSIN IN AD
The pathophysiology of AD primarily involves two key 

elements: the accumulation of A and the hyperphosphorylation of 
tau protein [46]. There is a connection between oxidative stress, 
the activation of microglia, neuroinflammation, and AD [47].

Chrysin inhibit the aggregation of amyloid 
The amyloid hypothesis is one of the established 

hypotheses for AD [48]. It proposes that the buildup of Aβ 
peptide is the key factor that leads to the incidence of AD [49]. 

of oligomers and fibers, and ultimately leading to the formation 
of plaque deposits in brains [12]. Aβ is produced in normal 
individuals, yet under specific conditions, it can aggregate, 
initiating the onset of the disease. Extensive evidence underscores 
that Aβ oligomers are primarily responsible for neuronal 
dysfunction and the progression of AD [13]. When APP levels 
are aberrant, A builds up, causing tau to get phosphorylated and 
aggregate, eventually resulting in NFTs. These NFTs are formed 
of hyperphosphorylated tau protein fibres that are entangled, 
insoluble, and concentrated in AD neurons [14].

Tau is widely recognized as a protein associated 
with microtubules in neurons [15]. Tau is essential for 
neurons, as it binds and maintains the stability of microtubules 
and also regulates axonal transport. These functions are 
controlled by phosphorylation events at specific sites [16]. 
Post-translational modifications such as phosphorylation, 
acetylation, and ubiquitination influence the role of tau. In 
disease conditions, regulation of the equilibrium between 
phosphorylation and de-phosphorylation is disrupted, resulting 
in increased abnormal (“hyper”) phosphorylation [17]. 
Tauopathies refer to neurodegenerative diseases characterized 
by hyperphosphorylated accumulations of the microtubule-
associated protein tau [18]. Atypical phosphorylation 
(“hyperphosphorylation”) and aggregation of tau proteins are 
distinguishing features of AD [19].

According to another theory, normal brain function 
depends on metal homeostasis in the central nervous system 
(CNS) because metals work as enzyme cofactors and are 
important parts of both intra- and inter-neuronal communication 
[20]. In addition, heavy metals encourage oxidative damage 
that results in neuronal death in several regions of the brain 
with deficiencies in behaviour, memory, and cognition [21]. 
Ionic substances, such as aluminum, copper, zinc, and iron, 
have been associated with the development of extracellular 
beta-amyloid plaques and intracellular hyperphosphorylation 
of neurofibrillary tau tangles [22]. Al-induced memory and 
learning problems appear to be the result of a complex pathology 
[23]. In addition, these heavy metals cause an overactive 
inflammatory response, which leads to an imbalance between 
anti-inflammatory and pro-inflammatory cytokines. This is a 
key factor in the destruction of brain tissue and the development 
of neurodegenerative diseases [24]. 

It is generally known that activation of the microglia 
is a significant inducer of neuroinflammation including, in 
particular, AD and Parkinson’s diseases [25]. Therefore, 
inhibiting microglial activation is a primary objective in the 
quest to improve the survival of neuronal cells [26]. These 
aggregation complexes interfere with the operation of the 
mitochondria, which sets off a pathological chain reaction that 
ultimately results in the death of synapses and neurons [27].

Oxidative stress in the brain is increasingly recognized 
as a possible role in the aging process and in age-related 
neurodegenerative diseases [28]. There is a significant lack of 
cholinergic activity in both the cortical and hippocampus regions 
of patients with AD, as indicated by numerous pieces of data [29]. 
AD is characterized by a fundamental process that is responsible 
for the clinical manifestations of the disease [30]. This process 
involves the degeneration and death of neurons [31].
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The formation of Aβ requires the proteolysis of the APP, which 
results in the evolution of 39–43 amino acids in the Aβ [50]. The 
β-secretase and γ-secretase enzymes work in tandem to carry 
out this particular proteolysis in a step-by-step fashion [51]. 
The protein is cleaved by each secretase at a distinct cleavage 
site, which results in the creation of a variety of different 
APP fragments [52]. One of these fragments is the solvable A 
isoform, which is the more neurotoxic form [53]. In contrast, 
the insoluble form encourages the generation of reactive oxygen 
species (ROS) [54]. Therefore, mutations in γ-secretase and 
β-secretase that hoist up their APP expression and increase their 
enzymatic activity might be plausible reasons for the buildup 
of Aβ [55]. The search for anti-amyloid medicines has emerged 
as a prominent method in AD-related research [56]. This is due 
to the fact that amylin is believed to be the originator of events 
that promote neurotoxicity and the clinical signs of AD [57]. 
Various flavonoids are strongly associated with this hypothesis 
[58]. Quercetin is one of the flavonoids that has previously 
been recognized as preventing the aggregation of amylin and 
disaggregating its fibers [59].

