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INTRODUCTION
Gout is a kind of inflammatory arthritis in which uric 

acid crystals accumulate in the joints, especially in the knee, 
ankle, wrist, finger, and elbow [1]. Xanthine oxidase (XO), 
a key enzyme in purine catabolism, catalyzes the oxidation of 
xanthine to uric acid in the body, but overformulation of uric 
acid may lead to hyperuricemia [2]. Late complications of long-
term acute gout may induce poly-articular or oligo-articular 
gout, which is one of the most throbbing and painful conditions 
in humans [3]. Furthermore, gout patients have a higher risk of 
cardiovascular disorders as well [4,5]. One of the major strategies 
in the control of uric acid overproduction in gout treatment and 
its complications is that many new antihyperuricemic drugs have 
been synthesized and invented recently. However, some uric acid-
lowering drugs have clinically toxic side effects. Hence, natural 
products have been considered to investigate their beneficial 
promotion. Bioactive natural chemical components are potential 
candidates with a safe, effective, and potential inhibitory effect 

on XO activity that stimulates uric acid production. Normally, 
there is a lack of systematic reviews about medicinal herbs and 
their chemical compounds with antihyperuricemic and anti-gout 
valuables. In this work, we attempted to review and summarize 
(1) the XO inhibitory capacity of herbal crude extracts, (2) the 
antihyperuricemic and antigout effects of purified chemical 
compounds in vitro and vivo, and (3) the molecular docking 
mechanism of the active chemical compounds and their 
derivatives focusing on XO inhibitory activities. Further research 
strategy for gout treatment therapy is still recommended.

MATERIALS AND METHODOLOGY
In this work, we used XO, uric acid, and gout as the 

keywords to collect information related to gout investigations 
from Web of Science, Science Direct, Springer, Google 
Scholar, PubMed, and other professional websites. This review 
summarizes and evaluates the gout treatment properties of 
medicinal herbs reported in the literature.

XO inhibitory capacity of herbal crude extracts 
Investigations of medicinal plants have uncovered 

a number of anti-gouts. González et al. [6] reported the XO 
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analysis [73]; luteolin [74]; Genistein from soybean [75]; 
atherospermidine and cyathocaline extracted from Alphonsea 
cylindrica and Alphonsea elliptica [76]; malic acid [77]; 
Eugenol, a marker component of clove [78]; benzofuran 
from Viburnum grandiflorum with an IC50 value of 0.59 µM) 
[79]; quercetin from Erodium birandianum [80]; catechin, 
epicatechin, gallic acid, and ellagic acid from acetone extract 
of Vicia faba L. seeds [81]; and 6-(3-methylbut-1-enyl)-5,7-
dimethoxy-4′-hydroxy flavone from Spilanthes calva [82].

Moringa oleifera hydrolysate at doses of 200 and 
500 mg/kg significantly reduced the serum uric acid level of 
hyperuricemic rats by regulating serum XO activity [83]. 
For Paeonia suffruticosa leaf extract, it effectively decreased 
increased serum uric acid in hyperuricemic mice. Insure 
evidence indicated the effects of protecting against renal damage 
and oxidative stress induced by hyperuricemia of apigenin 
7-O-glucoside in mouse models [84]. It has been reported that 
extract of Rhizoma Alpiniae officinarum has hypouricemic and 
renal protective effects on hyperuricemic mice by XO inhibitory 
activity, down-regulating URAT1 and GLUT9, which is similar 
to the study on XO inhibitory activity of Saengmaeksan 
formulation including of Panax ginseng reported by Sung et 
al. [85]. Galangin, kaempferide, and 3-methoxyl-glangin are its 
marker XO inhibitors [86]. The mixture of methanol extracts 
of Euonymus laxiflorus, Rubia lanceolata, and Gardenia 
jasminosides reduced serum urate levels in hyperuricemic mice 
[87]. Interestingly, Huang et al. [88] reported that genistein, 
apigenin, quercetin, rutin, and astilbin exhibited insignificant 
effects on XO activity in vitro, but these compounds decreased 
serum uric acid levels in mice. The XO inhibitory effect of 
Lobetyolin, being a main bioactive chemical compound of 
Codonopnis plants, had been reported by Yoon and Cho [89]. 
It is revealed that lobetyolin exhibited weekly inhibitory XO 
capacity through a mixed-type mechanism, but it significantly 
decreased liver XO activity with a dose of 50 mg/kg in rats. 
The ethanol extract of Campomanesia velutina and its isolated 
myricitrin were demonstrated to be able to decrease serum uric 
acid levels and inhibit hepatic XO activity [90]. The Christia 
vespertilionis leaf aqueous extract induces a decrease in uric 
acid levels (31.95%) in mice at a dose of 200 mg/kg [22]. Many 
other studies on antigout activity in in vivo models of medicinal 
herbs and phytochemical compounds resulted in strong antigout 
benefits. All results indicated that evaluated herbal extracts 
exhibited no damage to the liver and kidney in hyperuricemic 
rats and inhibited excessive uric acid levels, which includes 
Artemisia selengensis leaf extracts [91]; theaflavin with an 
IC50 of 63.17 µM [92]; lemon-peel extract [93]; and green tea 
polyphenols [94], which may suggest an attractive strategy for 
antigout therapy.

