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ABSTRACT 
The available synthetic drugs to treat infectious diseases have many side effects on the consumer. Zingiber officinale 
which is known as ginger or “halia” in Malaysia has a good prospect as an alternative for safer treatment and has a low 
risk of side effects. It is because this herb is used as a traditional medicine in the community to treat several ailments, 
including infectious diseases. Several studies have shown that crude extracts and bioactive components of Z. officinale 
possessed diverse pharmacological properties such as anticancer, anti-inflammatory, antimicrobial, antioxidant, and 
immunomodulatory. The goal of this research is to find out the effects of Z. officinale on the antimicrobial activities 
from the selected previous studies (years 2000–2020). Briefly, this study involves 10 randomized controlled trials 
(RCTs) that determined the antimicrobial activities of Z. officinale. The results of the systematic analysis showed that 
Z. officinale exhibits antimicrobial activities for both in vitro and in vivo evaluations. The meta-analysis of appropriate 
data from four sources presented a substantial distinction between this plant and controls. The results present no 
significant difference between Z. officinale and positive controls for the antimicrobial analysis related to the overall 
outcome and inhibition zone [overall outcome standardized mean difference (SMD): −0.6003 (95% CI; −0.7092 to 
−0.4913), I2 = 100%, inhibition zone SMD: 0.8771 (CI; −8.1288 to 9.8829), I2 = 99%]. In conclusion, the results 
presented the antimicrobial activities of Z. officinale to be similar to the activity of the positive control. However, 
one should be aware of some limitations with the detailed reporting on the controls used in the included studies. 
Future well-designed RCTs with detailed reporting on the controls are required to provide additional data to prove the 
consequences of Z. officinale on the antimicrobial activities as well as safety data of consuming this plant.

INTRODUCTION
Antimicrobial activity is the process of killing or 

preventing the growth of the microbes that cause infectious diseases 
(Wang et al., 2017). Nowadays, there are various antimicrobial 
agents available to treat these diseases. These antimicrobial 
agents are divided into groups based on the mechanisms of the 
antimicrobial activity such as agents that prevent cell wall synthesis, 
those that depolarize the cell membrane, and those that inhibit 
protein and nucleic acid synthesis as well as metabolic pathways 

in bacteria (Reygaert, 2018). There are many available synthetic 
drugs that are used to treat infectious diseases but also have many 
side effects on the consumer. For example, chloramphenicol, an 
antimicrobial agent, is used to treat meningitis. This drug works 
by passing through the blood-brain barrier and is able to cause 
aplastic anemia (Mohsen et al., 2020). Besides, treatment with 
ribavirin has been shown to reduce the ribonucleic acid of the 
virus but is able to cause hemolytic anemia in the patient (McFee, 
2020). 

This medicinal plant has been used by humans for a 
long time to treat many ailments as well as other essential roles. 
Also, medicinal plants have been important medicines in all 
cultures and are a source of many traditional medicines that also 
contribute to modern medicines (Dar et al., 2017). In pursuit of 
new drug candidates, plant extracts and natural molecules from 
plants are being extensively analyzed (Harun et al., 2018, 2019, 
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2021). Plants have been used for more than 5,000 years as agents 
of vaccines, antimicrobials, analgesics, cardioprotective agents, 
and other medicines. Human beings have used natural substances 
in ancient history to combat pathogens. Currently, almost 70% to 
90% peoples in developing countries applied herbs to treat various 
diseases. The strongest and most promising components of plants 
are secondary metabolites. More than half of the drugs authorized 
by the Food and Drug Administration use natural products and 
their derivatives (Anand et al., 2019). As an alternative for safer 
treatment and low risk of side effects, Zingiber officinale or ginger 
is famous in the community and is traditionally used to treat many 
diseases including infectious diseases and fever and also was used 
to boost immunity. 