According to the findings of an in-silico and in-vitro 
study, chrysin has the ability to avert the aggregation of human 
amylin [60]. Chrysin is able to inhibit the emergence of amyloid 
aggregates, as demonstrated by the findings of the thioflavin 
T binding turbidimetry assay [61]. Compatible with thio-flavin 
T binding, chrysin was reported to prevent the production of 
amyloid aggregates [62]. In addition, the evaluation of Chrysin’s 
molecular interactions with amylin indicated that the protein had a 
substantial binding affinity for amylin [63]. Chrysin’s molecular 
docking and in vitro results suggest that it may have potential 
therapeutic applications, one of which is the prevention of 
amylin aggregation [59]. Chrysin-loaded chitosan nanoparticles 
were shown to have properties that prevented the aggregation 
of ROS and Aβ1-42 proteins in a different body of study [64]. 
In addition, the activity of the enzymes butyryl cholinesterase 
(BChE) and acetyl cholinesterase (AChE) is inhibited to a 
significant degree by compounds having heterocyclic motifs, 
such as tacrine, donepezil, rivastigmine, and galantamine, 
which serve in the capacity of potent inhibitors of both enzymes 
[65]. In addition to this, the results of investigations on the 
kinetics and docking of chrysin generated conclusions that 
were consistent with these findings [66]. According to research 
that was achieved in 2019 by Taslimi et al. [67] chrysin has the 
ability to inhibit acetylcholinesterase and BChE, which results 
in anti-cholinergic action. This activity was tested on rats that 
had numerous organs damaged as a result of cyclophosphamide 
[68]. Chrysin, carvacrol, zingerone, hesperidin, and naringin are 
natural phenols known for their remarkable suppression effects 
against human carbonic anhydrase catalysts I and II, as well as 
α-glucosidase, AChE, and BChE enzymes [69]. These phenols 
also block the activity of naringin, which has been demonstrated 
to have anti-cancer properties [70]. The combination of chrysin 
and luteolin was found to have a protective effect against the 
development of advanced glycation end products and the 
aggregation of albumin protein that was generated by glyoxal 
in in-vitro and molecular docking investigations. These results 
were obtained by combining the two compounds [71].

Chrysin inhibits the calcium influx-induced β amyloid 
aggregation and apoptosis

Multiple studies have identified calcium influx and the 
development of ROS as potential mechanisms responsible for 
Aβ-induced neurotoxicity [72]. Studies propose that the main 
occurrence subsequent to Aβ treatment of cultured neurons and 
neuroblastoma involves calcium influx, most likely facilitated 
by the L voltage-sensitive calcium channel [73]. This is due 
to the fact that blocking this channel and/or calcium chelation 
averts all other consequences [74].

The accumulation of especially (Ca2+), metal ions can 
accelerate the production of amyloid plaques and NFT [75]. 
However, there has been no comprehensive investigation into the 
processes by which Ca2+ affects the evolution of AD [76]. In light 
of this fact, the current article provides a synopsis of the methods 
by which Ca2+ is transported into and out of cells and organelles, 
such as the cell, mitochondrial, endoplasmic reticulum, 
and lysosomal membranes, to influence the equilibrium of 
intracellular Ca2+ levels [77]. In addition, Ca2+ dyshomeostasis 
plays a significant part in the regulation of the pathogenesis of 
AD by having an effect on the formation and aggregation of 
peptides as well as the phosphorylation of tau protein [78]. This 
is in addition to the fact that a disruption in the metabolic balance 
of Ca2+ can have an effect on the cognitive abilities and memories 
of people who have AD [79]. Chrysin was able to reduce both 
the passive cutaneal anaphylaxis and the systemic pseudo-allergy 
that was observed in an in vivo animal model. The chrysin 
inhibited Laboratory of Allergic Diseases 2 cell degranulation, 
Ca2+ inflow, and adenosine 5′-triphosphate content in a dose-
dependent manner, which led to substantial suppression of these 
processes depicted in Figure 2. Chrysin was able to decrease 
pseudo-allergic reactions by inhibiting the PLC/IP3/Ca2+ route 
as well as the ERK/STAT3 serine 727 pathway, all of which 
are downstream of MrgX2 [80]. Furthermore, these substances 
inhibited apoptosis by reducing mitochondrial dysfunction, 