SCIENCE OPINION AND RESEARCH STRATEGY
Former studies have shown that the pathogenesis of 

hyperuricemia in the blood is closely related to metabolism, 
immunity, and inflammation. Traditional medicine considers 
weaknesses in the liver, spleen, and kidneys as the principal 
causes of an increase in uric acid. In addition, the “military 

inhibitory activity of 34 crude extracts from species belonging 
to the Celastraceae and Lamiaceae. The 26 species from 18 
families utilized for gout treatment in northeastern North 
America have been shown to have XO inhibitory capacity [7]. 
Over a hundred Chinese medicinal plants have been evaluated 
for antigout [8]. In other works, a number of herbal medicines 
have also been reported for XO inhibitory potency [9–23]. 
Interestingly, in all candidates, 46 herbs with outstanding XO 
inhibitory potency have been organized and listed in Table 1. 
However, many herbs in this group had not been investigated 
on pharmacological mechanisms, kinetics, in vivo and in silico, 
and clinically related to anti-gout activity.

XO inhibitory capacity of chemical compounds from herbal 
medicines

The chemical composition of herbal medicines for 
gout treatment has been studied for some recent decades. The 
phytochemical studies on XO inhibitory capacity have resulted 
in the isolation of hundreds of compounds. In all candidates, 85 
chemical compounds with the lowest haft maximal inhibitory 
concentration (IC50) of XO inhibitory activity from a series of 
studies have been displayed in Table 2. The chemical compound 
group exhibited the highest potency with an IC50 < 1 μM. It 
included 2′,4′-dimethoxy-4,5′,6′-trihydroxychalcone (IC50 0.21 
μM), neotaiwanensol B (IC50 0.28 µM), eupatilin (IC50 0.37 
µM), chrysoeriol (IC50 0.5 μM), hyprhombin C (IC50 0.6 µM), 
apparicine (IC50 0.65 µM), and luteolin (IC50 1.2 µM). The 
isolated compound chemical structures are shown in Figure 1.

In serial other studies, XO inhibitory activity has also 
been evaluated. Baicalin and baicalein are the key XO inhibitory 
compounds of scutellariae radix [60]. The total alkaloids of 
nelumbinis folium inhibited XO with an IC50 of 3.313 μg/ml [61]. 
Flavonol glycosides of Allium cepa L. displayed XO inhibitory 
activity with an IC50 from 10.5 to 20.8 μg/ml [62]. Hoshani et al. 
[63] reported that leaf extracts of Physalis alkekengi at the green 
fruit stage exhibited higher XO inhibitory efficacy compared 
to the vegetative stage (86.86% and 45% at the concentration 
of 0.3 mg/ml, respectively). The underlying mechanisms of 
curcumin in preventing XO have been elucidated via studies 
on the molecular docking simulations [64]. The XO inhibitory 
effects of the main phenols of pickled radish have been 
characterized by molecular docking stimulated by hydrophobic 
interactions and hydrogen bonds and elucidated by molecular 
dynamics [65]. Betacyanin from Hylocereus undatus rind 
exhibited an XO inhibitory effect with an IC50 of 9 mM. Kinetics 
study and docking analysis for the XO inhibitory mechanism of 
betacyanin were also proved [66]. Du and Li [67] revealed that 
porphyra polysaccharide is capable of XO inhibitory activity 
through study on enzyme kinetics and molecular docking. The 
XO inhibitory mechanism of other natural products had also 
been evidenced revealed via fluorescence titration, molecular 
level interaction of chemical compounds with the amino acid 
residues, such as black rice anthocyanins [68]; chrysoerial [69]; 
monoterpenoids and flavonoid aglycones of Chrysanthemum 
morifolium [70]; flavonoids of Gardenia oudiepe [71]; 
Chrysanthemum moriforlium [72]; Quercetin-3-O-rhamnoside 
and chlorogenic acid obtained from Smilax china L. exhibited 
strong XO inhibitory capacity through kinetics and mechanism 
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Table 1. XO inhibitory capacity of herbal crude extracts. 