Zingiber officinale, a member of the family 
Zingiberaceae and a species of the genus Zingiber, has been 
well known as a medicinal herbal and spice product for a long 
time. This herb is abundantly cultivated for commercial purposes 
in India, Indochina, West Indies, Mexico, Southeast Asia, and 
other countries as well (Banerjee et al., 2011). Ginger has been 
traditionally used to reduce the symptoms of headaches, colds, 
nausea, pain, and emesis (Mao et al., 2019; Mohamad et al., 
2019). In India, the preparation of fresh ginger juice mixed with 
fresh garlic juice and honey is a common practice for cough and 
asthma (Awang, 1992). In Southeast Asian countries such as 
Malaysia and Indonesia, women consume ginger soup after birth 
to make them hot and sweat (Mohammad and Hamed, 2012). 
Also, Z. officinale is a common component of traditional Chinese 
treatments for respiratory infections (Chang et al., 2013) and also 
remedies for atonic dyspepsia and colic (Keys, 1985). Based on a 
study by Safa et al. (2020), Z. officinale-based tablets increased 
the recovery rate of clinical symptoms as well as the improvement 
of clinical and preclinical features in patients admitted with severe 
acute respiratory syndrome due to COVID-19 infection. Zingiber 
officinale and its bioactive compounds showed a variety of 
biological activities including antimicrobial (Aaisha et al., 2020; 
Elmowalid et al., 2019), antioxidant, antiarthritic (Murugesan 
et al., 2020), antitumor (Liao et al., 2020), anti-inflammatory, 
antithrombotic (Thomson et al., 2002), and hypoglycemic 
(Ojewole, 2006) effects. Zingiber officinale also contains many 
natural organic materials such as 6-gingerol, 6-shogoal, and 
6-paradol that promote its biological activities. 

There are numerous previous studies related to the 
structure–activity relationship of bioactive compounds who isolated 
from Z. officinale and their effects on biological activity. The study 
by Yamauchi et al. (2019) who isolated 13 bioactive compounds 
from the methanol extract of the Z. officinale rhizomes and further 
assessed their effects on the extracellular melanogenesis inhibitory 
activity. The findings showed that gingerols promoted the highest 
inhibitory activity of extracellular melanogenesis as compared 
to other vanilloid compounds. They suggest that elongation of 
the carbon chain as well as the carbonyl and hydroxyl groups on 
the carbon chain played an important role in this effect. Another 
study by Masuda et al. (2004) who investigated the antioxidant 
properties of the gingerol-related compounds and diarylheptanoid 
isolated from the rhizomes of ginger. The results suggested that 
the alkyl chain substitution of dehydrogingerdiones is able to 
contribute to the radical scavenging effects of autoxidation of oils 
as compared with gingerol-related compounds.

The pharmacological validation of the antimicrobial 
effect of Z. officinale is quite restricted, and several existing review 

publications on this plant have not been focused on this activity. 
Therefore, this study aimed to conduct a systematic assessment of 
all available data (years 2000–2020) to determine the effects of 
Z. officinale on antimicrobial activities. Therefore, it is crucial to 
prove the community’s belief in traditionally consuming this herb 
as a treatment for infectious diseases by conducting a systematic 
review and meta-analysis on Z. officinale’s antimicrobial activities.

METHODOLOGY
This systematic review was carried out in accordance 

with the principles of the Cochrane Collaboration framework and 
was described following the guideline by the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses declaration.

Search strategies and study selection
From 2000 until 2020, an electronic search for original 

articles was done using two selected electronic databases which 
were PubMed and Science Direct. The selection of these two 
databases was based on the ability to get full access to the related 
articles from our institution. The strategic search terms were Z. 
officinale or ginger plus antimicrobial activities or effect of Z. 
officinale or ginger on antimicrobial activities. The papers that 
were included in the study are research that involved the use of 
the extract or bioactive compound of Z. officinale which contained 
the antimicrobial outcomes (in vivo, in vitro, or clinical studies). 
The papers that did not include the above criteria were excluded 
(Moher et al., 2009). The study selection was performed by 
following the steps in Figure 1.

Data extraction and quality assessment
The data were extracted using standard data extraction 

from the two selected databases (PubMed and Science Direct) from 
2000 to 2020. The extracted data included the tested substances, 
antimicrobial properties, method used to test the antimicrobial 
properties, tested microorganism, model used, tested dose, results 
(using tested substances), and comparison with positive controls. 

The quality of the included studies was assessed using 
the Cochrane risk of bias tool. Sequence generation, allocation 
concealment, incomplete outcome data, selective reporting, other 
sources of bias, and overall risk of bias were evaluated. The risk 
of bias assessment using the Cochrane risk of bias assessment is 
displayed in Table 1.

Statistical analysis
The analysis of the antimicrobial effects of Z. officinale 

was conducted by comparing the data for the individual function 
test (treated with Z. officinale) with its comparator (positive control) 
[standardized mean difference (SMD) with a confidence interval 
(CI) at 95%]. Meanwhile, the I2-statistic was used to assess the 
heterogeneity value. The direction of effects, amount, and power 
of heterogeneity evidence affect the value of the threshold of I2. 
Substantial heterogeneity means an I2 value of more than 50%. 
All the statistical analyses were done using the RevMan software 
(edition 5.4). 

