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ABSTRACT 
Coffee enthusiasts now consume coffee not only as a reliever of drowsiness but also as a lifestyle. Sizeable annual 
consumption and high demand for exports of coffee can trigger a shortage of coffee stocks from supply companies. 
This shortage has forced some producers to take fraud actions in coffee counterfeiting. With the vast economic benefits 
from substituting or adulterating coffee, the development of authentication methods is an ideal solution to follow 
up on this practice. The combination of some chemometric methods including pattern recognition and multivariate 
calibrations with fingerprint analysis techniques of Fourier transform infrared spectroscopy (FTIR) spectroscopy could 
be performed to authenticate coffee products. The use of chemometrics is unavoidable because of the large amount 
of data received even from the single scanning of FTIR spectra. Some chemometric methods are commonly applied 
to build classification and prediction models of adulterants in coffee. The objective of this review is to feature the 
application of infrared (IR) spectroscopy and chemometric analysis to authenticate coffee from various adulterants.

INTRODUCTION 
Coffee has become an essential food commodity for 

countries’ economies in production and export (Sezer et al., 2018). 
Global coffee output was about 172 million bags in 2020/21, in 
which Robusta (Coffea canephora) and Arabica (Coffea arabica) 
represented 41% and 59% of the main commercialized species 
(Couto et al., 2022; Dias and Benassi, 2015). The world’s 
coffee consumption in 2020/2021 increased 1.9% compared 
to that in 2019/2020. In contrast to this significant increase 
in coffee consumption, coffee production increased by 1.4% 
(ICO, 2021). Differences in demand and production levels have 
caused coffee prices to rise. As a result, coffee adulteration for 
profit purposes is more common than ever (Cai et al., 2015). 
Adulteration activities are carried out to reduce production costs. 
Coffee counterfeiting involves substituting high-quality coffee 

beans with lower ones, adding other ingredients to coffee blends 
to make them less expensive, or adding certain chemicals such 
as sibutramine (SIB) in coffee. Raw Arabica and Robusta beans 
can be easily distinguished by differences in size and color by a 
qualified examinant. However, these visual cues are lost during 
roasting and milling (Barbin et al., 2014). Ground roasted coffee 
has a reproducible physical appearance, making it the target of 
fraudulent admixtures with lower-quality coffee beans (Reis et al., 
2013a). Various factors affecting the end product of coffee include 
the grade of coffee beans, roasting level, and grinding process. 
The addition of adulterants is challenging to detect, especially 
after roasting and grinding; therefore, identifying adulterants in 
coffee becomes very complex (Monteiro et al., 2018). For this 
reason, to ensure coffee quality and authentication, it is necessary 
to develop and standardize reliable analytical methods with high 
sensitivity, reliability, traceability, and comparability of results (de 
Morais et al., 2018; Milani et al., 2020). 

Coffee is mainly authenticated using three analytical 
approaches using different conventional and modern (instrumental) 
analytical methods, namely, physical, chemical, and biological 
approaches. The conventional methods typically used in 
analytical laboratories for detecting adulteration in roasted and 
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ground coffee are based on physical properties such as moisture 
content, mineral residues, extractable substances, and optical and 
electron microscopy (Milani et al., 2020; Toci et al., 2016). The 
modern techniques which have provided reliable and reproducible 
authentication results more recently include spectroscopic-based 
methods such as multispectral imaging (Calvini et al., 2017), 
proton transfer reaction-mass spectrometry (MS) (Monteiro et 
al., 2018), and nuclear magnetic resonance spectroscopy and 
vibrational spectroscopy (VS) [near-infrared (NIR), mid-infrared, 
and Raman] (de Araújo et al., 2021; Forchetti et al., 2020). Capillary 
electrophoresis (Daniel et al., 2018), gas chromatography (Pua et 
al., 2019), and high-performance liquid chromatography (Núñez 
et al., 2021) were all reported to successfully authenticate coffee 
from adulterants. Additionally, biological methods using DNA-
based methods like polymerase chain reaction (PCR) offered 
specific and sensitive results. PCR successfully authenticates 
coffee from barley, maize, and rice to adulterate coffee (Ferreira et 
al., 2016). Among all techniques, VS seemed to be the most-used 
technique for food authentication purposes. 

Barbin et al. (2014) published a review that focused 
on the impact of IR spectral approaches on coffee quality and 
compositional parameters. This review does not emphasize 
the use of chemometrics, does not focus on coffee authenticity 
issues, and is regarded as outdated. Munyend and Njoroge 
(2022) have reviewed the application of spectroscopy for coffee 
authentication. However, unlike the prior review, the author did 
not highlight chemometrics. Due to the sheer development of 
sophisticated VS research instruments, a massive amount of data 
can be collected. Chemometric procedures are obliged for further 
data interpretation, and this is why VS and chemometric processes 
are inextricably linked. To the best of the author’s knowledge, 
there is no other review highlighting the use of VS in conjunction 
with chemometric analysis for coffee authenticity.