No Herbal medicine IC50 Refereces

1 Ethanol extract of Hyptis obtusiflora Presl ex Benth aerial parts 1.4 µg/ml [6]

2 Ethanol extract of Hyptis lantanaefolia Poit. aerial parts 2.1 µg/ml [6]

3 Larix laricina Inhibition of 86.33% at 100 μg/ml [7]

4 Methanol extract of Cinnamomum cassia twig 18 μg/ml [8]

5 Methanol extract of Chrysanthemum indicum flower 22 μg/ml [8]

6 Methanol extract of Lycopus europaeus leaves 38 μg/ml [8]

7 Water extract of Polygonum cuspidatum rhizome 38 μg/ml [8]

8 Methanol extract of Salvia spinosa L 53.7 μg/ml [9]

9 Methanol extract of Anthemis palestina Boiss 168.0 μg/ml [9]

10 Methanol extract of Chrysanthemum coronarium L. 199.5 μg/ml [9]

11 Methanol extract of Achillea biebersteinii Afansiev 360.0 μg/ml [9]

12 Methanol extract of Rosmarinus officinalis L. 650.0 μg/ml [9]

13 Methanol extract of Ginkgo biloba L 595.8 μg/ml [9]

14 Methanol extract of Artemisia vulgaris L. 14.7 μg/ml [10]

15 Methanol extract of Blumea balsamifera 6.0 μg/ml [10]

16 Methanol-H2O extract of Tetracera scandens 15.6 μg/ml [10]

17 Methanol extract of Caesalpinia sappan 14.2 μg/ml [10]

18 Methanol extract of Chrysanthemum sinense flower 5.1 μg/ml [10]

19 Ethanol extract of Sida rhombifolia L. stems 21.43 µg/ml [11]

20 Ethanol extract of Sonchus arvensis L. leaves 23.64 µg/ml [11]

21 Ethanol extract of Clerodendrum floribundum R. Br. leaves and branches 6.0 µg/ml [12]

22 Ethanol extract of Eremophila maculata aerial parts 30.9 µg/ml [12]

23 Ethanol extract of Stemodia grossa Benth aerial parts 37.4 µg/ml [12]

24 Ethanol extract of Lychnophora trichocarpha aerial parts 6.16  μg/ml [13]

25 Ethanol extract of Lychnophora ericoides aerial parts 8.28 μg/ml [13]

26 Ethanol extract of Lychnophora staavioides aerial parts 33.97 μg/ml [13]

27 Ethanol extract of Lychnophoriopsis candelabrum aerial parts 37.70 μg/ml [13]

28 Hydroalcoholic extract of Coccinia grandis leaves 21.25 μg/ml [14]

29 Methanol extract of Strychnos nux-vomica leaves 6.8 μg/ml [14]

30 Chloroform fraction of Erythrina stricta Roxb 21.2 μg/ml [14]

31 Methanol extract of Populus nigra 8.3 μg/ml [15]

32 Methanol extract of Betula pendula 25.9 μg/ml [15]

33 Ethanol extract of Hypericum perforatum 39.4 μg/ml [15]

34 Caryophyllus aromaticus 46.7 μg/ml [15]

35 Methanol extract of Erythrina indica bark 52.75 μg/ml [16]

36 Allium cepa L 17.36 µg/ml [17]

37 Methanol extract of Saraca thaipingensis leaves 33.0 µg/ml [18]

38 Methanol extract of Caesalpinia pulcherrima 53.0 µg/ml [18]

39 Methanol extract of Archidendron clypearia 15.6 µg/ml [19]

40 Smilax poilanei Gagnep 20.0 µg/ml [19]

41 Linociera ramiflora (Roxb.) Wall 25.4 µg/ml [19]

42 Passiflora foetida L. 25.5 µg/ml [19]

43 Syzygium aromaticum 39.58 μg/ml [20]

44 Methanol extract of Alcea glabrata 370 μg/ml [21]

45 Water extract of Christia vespertilionis 61.37 μg/ml [22]

46 Ethyl acetate fraction of Artemisia selengensis Turcz leaves 1.67 mg/ml [23]
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Table 2. XO inhibitory capacity of chemical compounds from herbal medicines.