Figure 1. Chemical structure and pharmacological activities of chrysin.
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including mitigating the mislaying of membrane potential, 
suppressing Ca2+ accumulation, and regulating the ratio of 
Bax/Bcl-2 [81]. Moreover, chrysin hindered the expression of 
cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase 
(iNOS), leading to the suppression of inflammatory cytokines 
such as tumor necrosis factor-alpha (TNF-α), nitric oxide 
(NO), and prostaglandin E2 (PGE2) [82]. Significantly, all the 
compounds demonstrated anti-inflammatory effects by inhibiting 
the nuclear factor-kappa beta (NF-Κb)/mitogen-activated protein 
kinase (MAPK) pathway [83]. Excessive activation of calcium-
calmodulin-dependent protein kinase kinase 2 or AMP-activated 
protein kinase alone is adequate to trigger the loss of dendritic 
spines. Conversely, chrysin hinders the activity of these factors 
and safeguards hippocampal neurons from the synaptotoxic 
impact of Aβ42 oligomers [84].

Chrysin suppress microglial activation
Under typical circumstances in the brain, microglia 

are responsible for regulating homeostasis and providing a line 
of shielding against damage [85]. Activated microglia exhibit 
a diversity of individual traits, including pro-inflammatory 
(M1-like) and anti-inflammatory (M2-like) phenotypes [86]. 
Depending on the individual traits activated, microglia can 
produce cytotoxic or neuroprotective effects [87]. However, 
overactive microglia can cause the production of proinflammatory 
and cytotoxic substances, which can lead to the evolution of 
progressive neurological disorders such as AD, ischemia, and 
Parkinson’s diseases (PD) [88]. Hence, inhibiting the animating of 
microglia may play a significant role in preserving the well-being 
of neuronal cells [89]. Reactive glial cells may lead to variations 
in the typical functioning of the CNS [90]. In spite of the fact 
that glial activation is initially advantageous, glial reactivity that 
is excessive and persists for an extended time might result in an 
inflammatory response that has detrimental consequences on 
neuronal cells (Fig. 3) [91]. Reactive glial cells are responsible 
for the production of a number of neurotrophic compounds, but 
they are also responsible for the production of agents that have 
the potential to be neurotoxic [92]. It has been hypothesized 
that the neurotoxic effect of reactive glia is mediated by NO, 
pro-inflammatory cytokines, and ROS [93]. Chrysin ability to 
inhibit the expression of cytosine-cytosine-adenosine-adenosine-
thymidine/magnifying the binding protein δ in microglial cells 
leads to beneficial outcomes, including anti-inflammatory and 
neuroprotective effects [41]. In addition, chrysin increased the 
level of interleukin-4 while inhibiting the secretion of interferon, 
tumor necrosis factor, interleukin-1, interleukin-2, interleukin-6, 
and interleukin-12 by splenic mononuclear cells [94]. These 
substances have the capability to decrease the expression of pro-
inflammatory cytokines (IL-6, TNF-α, and IL-1β) and neurotoxic 
mediators (NO, PGE2, iNOS, and COX-2), thereby reducing 
inflammatory markers and protecting against neural damage 
[95]. Experimental data demonstrates that these substances exert 
anti-neuroinflammatory effects by regulating pertinent signaling 
pathways NF-κB, Janus kinase/Signal transducers and activators 
of transcripition, MAPKs, phosphatidylinostiol 3-kinase/Akt 
(protein kinase B), and nuclear factor erythroid 2-related factor 
2/heme oxygenase 1) [96].