The application of molecular spectroscopy and 
chemometrics to authenticate coffee-based products was 
emphasized in this review. This review provides the latest 
and detailed information about the usage of VS coupled with 
chemometrics for coffee authentication purposes. This study 
thus gives an overview of the use of the IR spectral approach (in 
combination with chemometrics) as a valid procedure for assessing 
coffee composition and quality characteristics and classifying 
coffee samples from various types and quality grades. The author 
hopes that this paper can be useful as a resource material or 
information provider to anyone interested in the subject.

METHODS
Various databases, namely, PubMed, Scopus, and DOAJ, 

were explored to find the references used in this review. The keywords 
employed during literature searching are coffee, authentication, IR 
spectroscopy, Raman spectroscopy (RS), adulteration, and analytical 
methods. Some Boolean functions, namely, AND, OR, and NOT, 
were used to explore references effectively. Following a manual 
review of the reference lists of the mentioned articles, some qualified 
articles were also included. The references found were then subjected 
to redundancy and critically assessed before being used. 

RESULTS AND DISCUSSION

Vibrational spectroscopy 
VS, including near-infrared spectroscopy (NIR), mid-

infrared spectroscopy (MIR), hyperspectral imaging, and RS, 

measures the absorption of IR radiation by analytes(s) of interest 
due to the presence of chemical bonds that are IR active. The 
same functional groups present in the molecular structures of the 
compounds tend to absorb IR radiation in the same frequency range 
regardless of the other molecular structure in which the functional 
group is located. This principle is used to identify the structure of 
an unknown molecule (Haughey et al., 2015; Rohman and Man, 
2012). The specific interaction and binding behaviors between 
functional groups are distinctive and can be useful for fingerprint 
analysis (Kucharska-Ambrożej and Karpinska, 2019). Fingerprint 
profiling techniques such as VS, liquid chromatography-MS/MS, or 
DNA-based method are currently applied to detect the adulteration 
of food products, including in coffee authentication. The VS 
method is frequently used for coffee authentication and quality 
control as a sensitive and rapid analytical tool (Bázár et al., 2016; 
Chen et al., 2019; Lohumi et al., 2015). VS methods offer simple 
sample preparation and minimum solvents and reagents, which 
support applying green analytical methods in chemical analyses 
(Moros et al., 2010). VS is also considered a non-destructive 
technique in which the analyzed samples using VS can be further 
analyzed with other instrumental techniques like chromatographic 
techniques (Bassbasi et al., 2013; de Marchi et al., 2014). Due 
to the extensive data set generated during measurement with VS, 
the data treatment using chemometrics approaches is typically 
used. The combination of VS and chemometrics is successful in 
being employed in food products authenticity, including squeezed 
orange juice, meat, beeswax, and honey (Ferreiro-González et al., 
2018; Maia et al., 2013; Shen et al., 2016; Yang et al., 2018). 

Coffee authentication using VS can also be approached 
using targeted and untargeted adulterants. Targeted analytical 
methods focus on finding the specific adulterants discovered as 
potential materials to adulterate the coffee. The commonly targeted 
adulterants in coffee include barley (Ebrahimi-Najafabadi et al., 
2012; Ferreira et al., 2016), coffee grounds, coffee husks, and coffee 
sticks (de Morais et al., 2018), corn/maize (Monteiro et al., 2018), 
soybeans (Daniel et al., 2018), chickpea and rice (Sezer et al., 2018), 
oat (Flores-Valdez et al., 2020), or even Robusta coffee (Adriansyah 
et al., 2021). On the other hand, untargeted analytical methods 
aim to detect whatever adulterants are present in a coffee sample. 
Targeted and untargeted analytical methods have their perks. 
Targeted modeling provides more-detailed information about an 
adulterant. Targeted analytical methods present several responses or 
assignments, while untargeted modeling serves as a more restrictive 
model with one response (a sample fits the model or not) (López 
et al., 2013). Targeted modeling, however, needs standardized and 
validated operating procedures, chemicals, analysis, and statistical 
models. In contrast, non-targeted approaches can be used even for 
samples with simple or no preparations (Esslinger et al., 2014).

Chemometrics
Fingerprint features in VS contain a concurrent determi-

nation of various elements from the samples in a single test. The 
main advantage of VS over other multicomponent methods is the 
ability to analyze samples without any treatments (Cuadros-Ro-
dríguez et al., 2016). Even from the single measurement, the data 
gathered from VS are rather complex and are considered big data; 
therefore, a special statistical treatment called chemometrics is 
needed. Chemometrics is the study of statistical or mathematical 
processes used to analyze the measurements to extract as much 
data as possible from the chemical data. Chemometrics is defined 
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by The International Chemometrics Society as “the science of re-
lating chemical measurements made on a chemical system to the 
property of interest (such as concentration) through the applica-
tion of mathematical or statistical methods” (Rohman and Win-
darsih, 2020). Nowadays, chemometrics has become necessary 
for analyzing data from vibrational-based instruments (Peris-Díaz 
and Krężel, 2021; Xu et al., 2020). VS combined with chemomet-
rics provides specific analysis and classification or discrimination 
methods. Dimensional overload, collinearity, spectral noise, and 
spectral interference all require this combination (Cuadros-Ro-
dríguez et al., 2016), quantifying and determining adulterants in 
samples.