No Chemical compounds Herbal medicines IC50 Refereces

1 Coniferyl ferulate Chuanxiong rhizome 1.97 μM [2]

2 Luteolin Chrysanthemum sinense 1.2 µM [10]

3 (−)-7-O-galloyltricetiflavan Archidendron clypearia 25.5 μM [19]

4 Apigenin Syzygium aromaticum 3.27 μg/ml [20]

5 Syringic acid Conyza bonariensis 500 μM [24]

6 Takakin 8-O-glucuronide Conyza bonariensis 170 μM [24]

7 Valoneic acid dilactone Lagerstroemia speciosa 2.5 µM [25]

8 Ellagic acid Lagerstroemia speciosa 71.5 µM [25]

9 Cinnamaldehyde Cinnamomum cassia 7.8 μM [26]

10 2-Methoxycinnamaldehyde Cinnamomum cassia 13.8 μM [26]

11 2-Hydroxycinnamaldehye Cinnamomum cassia 14.6 μM [26]

12 Cinnamic acid Cinnamomum cassia 26.4 μM [26]

13 Coniferaldehyde Cinnamomum cassia 36.3 μM [26]

14 O-Coumaric acid Cinnamomum cassia 32.2 μM [26]

15 Tsugaric acid D Ganoderma tsugae 90.2 μM [27]

16 Tsugaric acids A Ganoderma tsugae 116.1 μM [27]

17 3-oxo-5α-lanosta-8,24-diene-21-oic acid Ganoderma tsugae 181.9 μM [27]

18 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde aloe-emodin derivatives 2.79 μM [28]

19 Eupatilin Gnaphalium affine 0.37 μM [29]

20 5-hydroxy-6,7,3',4′-tetramethoxyflavone Gnaphalium affine 3.15 μM [29]

21 Xanthoangelol Angelica keiskei 8.5 μM [30]

22 Luteolin-7-O-glucoside Flos Chrysanthemum 23.61 μM [31]

23 Apigenin-7-O-glucoside Flos Chrysanthemum 38.80 μM [31]

24 Hyprhombin C Hyptis rhomboides 0.6 μM [32]

25 Nudibaccatumin A Piper nudibaccatum 62.94 μM [33]

26 Nudibaccatumin B Piper nudibaccatum 70.67 μM [33]

27 Neotaiwanensol B Piper nudibaccatum 0.28 μM [33]

28 6-gingerol Zingiber officinale 10.5 μM [34]

29 6-shogaol Zingiber officinale 15.2 μM [34]

30 6-paradol Zingiber officinale 12.4 μM [34]

31 Isorhamnetin Berchemia lineata 47.0 μM [35]

32 Emodin Berchemia lineata 45.0 μM [35]

33 Physcion Berchemia lineata 53.6 μM [35]

34 Ranuncoside Ranunculus muricatus L. 43.3 μM [36]

35 3β, 20α, 24-trihydroxy-29-norolean12-en-28-oic acid 24-O-β-L-
fucopyranosyl-(1→2)-6-O-acetyl-β-D-glucopyranoside

Stauntonia brachyanthera 5.22 μM [37]

36 Isoquercitrin Stauntonia brachyanthera 1.60 µM [37]

37 Lycocernuasides B Palhinhaea cernua 30.36 μM [38]

38 Lycocernuasides C Palhinhaea cernua 42.65 μM [38]

39 Lycocernuasides D Palhinhaea cernua 35.33 μM [38]

40 Orcinosides I Curculigo orchioides 250 μM [39]

41 Orcinosides J Curculigo orchioides 620 μM [39]

42 5,7-dihydroxy-3-(3′-hydroxyphenyl)coumarin Coumarin derivatives 2.13 μM [40]