Chrysin inhibits heavy metal-induced AD
Metals, such as lead, zinc, aluminum, copper, and 

others, are believed to be associated with various neurological 
conditions, with many of these conditions linked with an 
elevation in ROS production [97]. Including this, there is 
mounting product to suggest that the metal might amplify 
oxidative and inflammatory reactions, which can result in harm 
to the tissue [98]. Chrysin helps to remediate learning and 
memory deficiencies caused by aluminum, and also helps to 
untangle some of the relevant underlying mechanisms [99]. In 
addition, lead is a toxic heavy metal and its exposure causes 
cognitive decline, imbalance of pro- and anti-inflammatory 
cytokines, and suppression of the hippocampal long-term 
potentiation (LTP) induction [100]. In addition, after exposure 
to lead, its concentration increases in both vital fluid and 
brain cells, leading to the apoptosis of neurons [101]. In an 
investigation involving lead-exposed rats, the administration 
of chrysin improved cognitive function, mitigated hippocampal 
LTP impairment, regulated inflammatory responses, lowered 
lead levels, and prevented neuronal cell death [102]. According 
to the findings, chrysin ameliorates the cognitive deficit, 
perhaps by reducing the malfunctioning of hippocampal 
synapses, modulating the inflammatory response, lowering lead 
concentrations, and preventing neuronal death (Fig. 4) [103].

Chrysin inhibits oxidative stress in AD
A contrast in the redox state can cause oxidative stress 

in the brain [104]. This can be caused by the production of an 
excessive amount of ROS or by a failure in the antioxidant system 
[105]. Oxidative stress is a process that becomes more prevalent 
in an aging brain [106]. Patients with AD have brains with a 
significant amount of oxidative damage, which is related to an 
abnormal accumulation of Aβ and the deposition of NFT [107]. 
After administering Aβ25–35, considerable oxidative stress was 
observed, evident by a significant rise in the levels of thiobarbituric 
acid reactive substance, acetylcholinesterase, and a decrease in the 
activities of glutathione peroxidase, glutathione reductase, reduced 
glutathione, superoxide dismutase, catalase, and Vitamin C [108]. 
Chrysin administration at doses of 25 and 50 mg/kg body weight 

Figure 2. Role of calcium in AD.
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effectively hindered the activation of two essential signaling 
molecules associated with neuroinflammation: (c-Jun N-terminal 
kinase) JNK and NF-kB [121]. 

Formulations of chrysin in the management of AD
Natural substances have been shown to be effective 

against neurodegenerative disease through different molecular 
pathways, such as the prevention of the evolution of ROS, 
the elimination of the deteriorated biomolecules before their 
buildup has an effect on cell metabolism, and the improvement 
of disease circumstances [122,123]. However, the distribution 
of natural compounds into the CNS is limited by the presence 
of the blood–brain barrier as well as the antagonistic 
pharmacokinetic features of natural compounds [124]. To 
reduce the severity of this issue and improve the transport of 
a drug into the brain at a therapeutically appropriate dose, it 
is necessary to come up with an innovative and applicable 
method [125]. According to the findings of numerous research, 
nanoformulations and microneedles incorporating natural 
ingredients, such as ferulic acid, quercetin, chrysin, piperine, 
curcumin, resveratrol, huperzine, berberine, baicalein, and 
hesperetin, have demonstrated significant potential in enhancing 
neurodegenerative conditions [126].

A comparison was conducted between the effect of 
treatment using lipid-core nanocapsules loaded with chrysin 
and without chrysin. Chrysin was observed to increase the 
levels of Glutathione reductase (GR), Glutathione peroxidase 
(GPx), Glutathione S-transferase (GST), and Catalase (CAT), 
while simultaneously reducing net positive suction head and 
ROS [127]. Both the hippocampus and the prefrontal cortex 
were shown to have increased levels of IL-10, which decreases 
the levels of proinflammatory mediators such as TNF-α and 
IL-1β [128]. The binding of pharmaceuticals is made possible 
by magnetic nanoparticles through entrapping the medications 
on the particles, covalent attachment, or adsorption [129]. In 
this investigation, we used chrysin-loaded magnetic PEGylated 
silica nanospheres (MChRPNPs) that were broadly defined and 
had the potential for enhanced protective features against the 

reversed the memory deficits observed in rats induced with Aβ25–35 
[109]. Memory loss caused by exposure to Aβ25–35 was reversed 
in rats by giving them chrysin at doses of 25 and 50 mg/kg of 
body weight [110]. Chrysin treatment has the potential to reduce 
oxidative damage, as shown in attenuating levels of thiobarbituric 
acid reactive substance and acetylcholinesterase, as well as a repair 
in the activity of antioxidant enzymes [41].