Chemometrics is mainly based on applying empirical models 
intended to build predictive models for qualitative (classification) or 
quantitative (calibration) purposes. The experimental measurements 
could provide extensive data containing much information, allowing 
the analyst to predict one or more properties of interest. The same 
data could be treated with different chemometric techniques. 
Consequently, selecting appropriate chemometric models under 
investigation and verifying model reliability are fundamental 
aspects. The chemometric strategies for performing these tasks are 
collectively referred to as validation. Validation is intended to assess 
whether chemometric modeling can generate dependable conclusions 
(Brereton et al., 2017). During the validation process, including some 
criteria is suggested such as the appropriateness of the chemometric 
model, the adequacy of computational calculations used in the fitting 
procedure, statistical reliability of the models, and the generalization 
of any resulting interpretations (Westad and Marini, 2015).

Chemometric methods are grouped into two groups based 
on their development, namely, (1) traditional chemometrics including 
k-nearest neighbor (k-NN), linear discriminant analysis (LDA), 
one-class partial least squares (OC-PLS), partial least squares-
discriminant analysis (PLS-DA), quadratic discriminant analysis, 
and soft independent modeling by class analogy (SIMCA) and 
(2) machine learning methods including artificial neural networks, 
classification and regression trees, naïve Bayes, random forest, and 
support vector machine (SVM) (Cuadros-Rodríguez et al., 2016). 
Depending on their objectives, chemometric methods are grouped 
into three types: (1) processing techniques used to enhance the 
information available from spectra such as normalization, baseline 
corrections, and centering, (2) classification chemometrics which 
can be in the form of exploratory data analysis and unsupervised 
pattern recognition methods such as cluster analysis and supervised 
pattern recognition such as discriminant analysis, and (3) regression 
methods involving multivariate calibrations which linked vibrational 
spectra to quantifiable properties of analytes such as concentration 
(Moros et al., 2010).

To assess the performance of the developed models, 
some diagnostic parameters based on model parameters or the 
statistical calculation of residuals (the difference between actual and 
predictive parameters) are often used as error criteria. Validation 
of chemometric models can be performed using two approaches, 
internal validation (cross-validation) and external validation. Cross-
validation is required to avoid overfitting the model. Cross-validation 
is based on repeatedly resampling the dataset into the subsets of 

training and testing. This validation is typically done using the 
leave-one-out technique in multivariate calibration models. One of 
the calibration samples has the developed calibration model deleted, 
and the other calibration samples are utilized to create a new 
calibration model. The excluded sample is then calculated using the 
newly generated model. By removing one of the calibration samples 
at a time, the procedure is repeated. Furthermore, the statistical 
performances are evaluated to determine whether the model is 
reliable enough or not. Cross-validation is suitable if the number of 
the evaluated samples is small and there is no possibility of building 
an external test set. The main disadvantage of this validation is that 
the result estimations could still be biased because the calibration 
and validation datasets are never entirely self-contained. The second 
dataset, independent of the dataset used in the calibration model, 
is used in external validation. In this approach, the residuals (test 
set validation) are calculated from independent samples, which 
mimic how the developed model will be routinely used. Therefore, 
this strategy is recommended whenever possible (Biancolillo and 
Marini, 2018). It is suggested that the validation approach should be 
selected based on the sample size. When the dataset or number of 
samples is small (less than 50), cross-validation is preferred, while 
external validation is typically used if the number of samples is 
more than 50 (Kos et al., 2003).

To evaluate the classification chemometrics, some 
performance characteristics including sensitivity, specificity, 
accuracy, and model efficiency are used (Oliveri and Downey, 
2012; Oliveri et al., 2019):

sensitivity SEN =
TP

TP + FN
,( )  (1)

specificity SPE =
TN

TN + FP
,( )  (2)

efficiency EFF =
TP TN

TP + FN TN + FP
,( )

( ) ( )
  

 (3)

precision PRE =
TP

TP + FP
,( )  (4)

accuracy ACC =
TN + TP

TN + TP + FN + FP
,( )  (5)

TN, TP, FN, and FP are true negative, true positive, false 
positive, and false negative. The parameter known as Matthews’s 
correlation coefficient (rM) was also used as a comprehensive 
assessment of model efficiency, considering each of the four 
possible outcomes (TP, TN, FP, and FN). 
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Another important parameter used for classification is 
the number of misclassification (NMC) and reliability rate:

NMC =
FP + FN

The number of objects
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 (7)
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Statistical parameters typically used for the performance 

characteristics evaluation during the validation of analytical 
methods involving multivariate calibrations are coefficient of 
determination (R2) for the relationship between two variables, 
actual values on the x-axis, and predicted values using specific 
instruments (accuracy). The precision of validated analytical 
methods is assessed by root mean square error of calibration 
(RMSEC) for error evaluation in the calibration model and root 
mean square error of prediction (RMSEP) for error evaluation in 
the prediction model. The following formulae are used to obtain 
RMSEC and RMSEP: 

RMSEC =
1

2( ˘ )
,

Yi Yi

M

−

−

i
m
=

∑ 1  (9)

RMSEC =
2( ˘ )

,
Yi Yi

N

−i
n
=

∑ 1  (10)

M and N are the samples used in calibration and 
validation; Yi is the predicted value, while Y̆i

 is the actual value. 