43 Baicalein None 7.54 μM [41]

44 Baicalin None 1.23 μM [41]

45 Isoacteoside Cistanche deserticola 46.91 μM [42]

46 Kankanoside G Cistanche deserticola 85.31 μM [42]

Continued
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extracts, and chemical compounds may contribute to the lower 
incidence of hyperuricemia. However, the fundamental principle 
in the treatment therapy of gout is to improve and restore 
liver, renal, and spleen function. Although kinetic studies and 
molecular docking analysis have been evidenced, there have not 

prieshood theory” is the primary principle of the control 
composition, which is modeled following the rule of the ancient 
monarchy system. In traditional medicine, this principle is 
applied, and each ingredient plays a particular role in treating the 
whole harmony and balance. The use of medicinal herbs, herbal 

No Chemical compounds Herbal medicines IC50 Refereces

47 Cistanoside F Cistanche deserticola 36.41 μM [42]

48 (−) ethyl 1, 4-di-O-caffeoylquinate Gnaphalium affine 11.94 μM [43]

49 (−) methyl 1, 4-di-O-caffeoylquinate Gnaphalium affine 15.04 μM [43]

50 2′-hydroxygenistein Apios americana 21.8 μg/ml [44]

51 3′-methoxy-4′,5,7-trihydroxyisoflavone Apios americana 31.6 μg/ml [44]

52 Lupinalbin Apios americana 38.8 μg/ml [44]

53 Apparicine Tabernaemontana bufalina 0.65 μM [45]

54 Acetyl phenyl acetate Zanthoxylum armatum 5.59 μM [46]

55 Prudomestin Zanthoxylum armatum 6.73 μM [46]

56 Tambulin Zanthoxylum armatum 5.62 μM [46]

57 Icarisid E Cyclocarya paliurus 31.81 μM [47]

58 Icarisid J Cyclocarya paliurus 29.71 μM [47]

59 Paucatalinones L Paulownia catalpifolia 29.6 μM [48]

60 Paucatalinones N Paulownia catalpifolia 20.3 μM [48]

61 2′,4′-dimethoxy-4,5′,6′-trihydroxychalcone. Perilla frutescens 0.21 μM [49]

62 Neocucurbitacin D Herpetospermum pedunculosum 15.27 μM [50]

63 Cucurbitacin E Herpetospermum pedunculosum 10.16 μM [50]

64 Cucurbitacin B Herpetospermum pedunculosum 18.41 μM [50]

65 6-oxoisopimaric acid Cryptomeria japonica 17.3% at concentration 
of 50 μM

[51]

66 6α-hydroxyisopimaric acid Cryptomeria japonica 16.5% at concentration 
of 50 μM

[51]

67 Isopimaric acid Cryptomeria japonica 2.6% at concentration 
of 50 μM

[51]

68 Isopimara-7,9(11),15-trien-18-oic acid Cryptomeria japonica 30.5% at concentration 
of 50 μM

[51]

69 Chrysoeriol Alfalfa 0.5 µM [52]

70 Liquiritigenin Alfalfa 1.0 µM [52]

71 Mycotoxin alternariol Callicarpa kwangtungensis Chun 0.23 μM [53]

72 Quercetin Flos sophorae immaturus 0.03 mg/ml [54]

73 Kaempferol Flos sophorae immaturus 0.11 mg/ml [54]

74 Rutin Flos sophorae immaturus 5.62 mg/ml [54]

75 Hyperoside Flos sophorae immaturus 11.48 mg/ml [54]

76 Protocatechuic acid Flos sophorae immaturus 22.13 mg/ml [54]

77 Quercitrin Flos sophorae immaturus 367.82 mg/ml [54]

78 β,β-dimethylacrylshikonin Arnebia euchroma 7.475 µg/ml [55]

79 Deoxyshikonin Arnebia euchroma 4.487 µg/ml [55]

80 7,4′-dihydroxyflavone Glycyrrhiza glabra 32.86 μM [56]

81 3,3′,4,4′-tetrahydroxy-2-methoxychalcone Glycyrrhiza glabra 28.29 μM [56]