Chrysin inhibits inflammation in AD 
It has been demonstrated that Aβ itself can operate as 

a pro-inflammatory agent, which leads to the activation of the 
inflammatory machinery [111]. Inflammation is a physiological 
response that has two main objectives. One is to shield the body 
from potentially deleterious stimuli, and the second is to initiate 
the healing process to bring the tissue back to its normal state of 
homeostasis [112]. The expression of pro-inflammatory cytokines 
including IL-1β, IL-6, and TNF-α can be elicited by activated 
microglia, which can then have an effect on the surrounding neurons 
and have the potential to play a potentially negative function 
[113]. Recent investigation has shown that activation of pro-
inflammatory cytokines has many roles in both neurodegeneration 
and neuroprotection processes [114]. In addition, research on the 
origins of AD has shown that microglia are the initiator of the Aβ 
protein [115]. This protein is pro-inflammatory and is responsible 
for the activation of a number of other inflammatory components 
[116]. The application of chrysin resulted in a decrease in the 
expression levels of TNF-α, TBARS, caspase-3, and caspase-8. 
Chrysin considerably reduced inflammation by bringing down the 
expression of NF-kB/p65/IKK-β and the level of TNF-α [117]. 
In addition, chrysin had a strong inhibitory effect on apoptosis, 
by stimulation of Bcl-2 expression and the downregulation of 
caspase-3 expressions and Bax [118]. In inclusion, chrysin was 
able to reduce nitro-oxidative stress by restoring normal levels 
of 8-OHdG, NO, TBARS, CAT, and GSH, as well as manganese 
superoxide dismutase, NADPH oxidase 4, endothelial nitric 
oxidase synthase), and nucleotides expression [119]. Chrysin also 
had a powerful inhibitory effect on the expressions of inducible 
COX-2 and NO synthase (iNOS) [120]. In addition, chrysin 

Figure 3. Role of chrysin on microglia cell. Figure 4. Role of chrysin in heavy metal-induced AD.
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oxidative stress generated by amyloid [130]. In rat hippocampus 
cell cultures, the interactions of MChRPNPs with Aβ were 
observed [131]. An anti-Alzheimer’s effect was observed in 
the rat hippocampus region when chrysin-loaded solid lipid 
nanoparticles were tested against Aβ25–35 caused oxidative 
stress [110]. It was discovered that the chrysin formulation 
was entirely effective in treating AD [110]. The formulation 
of chrysin (0.5 mg/kg) using nose-to-brain administration 
of transfersomal and composite vesicles showed a protective 
effect against doxorubicin-induced cognitive impairment in 
rats. It achieved this by reducing oxidative stress and inhibiting 
the TLR4/NF-kB/NLRP3 pathways [132]. The similar research 
was conducted by another researchers too [133,134].

Examples of formulation of chrysin 
In comparison to chrysin suspension, it was discovered 

that chrysin-loaded nano-emulsion formulation significantly 
improved drug delivery to the hippocampus of rats [135]. The 
diabetic rats treated with chrysin-loaded nano-vesicles showed 
the greatest therapeutic benefit. To combat diabetes, putting 
chrysin onto nanovesicles has the potential to be investigated 
[136]. In MCF-7 human breast cancer cells, selenium-
containing chrysin and quercetin successfully inhibited clonal 
development and hampered TrxR activity, which resulted in 
apoptotic cell death [137].

CONCLUSION AND FUTURE PERSPECTIVES
Chrysin has established itself as a useful polyphenol 

and is currently the subject of a significant amount of research. 
Chrysin is capable of a diverse range of biological activities, 
some of which include the protection against oxidative stress, 
inflammation, and neurodegeneration. Chrysin also possesses 
a wide spectrum of biological activity. The current review 
showed that chrysin has neuroprotective advantages in AD by 
lowering the aggregation of amyloid, activation of calcium, 
the association of heavy metals, and neuroinflammation. In 
spite of the numerous pre-clinical studies that have highlighted 
the conceivable function of chrysin in different neurological 
disorders, there is still a paucity of clinical data. This is 
mostly due to the fact that chrysin has a low bioavailability 
and metabolically unstable. Because of the importance of the 
blood–brain barrier in the progression of AD, we also placed an 
emphasis on the development of novel methods of administration 
and nanotechnology-based drug delivery systems. 
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