Basically, ( i - i)Y̆ Y  is the residual. In the case of cross-validation 

using the leave-one-out technique, the terms of RMSEC are 
replaced with RMSECV. 

Coffee authentication using MIR spectroscopy combined with 
chemometrics

Attenuated total reflectance Fourier transform infrared 
spectroscopy (ATR-FTIR) and Diffuse reflectance fourier 
transform infrared spectroscopy (DRIFTS) are used for rapid 
analytical methods in food authentication analysis including 
different types of coffee. Chemometric approaches such as 
principal component analysis (PCA) and LDA were used to 
determine and discriminate the presence of spent coffee grounds, 
barley, and corn from pure roasted coffee. All samples (adulterated 
and unadulterated coffee and each adulterant sample) are 
separated clearly by LDA modeling with accuracy levels of 100%, 
although there is an overlap between barley and corn samples. The 
absence of starch in coffee, by-products in barley or corn, and the 
different contents of oils and caffeine are all associated with the 

discrimination between coffee and its adulterants according to 
the PCA results (Reis et al., 2013b). Using LDA, the samples are 
separated into six groups according to their classes: pure coffee, 
adulterated coffee with adulterant levels as low as 1/100 g, spent 
coffee grounds, coffee husks, corn, and barley. 

Combined with PCA and LDA, DRIFTS has been 
developed as an analytical tool for detecting adulteration in 
roasted and ground coffee. In this study, a PCA score plot based on 
PC1 and PC2 applying the first derivative FTIR spectra variable 
at wavenumbers of 3,200–700 cm−1 showed the best classification 
profiles compared to average spectra and FTIR spectra subjected 
to normalization and baseline correction. The method can classify 
ground coffee, coffee husks, and corn samples. LDA classification 
models in this research also provide complete discrimination 
between four groups of samples (authentic coffee, corn, coffee 
husks, and coffee adulterated with coffee husks, corn, or both with 
adulterant levels of 5%–50%) (Reis et al., 2013a). However, the 
validation datasets for confirmation of the developed classification 
models of authentic and adulterated coffee are not found.

The combination between PLS and PCR, as well as ATR-
FTIR spectroscopy, has been applied to predict adulterant levels of 
non-Kona coffee in Kona coffee, the premium quality of coffee in 
the USA. ATR-FTIR spectra are subjected to some transformation 
of mean centering (MC) and the first and second derivatization, 
and the performance of the model using these transformed FTIR 
spectra is compared. Some wavenumber regions are also assessed 
for the optimization process. Finally, PLS using second derivative 
spectra at wavenumbers of 800–1,900 cm−1 could predict non-
Kona coffee as an adulterant accurately and precisely as indicated 
by high R2 values (> 0.999) and low standard error of calibration 
value of 0.81 (Wang et al., 2009). The calibration model was also 
validated using commercial Kona coffee blends. Furthermore, 
the combination of second FTIR spectra at wavenumbers of 800–
1,900 cm−1 and canonical analysis could discriminate Kona coffee 
from different regions on Hawaii Island. The authentication of 
the geographical origin of Arabica and Robusta coffee in China 
was also carried out by applying the combination of mid-IR 
transmittance spectroscopy and some classification chemometrics 
of PCA, k-NN, PLS-DA, SIMCA, SVM, backpropagation neural 
network (BPNN), and radial basis function neural network 
(RBFNN). Using the whole FTIR spectra region (4,000–400 
cm−1), both BPNN and RBFNN provide the best classification 
models with accuracy levels of 100% in training or test datasets 
(Zhang et al., 2016).

The first derivative FTIR spectra at wavenumber regions 
of 3,800–2,800 and 1,800–500 cm–1 combined with classification 
chemometrics of PCA and LDA have been used to facilitate the 
investigation and authentication of commercial coffee according 
to global quality (divided into gourmet, inferior, superior, or 
traditional classes). PC1 and PC2 contributed to 80.1% of the 
data variability, and based on the loading plot, it is suggested that 
carbohydrates, esters and lipids, caffeine, and chlorogenic acids 
(CGA) components contribute more to group differentiation. 
However, PCA does not offer substantial evidence of any categories 
among the studied coffee samples; therefore, the chemometrics of 
LDA, a supervised pattern recognition algorithm, was used. LDA 
using the same condition used in PCA can provide sensitivities of 
83%–100% and specificities of 93% to 100%, showing that the 
developed model is reliable for commercial coffee authenticity 
(Silva et al., 2021). 
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Cebi et al. (2017) developed FTIR spectroscopy and 
chemometrics of hierarchical cluster analysis (HCA) and PCA 
for the detection of SIB in dietary supplements. This advanced 
technique offers several advantages including being cost-effective, 
rapid, easy, non-destructive, and environmentally friendly. The 
variables used for modeling are FTIR spectra at wavenumbers 
of 2,746–2,656 cm−1 through the Euclidean distance and Ward’s 
algorithm. The results show that the presence of the active 
drugs that are not allowed in herbals, including coffee, could be 
successfully determined at levels of 0.375–12 mg in a total of 1.75 
g with acceptable validation criteria.