RESULTS 
The database search resulted in the discovery of 363 

articles. Because there was no duplication, none of the articles 
were removed. There were 96 titles, abstracts, and keywords 
evaluated in all. Nineteen of the full-text research articles were 
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reviewed from the screened titles, abstracts, and keywords, and 
all the papers were included in the systematic review. The flow 
of study selection for the antimicrobial activities is presented 
in Figure 2. After analyzing the 19 included studies, 10 studies 
(52.63%) had sufficient data for the comparison between  
Z. officinale and positive control while 9 other studies (47.37%) 
did not have sufficient data for this. All the information on the 
antimicrobial activities of this plant (model and method used, 
tested substances, tested microorganisms, results, tested dose, and 
comparison with control) is summarized in Table 2.

The quality assessment of the data is presented in Table 3. 
Fifteen studies (78.94%) showed a low possibility of bias. Four 
studies (21.05%) were indistinguishable. Despite the fact that all 
studies claimed that they were randomized controlled trials, two 
studies showed an unclear risk of bias for “sequence generation” 
due to a lack of description of the sequence generation methods. 
Two other studies showed an indistinguishable possibility of bias 
for “allocation concealment” because the explanation for the 
“allocation concealment” method was not present. 

The antimicrobial-related outcome was categorized 
into overall outcomes, inhibition zone, and minimum inhibition 
concentration (MIC) for the meta-analysis. Qualitative analysis 
of heterogeneity for the “overall outcome” findings is shown in 
Figure 3. An analysis specifically done on the qualitative visual 
method of the findings suggests variability present between the 
studies. The individual study point evaluations of the effect of 
treatment (green squares) are on the same line of the upright 
axis, representing similar treatment amount effects between 
studies. The prediction of the effect on the study treatment of 
the population showed the difference value as presented at the 

horizontal lines in the figure, and the result suggests the presence 
of heterogeneity. The I2-value that presented the quantitative 
tests of heterogeneity was 100% and suggests there was study 
variability (i.e., heterogeneity).

Qualitative analysis of heterogeneity for the “inhibition 
zone” findings is shown in Figure 4. Observational analysis of the 
results suggests there is between-study variability. The individual 
study point evaluations of the effect of treatment (green squares) 
are on both sides. However, they are not located on the upright 
axis, representing a modification in treatment amount effect 
between studies. Meanwhile, the prediction of the effects of the 
study treatment of the population showed the difference value 
as presented at the horizontal lines in the figure, and the result 
suggests the presence of heterogeneity. The I2 value was 99% and 
suggests that there was study variability (i.e., heterogeneity).

Furthermore, an observational analysis of the MIC result 
suggests medium between-study-group variability, as shown in 
Figure 5. Based on the figure, the location of the green squares 

Figure 1. The flow chart of study selection (Moher et al., 2009). “n” is the number of papers. 

Table 1. The Cochrane risk of bias assessment.

Bias Author’s judgment

Random sequence generation (selection bias) High/low/unclear risk

Allocation concealment (selection bias) High/low/unclear risk

Incomplete outcome data (attrition bias) High/low/unclear risk

Selective reporting (reporting bias) High/low/unclear risk

Other biases High/low/unclear risk

Overall risk of bias High/low/unclear risk
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showed similar approximation of the amount of the treatment effects 
for the groups. However, there was a similar prediction for the effect 
of population treatment groups, as illustrated by the CIs for the groups 
overlapping each other in the figure, suggesting there is medium 
heterogeneity. The I2-value was 34%. This quantitative result suggests 
medium between-study variability (i.e., heterogeneity).

Based on the data of the included studies, 19 studies 
described the antimicrobial activities of Z. officinale, but only 4 
had satisfactory data for further proceeding with meta-analysis. The 
four studies were considered in a specific area for the purpose of 
determining the antimicrobial effects of Z. officinale. The domains 
included: 1) overall effect outcomes, 2) inhibition zone, and 3) MIC. 
For the overall outcome and inhibition zone, the I2-values were 100% 
and 99%, respectively. The results presented high heterogeneity 
between the parameters included in this study. For the MIC, the 
I2 value was 34%, which means there was medium heterogeneity. 
There was a significant difference between Z. officinale and positive 
controls on the MIC [SMD: 0.0201 (CI; 0.0166–0.0235), I2 = 34%], 
while there was no significant difference between Z. officinale 
and positive controls for the overall outcome and inhibition zone 
[overall outcome SMD: −0.6003 (95% CI; −0.7092 to −0.4913), I2 

= 100%: inhibition zone SMD: 0.8771 (CI; −8.1288 to 9.8829), I2 = 
99%]. All the results are presented in Table 4.