82 Osmundacetone Inonotus obliquus 129.08 μM [57]

83 Davallialactone Sanghuangporus vaninii 90.07 mg/ml [57]

84 Kaempferol-3-rhamnoside Pithecellobium dulce 70.4 μg/ml [58]

85 Sodium kaempferol-3’-sulfonate 0.338 μM [59]



006	 Le / Journal of Applied Pharmaceutical Science 14 (04); 2024: 001-013

syringic acid

O

O

OO O

HO

OH

HO OH

OH

O

HO

takakin 8-O-glucuronide luteolin

valoneic acid dilactone

ellagic acid

6.  cinnamaldehyde

7.  2-methoxycinnamaldehyde

O

H

HO

H

H

8. 2-Hydroxycinnamaldehye

9. cinnamic acid

O

H

H

OCH3

OH

10. coniferaldehyde

11. o-Coumaric acid

C
OCH3

O

O

HOOC

12. tsugaric acid D

13. tsugaric acids A
14. 3-oxo-5α-lanosta-8,24-diene-21-oic 

acid 

O

O

OOH OH

15. 4,5-dihydroxy-9,10-dioxo-9,10-
dihydroanthracene-2-carbaldehyde

16. eupatilin

O

OH

O

O

O

O

O

17. 5-hydroxy-6,7,3',4′-
tetramethoxyflavone

OH

H H

O

O
O

OHH

HO

18. xanthoangelol

Continued



	 Le / Journal of Applied Pharmaceutical Science 14 (04); 2024: 001-013	 007

19. luteolin-7-O-glucoside

O O

O

OH

HO OH

OH

HO

O

HO

20. apigenin-7-O-glucoside

O

O

OH

OH

O

O

HO

HO

HO2C

21. hyprhombin C

OH

CH2

OH H3C CH3

22. nudibaccatumin A

CH2

OH

OH

CH3
H3C

23. nudibaccatumin B

OH

HO

OH

OH

24. neotaiwanensol B

25. 6-gingerol 26. 6-shogaol 27. 6-paradol

28. isorhamnetin

29. emodin

OH OH

OH3C

O

O

CH3

30. physcion

O

OH

OH

OH
O

HO

HO OH
OH

O

31. (−)-7-O-galloyltricetiflavan

O
O

OH

O

H

OH

OH

OH

32. ranuncoside

OO

OH3C

O

O
HO

CH3

OH

COOH

OH

HO

HO
HO

OH

33. 3β, 20α, 24-trihydroxy-29-norolean12-en-28-
oic acid 24-O-β-L-fucopyranosyl-(1→2)-6-O-

acetyl-β-D-glucopyranoside

O

O O
OH

OH

OHOOH

HO

OH

OH

HO

34. isoquercitrin

O
H3CO

H

HO

CH3

OCH3

O
HO

35. lycocernuasides B

O
H3CO

R1

H

CH3

OCH3

O
HO

R1=OGlc

36. lycocernuasides C

Continued



008	 Le / Journal of Applied Pharmaceutical Science 14 (04); 2024: 001-013

HO

OCH3

O

CH3

H3CO

HO

OH

O

37. lycocernuasides D

OH

O

O

OH

HO
HO

O

H
O

OH

38. orcinosides I

OH

O

O

OH

HO
HO

HN

H
O

OH

39. orcinosides J

O O

OH

H

HO

H

H

H

OH

H

40. 5,7-dihydroxy-3-(3′-hydroxyphenyl)
coumarin

 

OHO

HO

OH O

41. baicalein  

42. baicalin

 

34. isoquercitrin 

 

 

35. lycocernuasides B 

 

R1=OGlc 

36. lycocernuasides C 

 

 

 

37. lycocernuasides D 

 

 

38. orcinosides I 

 

39. orcinosides J 

 

 

40. 5,7-dihydroxy-3-(3′-
hydroxyphenyl)coumarin 

 

  

 

41. baicalein 

 

  

42. baicalin 

 

 

43. Isoacteoside 

 

 

 

R1, R3, R5, R6(H); 
R2(Rha); R4(Cf) 

44. kankanoside G 

Cf=trans-caffeoyl 

 

Rha=α-L-rhamnopranose 

43. Isoacteoside

R5

OH

O

O

OR1

OR2

OR3

R4O

R6

R1, R3, R5, R6(H); R2(Rha); R4(Cf)