Data fusion (DF) obtained by DRIFTS and FTIR spectra 
obtained from ATR and DR in combination with PLS-DA is developed 
as a dependable technique for the discrimination of ground roasted 
coffee from different adulterants (spent coffee grounds, roasted coffee 
husks, roasted corn, and roasted barley). Compared to each sampling 
technique, DF improves discrimination models used for detecting 
and identifying the multiple adulterants in roasted and ground coffee. 
DF models could also detect samples blended with adulterants, even 
when four different adulterants were mixed. By considering the 
training/test sets, the application of DF decreased the percentage of 
misclassified samples. The PLS-DA model is also successfully used 
to verify whether unknown samples can be separated according to 
the adulterant types present in the authentic coffee (Reis et al., 2017).

FTIR spectroscopy with photoacoustic detection (FTIR-
PAS) using the wavenumbers region of 4,000–600 cm−1 combined 
with PCA and PLS-DA was developed to discriminate coffee 
blends based on differences in coffee species, types, and number 
of defects. PCA allowed the prediction of the amount/fraction 
and kind of the defects in coffee blends, while PLS-DA could 
discriminate the samples according to their classes. Based on the 
loading plot, bands at 3,000–3,600 cm−1 provide more contribution 
on PCs 1 and PCs 4. The peak at 1,067 cm−1 comes from pyruvic 
acid, pyridine, and quinic acid, while the peak at 3,356 cm−1 is 
specific to CGA. Combining these techniques has been proven an 
easy, fast, and green solution as a quality control tool for roasted 
and ground coffee (Dias et al., 2017).

DRIFTS coupled with PLS was employed for the 
prediction of adulterant levels (spent coffee grounds, coffee husks, 
roasted corn, and roasted barley) in roasted and ground coffee. 
Some wavenumber regions or their combination and spectral 
preprocessing were compared to get the optimum condition capable 
of providing the best prediction modeling. The optimized models 
were obtained using spectra at combined wavenumbers of 3,200–
2,730 and 1,800–700 cm−1 previously subjected to SNV and MC. 
Using this condition, R2 values for the accuracy evaluation were > 
0.99 with RMSEC of 1.96 and RMSEP of 3.74% using 10 latent 
variables. This indicated that using DRIFTS and PLS together 
is proven to detect and quantify some interfering substances in 
ground roasted coffee, with adulteration rates ranging from 1% 
to 66% w/w (Reis et al., 2013c). Furthermore, the same authors  
(Reis et al., 2016) compared two methods (DRIFT and FTIR-ATR) 
combined with PLS models to identify the adulterants present in 
ground and roasted coffee. FTIR-ATR provides a better model for 
predicting the adulteration levels at a range of 0.5% to 40% . The 
application of MIR spectroscopy combined with chemometrics to 
authenticate coffee has been summarized in Table 2.

Authentication of coffee using near-IR spectroscopy
NIR spectroscopy can be developed into a reliable 

model for detecting coffee adulterations combined with 

multivariate techniques. Pizarro et al. (2007) used NIRS and 
multivariate calibration by quantifying the levels of coffee of 
Robusta variety in roasted coffee samples from varied origins (36 
Arabica and 47 Robusta coffees). NIR spectra were subjected to 
preprocessing using OWAVEC (special software designed by the 
author’s research group) and then subjected to partial least square 
regression (PLSR) for quantitative modeling. In addition, some 
preprocessing techniques, which include meaning centering, first 
derivative, and orthogonal signal correction (OSC), were also 
used for accomplishing the essential needs in PLSR modeling. 
The calibration model using NIR spectra subjected to OWAVEC 
preprocessing provided high-quality results with R2 for the 
correlation between actual and predicted values of Robusta variety 
contents of > 0.999 and RMSEP of 0.79%. This method can detect 
and quantify potential coffee adulterations, although successful 
modeling critically depends on the signal preprocessing methods 
applied. 

Civet coffee’s high prices in coffee markets have attracted 
unethical players to adulterate it with low-price coffee or other 
cheaper additives (Adriansyah et al., 2021). NIRS in combination 
with full-spectrum (FS)-PLSR has been successful for quantitative 
analysis of the adulteration degree of ground roasted coffee 
samples in civet coffee in the concentration range of 0%–51%. 
Spectral data were scanned at wavelengths 1,300–2,500 nm. The 
samples were divided into calibration (84 samples) and validation 
(42 samples) datasets during modeling. FP-PLS provided the 
acceptable model with R2 values for correlation between actual 
and NIRS predicted values of 0.96 (for calibration) and 0.92 (for 
validation), respectively. The accuracy of the developed method is 
good, as indicated by the low RMSEP value of 4.67. This result 
confirmed that the developed method could be applied as a non-
destructive authentication system for civet coffee (Suhandy et al., 
2018).

With the development of miniature instrumentation of 
NIR, portable micro-NIR was successfully applied as an effective 
means in quality control of Arabica coffee from the adulteration 
practice by identifying and quantifying Robusta coffee (at different 
roasting levels) as an adulterant. This method also analyzes 
Arabica coffee adulterated with inexpensive ingredients typically 
added in coffee, such as corn, peels, and sticks. PCA and PLS 
were used to treat NIR spectra at combined wavelengths of 900–
1,000, 1,100–1,200, and 1,400–1,500 nm previously subjected to 
the Savitzky-Golay derivatization to perform these tasks. PCA 
could classify samples according to their level of adulterants. In 
addition, PLS could predict the level of adulterants with a limit 
of quantification values of 5–8 wt% with acceptable accuracy and 
precision as indicated by high R2 values ranging from 0.9732 to 
0.9925 and low values of RMSEP (2.8 wt%). This method saves 
time and sample preparation real-time data acquisition efficiency 
and can represent a significant variability of adulterants in high-
quality coffee (Correia et al., 2018).

Coffee adulteration with barley was successfully identi-
fied using a combination of NIRS and PLS. The adulterants of four 
types of barley with level ranges of 2%–20% (wt/wt) were add-
ed to roasted and ground coffee samples at different roasting de-
grees. The calibration and validation samples were selected using 
a D-optimal design, resulting in 100 datasets for calibration and 30 
datasets for validation. The chemometrics of the genetic algorithm 
(GA) was applied to determine the wavelength regions giving the 
best models using PLS. Using absorbance values at wavenumbers 
of 6,032–5,748, 4,880–4,788, 4,688–4,628, and 4,336–4,276 cm−1 
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Table 2. The application of MIR and chemometrics for authentication of coffee products.

Issues Methods and measurement 
conditions Chemometrics Results Ref.

Differentiation of roasted 
Arabica coffee from 
common adulterants 

(roasted corn and coffee 
husks)

DR-MIRS utilizing 20 scans 
at a resolution of 4 cm−1 at 

wavenumbers 4,000–400 cm−1. The 
noise values on the upper and lower 

ends were removed

To distinguish roasted 
Arabica coffee from 
adulterants, PCA and 

LDA were used

Using DRIFTS in conjunction with PCA 
and LDA analysis, roasted coffee husks 
and roasted corn could be distinguished. 
When it comes to distinguishing between 

roasted coffee, pure adulterants, and 
adulterated coffee samples, LDA could 

achieve 100% accuracy

Reis et al. (2013a)

Identification of 
adulterants in roasted 

and ground coffee (spent 
coffee grounds, coffee 

husks, roasted corn, and 
roasted barley)

DRIFTS with a resolution of 4 cm1 
and 20 scans at 4,000–400 cm−1

PLS for quantification 
of adulterants using the 
variable of FTIR spectra 
previously subjected to 

preprocessing techniques 
(MC, derivatization, 

MSC, and SNV)

PLSR was successfully implemented to 
detect and quantify various adulterants in 
ground, roasted coffee, with adulteration 
levels ranging from 1% to 66% wt/wt, 

utilizing first derivative FTIR spectra at 
combined wavenumbers of 3,200–2,730 

and 1,800–700 cm–1. The accuracy is 
greater than 98%

Reis et al. (2013c)

Multiple adulterants 
(coffee grounds, barley, 
and corn) detection in 

roasted and ground coffee

FTIR, wavenumbers (1/ λ) 4,000–
400 cm−1 with a 4 cm−1 resolution

The Savitzky-Golay 
method was used to 

pretreat the spectrum. For 
classification, PCA and 

LDA were utilized

With 100% recognition and prediction 
skills, DRIFTS can also be used to 

discriminate between roasted coffee and 
coffee that has been contaminated with 
numerous adulterants. Adulterants as 

little as 1/100 g can be detected using this 
technology

Reis et al. (2013b)

Authentication of Kona 
coffee from non-Kona 

coffees

FTIR, wavenumbers (1/λ) 
4,000–400 cm–1 using 256 scans at 

a resolution of 8 cm–1

Kona coffee levels in 
ground and brewed coffee 

samples are predicted 
using PLSR

With the best degree of accuracy, FTIR 
paired with PLS employing second 

derivative FTIR spectra at 1,900–800 
cm–1 may predict the levels of ground 

and brewed Kona coffee as adulterants in 
Kona coffee blends (R2 value of 0.999)

Wang et al. (2009)

Authentication analysis of 
luwak (civet) coffee from 

potential adulterants

FTIR, wavenumbers (1//λ) 4,000–
400 cm–1 employing 256 scans at 

an 8 cm–1 resolution
PCA for classification

FTIR fingerprint analysis combined with 
PCA can identify civet coffee’s potential 

adulterants (Arabica and Robusta 
coffees)

Adriansyah et al. 
(2021)

Tracing the commercial 
coffee from the potential 

adulteration practices

ATR-FTIR with 32 scans and a 
resolution of 4 cm–1 at 1/4,000–500 

cm–1

PCA was conducted to 
explore the spectral data, 

while LDA was used 
for the classification 
of commercial coffee 

samples

Using the PCs derived from the PCA 
result as input variables, the classification 

performance of LDA was greatly 
enhanced using FTIR standard spectra at 
4,000–500 cm–1. The created model could 
offer a sensitivity model of 83%–100% 
and a specificity model of 93%–100%, 

showing that it is successfully utilized for 
the authenticity of commercial coffee