44. kankanoside G

Cf=trans-caffeoyl
O

HO

HO

Rha=α-L-rhamnopranose

O

O

HO

HO

HO

O

O

OH OH

OH

O

OH

OH

45. cistanoside F

OH

OH

O

OH

O
OH

OH3CH2C

O

OO

OH

OH

46. (−) ethyl 1, 4-di-O-caffeoylquinate

OH

OH

O

OH

O
OH

OH3C

O

OO

OH

OH

47. (−) methyl 1, 4-di-O-caffeoylquinate

48. 2'-hydroxygenistein

O

OMe

OH
OH

HO

O

49. 3'-methoxy-4',5,7-trihydroxyisoflavone

O

OMe

HO

O

O

OH

50. lupinalbin

51. apparicine

CH2COOCOCH3

52. acetyl phenyl acetate

O

OCH3

OH

OH

OCH3

HO

O

53. prudomestin

Continued



	 Le / Journal of Applied Pharmaceutical Science 14 (04); 2024: 001-013	 009

O
OMe

OH

OH

MeO

OMe

O

54. tambulin
O

O

O

O

O

OH
OH

OH

HO O

OH

HO

OH

OH

O

OH

O

OOH
OH

55. icarisid E

O

O

O

O

O

OH

OH

O

HO
O

O
H

O

OH

HO

HO O

OH OH

OH

O

OH
OH

O

56. icarisid J

O

OCH3

OH

OOH

HO

HO

57. paucatalinones L

O

OCH3

OH

OOH

HO

HO OH

OH

58. paucatalinones N

OH

O

OHOH

H3CO

OCH3

59. 2’,4’-dimethoxy-4,5’,6’-trihydroxychalcone.

O

O

O
O

O

O

H

OH

OH

H

60. neocucurbitacin D

O

O
O

O

O

H

OH

OH

H

HO

61. cucurbitacin E

O

O
OAc

O

H

OH

OH

H

HO H

62. cucurbitacin B

H

O

HO

O

63. 6-oxoisopimaric acid

H

O

HO
R

R=α-OH, β-H

64. 6α-hydroxyisopimaric acid

65. isopimaric acid

O

HO

66. isopimara-7,9(11),15-trien-18-oic acid

67. apigenin
68.chrysoeriol

69. liquiritigenin

O OH

CH3

OCH3

HO

O

70. mycotoxin alternariol 71. quercetin

Continued



010	 Le / Journal of Applied Pharmaceutical Science 14 (04); 2024: 001-013

O

OH

OH

OH

HO

O

72. kaempferol

O

O

O

HO

OH

OH

OH

O OH

OH

HO
HO

H3C

OH

OO

HO

73. rutin

74. hyperoside

OH

OH

OHO

75. protocatechuic acid 76. quercitrin

O

OOH

OH

O

O

77. β,β-dimethylacrylshikonin
O

O

OH

OH

78. deoxyshikonin

O

OH

O

HO

79. 7,4′-dihydroxyflavone

OH

HO

O

O

OH

OH

H
H

80. 3,3′,4,4′-tetrahydroxy-2-methoxychalcone

H3CO

HO

O

O

O

OH

HO

81. coniferyl ferulate

O

HO

HO

82. osmundacetone

O

O

OH

OH

O

O

HO

OH

HO

83. davallialactone

O

O

OH

HO

OH O

O

OH

OH

OH

84. kaempferol-3-rhamnoside 

O

OH

SO3Na

OH

OH

HO

O

85. sodium kaempferol-3’-sulfonate

Figure 1. Chemical structures of compounds.

been any investigations in vivo on pharmacokinetics or internal 
metabolism in humans in a long time. Based on the above 
arguments, there is an urgent need to establish a comprehensive 
strategy for preventing and treating gout disease, which includes 
additional clinical trials with longer study periods on humans to 
certify the anti-gout potential of herbal medicine and case studies 
are also encouraged and called for in the future.

CONCLUSION
Gout has attracted considerable attention because it 

causes serious health damage and affects human life quality. 
Serial pharmacological studies have been investigated in 
vitro and also developed in vivo in rat models. Though several 
pharmacological mechanisms and kinetics-related XO inhibitory 
activities of independent herbal derivative extracts and chemical 
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compounds have already been achieved as emerging evidence, 
the more comprehensive pharmacological mechanisms of 
synergistic combinations of herbs and chemical components with 
each other need to be elucidated. Moreover, we are concerned 
that the medical resistance phenomenon is very likely when 
used for a long time; therefore, firm evidence for more clinical 
studies and applications needs to be elucidated in order to form 
an effective gout therapeutic formula of herbal medicine.
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