Silva et al. (2021)

Detection of SIB as a 
chemical adulterant in 

coffee 

ATR-FTIR with a wavenumber 
range of 4,000–650 cm–1 and a 

resolution of 4 cm–1. Three times 
each sample was reproduced

To classify authentic 
coffee and coffee 

supplemented with SIB, 
researchers employed 

HCA and PCA

Through the Euclidean distance 
and Ward’s technique, ATR-FTIR 
spectroscopy with a variable of 

absorbance values at 2,746–2,656 cm–1, 
supplemented by HCA and PCA, could 
successfully categorize and discriminate 

coffee with and without SIB

Cebi et al. (2017)

Determination of specific 
defects in roasted ground 
coffee using quantitative 

methods

FTIR coupled with the 
photoacoustic detector at 

wavenumbers 4,000–600 cm–1, 
16 scans at a resolution of 4 cm–1. 
Each sample was replicated thrice

To distinguish blends 
with different bases and 

separate the range of 
typical faults, the PCA 

and PLS-DA approaches 
were used

FTIR-PAS combined with PCA and 
PLS-DA can differentiate and quantify 
defective coffee as roasted or ground 

coffee. PCA enabled the amount/fraction 
and nature of flaws in blends to be 

predicted. PLS-DA was able to classify 
100% of the data into their respective 

classes

Dias et al. (2017)

Four adulterants (coffee 
husks, wasted coffee 
grounds, barley, and 

corn) were detected and 
quantified in roasted and 
ground coffee at the same 

time

FTIR wavenumbers ranging 
from 4,000 to 700 cm–1 (4 

cm–1 resolution, 20 scans, and 
background subtraction). Five 

times each sample was reproduced

PLS for quantifying 
adulterants in roasted 
coffee samples with 

degrees of adulteration 
ranging from 0.5% to 

66% in wt/wt

PLS and ATR-FTIR have both proven 
to be effective methods for detecting 

various adulterants in roasted and ground 
coffee with low errors and excellent R2 

values of 0.99

Reis et al. (2016)

Continued
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with total wavenumbers of 128, PLS-GA provides a low root mean 
standard error of 1.10% in calibration sets and 1.4% w/w and 0.8% 
w/w in the test and external set, respectively (Ebrahimi-Najafaba-
di et al., 2012).

NIR spectroscopy combined with digital images using 
one supervised classification method of data-driven (DD)-SIMCA 
has been applied to authenticate gourmet ground roasted coffees 
from the traditional coffee and superior coffee samples. The 
analysis was performed directly by measuring the coffee powders 
into an NIR spectrometer at wavenumbers of 4,000 to 10,000 cm−1 
using diffuse reflectance accessory at the resolution of 8 cm−1 
spectral resolution and by integrating 32 scans. Using 10 PCs 
of NIR spectra variables previously subjected to preprocessing 
to remove noise and baseline shift corrections, including offset 
correction linear baseline correction and the Savitzky-Golay 
derivatization, the DD-SIMCA model could discriminate the 
studied coffee samples according to its classes with sensibility and 
specificity values of 1.00 (accuracy levels of 100%), in both the 
training and test sets (de Araújo et al., 2021). Table 1 provides a 
summary of coffee authentication using NIR spectroscopy coupled 
with chemometrics.

Authentication of coffee using RS and chemometrics
RS is considered a simple, fast, and reliable analytical 

technique for the authentication of coffee. In some cases, this 
technique also offers a non-destructive analytical method depending 
on the laser power used. The Raman spectrum provides valuable 
information about the structure and composition of the evaluated 
samples. The Raman effect relies on the inelastic scattering of 
monochromatic laser radiation by molecular vibration when the 
scattering is accompanied by a change of polarizability in the 
chemical bonds. Since the energy losses (frequency shifts) reflect the 
internal vibrational energies of the molecules in a sample, and the 

intensity of scattering is directly proportional to the concentration of 
these molecules, the Raman spectrum, which aggregates the effects 
of all the different functional groups, is considered a fingerprint of 
the sample (Dias and Yeretzian, 2016).

RS, in combination with PCA and PLS-DA, was 
developed for Arabica coffee’s authentication from Robusta coffee. 
The Raman spectrum baseline was adjusted using the algorithm 
of weighted least squares, and the corrected Raman spectra were 
normalized per unit vector. The peaks at wavenumbers of 3,500–
50 cm−1 were used as a variable during PCA and PLS-DA. The 
combination of RS with PCA proved to be a robust method to 
discriminate between the two coffee species based on explained 
variance, in which six PCs could explain 94.03% of the total data 
variance. During PLS-DA, the variables selected were based 
on variable importance in projection; if variable importance in 
projection (VIP) was greater than one, the variable was used for 
modeling (VIP). Peaks at 1,680, 1,637, 1,606, 1,479, and 1,336 
cm−1 contributed more to the discrimination between Arabica 
coffee from Robusta coffee (El-Abassy et al., 2011). This result 
demonstrated that the use of RS in combination with PCA and 
PLS-DA could be a trustworthy method for coffee authentication. 
RS can also identify the chemical changes in natural pulped 
green coffee beans stored in various packaging materials using 
an appropriate chemometric tool (Q control charts) (Abreu et al., 
2019). 

The combination of RS and chemometrics techniques 
of PCA, LDA, mixture-DA, quadratic-DA, regularized-DA, 
PLS-DA, and SIMCA methods were compared and applied for 
the classification and discrimination of clonal varieties of coffee. 
The peaks of RS at wavenumbers of 1,200–1,800 cm−1 previously 
subjected to baseline alignment MC or multiplicative scatter 
correction (MSC) are compared for the discrimination of coffee. 
Raman spectra corrected with MSC provided more accurate results 

Issues Methods and measurement 
conditions Chemometrics Results Ref.

Authentication of coffee 
from corn as an adulterant

Wavenumbers range from 4,000 
to 525 cm–1, with 64 scans and a 

resolution of 0.4 cm–1. Background 
subtraction is applied to FTIR 

spectra

PCA for classification, 
PLSR was performed for 

quantification

Adulteration of coffee with corn was 
successfully detected using FTIR 
and PCA. Using PLSR, corn with 

concentrations as low as 1% could be 
detected. The accuracy levels of the 

method as represented by R2 values were 
0.9915 (calibration), 0.9623 (prediction), 
and 0.9876 (cross-validation). RMSECV 

was 2.70%

Brondi et al. (2017)

Adulterants (corn, barley, 
soy, oat, rice, and coffee 

husks) in amounts ranging 
from 1% to 30% are used 
to authenticate Arabica 
coffee (C. arabica L.)

The FT-MIR spectra were acquired 
in the range 4,000–650 cm–1 with 
64 different scans at a resolution 

of 2 cm−1

SIMCA for classification, 
PLS-1, PLS-2, and PCR 
for quantitative analysis 

of adulterants

According to its classes, the SIMCA 
model could provide Arabica coffee 

classification and that adulterated with 
adulterants with an accuracy level of 

100%. The PLS1 algorithm provides the 
best prediction model for quantification 

of adulterants with R2 values ≥ 0.99, 
standard error of calibration of 0.39–0.82, 

and standard error of prediction of 
0.45–0.94

Flores-Valdez et al. 
(2020)

Authentication of four 
adulterants in ground 
roasted coffee (spent 

coffee grounds, roasted 
coffee husks, roasted corn, 

and roasted barley)

Wavenumbers: 4,000–700 cm1 
with a resolution of 4 cm1 and 
a total of 20 scans, all of which 
were subjected to background 

subtraction

Preprocessing spectra 
included PLS for 

quantitative analysis, 
OSC, MSC, and MC. 

To distinguish between 
legitimate and counterfeit 
coffee, PLS-DA models 

were utilized

DF (ATR-FTIR and DRIFTS) could help 
distinguish between true roasted coffee 
and coffee adulterated with discarded 

coffee, coffee husks, roasted barley, and 
roasted maize. The percentage of levels 
of correctness is 100 (no misclassified 

objects were observed)

Reis et al. (2017)
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than other spectral treatments. Using MSC, Raman spectra coupled 
with LDA and SIMCA provide the best classification models 
for the correct classification of 98.7% and 97.3%, respectively 
(Luna et al., 2019). PCA and PLS-DA in combination were also 
successful in the discrimination of four genotypes of Arabic coffee, 
one Mundo Novo line (G1) and three Bourbon lines (G2, G3, and 
G4). The variables used were absorbance values at wavenumbers 
of 3,500–400 cm−1. The bands at 1,567 and 1,479 cm−1, which 
are associated with kahweol, contributed the most to genotype 
discrimination, followed by the bands at 1,502 and 1,442 cm−1, 
which are related to the cafestol molecule and lipids, respectively, 
based on VIP scores. Thus, by selecting the appropriate bands with 
high VIP scores and chemometrics techniques, the discrimination 
of coffee genotypes is deemed possible (Figueiredo et al., 2019).

CONCLUSIONS
IR spectroscopy techniques, particularly fingerprinting 

models, can authenticate wide variations of coffee (civet, Arabica, 
and Robusta) from its adulterants. IR spectroscopic methods 
coupled with chemometric methodological approaches have 
proven to become such a powerful yet efficient technique for 
identifying and quantifying targeted and untargeted adulterants. 
Combined with unsupervised and supervised pattern recognition, 
FTIR spectra are successfully employed for the discrimination and 
classification of authentic and adulterated coffee with acceptable 
characteristics performance. In addition, with the optimization of 
FTIR spectra in terms of wavenumber region and FTIR spectral 
preprocessing combined with multivariate calibrations, the 
developed method is reliable enough for prediction of the levels 
of adulterants providing a fast, green, and analytical method with 
minimum use of chemicals and solvents. Next, the developed 
method could be standardized to be used for coffee authentication.
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