DISCUSSION
The results of preliminary research employing the 

disc diffusion approach reported that the methanol extract of Z. 

officinale exhibited antibacterial potentials against pathogenic 
bacteria such as Escherichia coli, Pseudomonas aeruginosa, 
Pasteurella multocida, Staphylococcus aureus, Bacillus subtilis, 
Klebsiella pneumoniae, and Proteus mirabilis. In this study, the 
methanol extract of Z. officinale showed antibacterial activities 
with an inhibition zone of 10–15 mm (Chakraborty et al., 2014). 
In addition, the similar extract of Z. officinale presented a broad 
range of inhibition towards P. aeruginosa, Streptococcus mutans, 
and Streptococcus sobrinus. The researcher used the agar well 
diffusion and agar diffusion methods to figure out these antibacterial 
activities, and the outcome exhibited that the methanol extract 
at doses of 0.2 and 2 mg/ml suppressed most major inhibitory 
capabilities against those microorganisms (Babaeekhou and 
Ghane, 2020; Chakotiya et al., 2017). The ethanol extract of Z. 
officinale was able to inhibit the growth of many microorganisms 
including E. coli, P. multocida, B. subtilis, and S. aureus on 
the basis of the disc diffusion method. The inhibition zone by 
the ethanol extract ranged from 10.6 to 15.7 mm (Abdul Qadir 
et al., 2017; Chakraborty et al., 2014). The ethanol extract also 
presented significant antibacterial properties by inhibiting the 
growth of the enterococcal species, Enterobacter species, Proteus 
species, and Klebsiella species on the basis of the agar well 
diffusion method and serial tube dilution technique. The ethanol 
extract (0.025–100 mg/ml) was able to inhibit microorganism 
growth with inhibition zones ranging from 4 to 20 mm (Karuppiah 
and Rajaram, 2012; Revati et al., 2015). In addition, the acetone 
extract also showed promising outcomes in inhibiting the growth 

Figure 2. Detailed flow diagram of study selection for antimicrobial activities (Moher et al., 2009). 
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Table 2. Antimicrobial activities of crude extracts, bioactive fraction, and compounds derived from Z. officinale.

No Tested substances Part Antimicrobial 
properties Method Tested 

microorganism

Results 
(using tested 
substances)

Comparison with 
positive control References 

1. Methanol, ethanol, and 
acetone extract Not stated Antibacterial Disc diffusion 

(n = 3)

E. coli,  
P. multocida,  
B. subtilis, and  
S. aureus

Inhibition zone 
(dose: 100 mg/ml): 
Methanol: 
11.4–15.2 mm  
Ethanol: 11.8–15.7 
mm  
Acetone: 9.1–12.4 
mm

Inhibition zone 
(dose not stated): 
Rifampicin: 21 to 
7–28.2 mm

2. Essential oil Rhizome Antibacterial Disc diffusion 
(n = 3)

Aeromonas 
hydrophila and 
Staphylococcus 
spp.

Inhibition zone 
(dose: 50 mg/ml): 
A. hydrophila: 
10.33 to 22.33 ± 
0.58 mm, MIC: 
0.05–0.2 mg/ml 
Staphylococcus 
spp.: 6 to 15.33 ± 
0.58 mm, MIC: 
0.05–0.2 mg/ml

Inhibition zone 
(dose not stated): 
Erythromycin: 6 to 
24 mm 
Kanamycin: 6 to 
20 mm

Snuossi  
et al., 2016

3. Hot water extracts Rhizome Antiviral 
Plaque 
reduction 
assay (n = 1)

HRSV

Infection rate 
(dose: 0.3 mg/ml):  
20%, dose-
dependently 
effective 

Infection rate (dose: 
0.03 mg/ml):  
50%, dose-
dependently 
effective

Chang et al., 
2013

4. GNF Rhizome Antibacterial Agar diffusion 
assay (n = 3)

B. cereus,  
S. aureus,  
E. coli, and  
S. typhimurium

MIC value (dose 
not stated): 
GNF: 0.013 ± 
0.00012 to 0.031 
± 0.002 mg/ml

MIC value (dose not 
stated):  
Ampicillin: 0.0004 
± 0 to 0.012 ± 
0.0008 mg/ml

Jacob et al., 
2019

5. Mixture of methanol Rhizome Antibacterial
Agar well 
diffusion 
method (n = 1)

P. aeruginosa

Inhibition zone 
(dose: 0.2 mg/ml):  
27.09 ± 0.003 
mm, MIC: 0.01 
mg/ml

Inhibition zone of 
amikacin (dose: 0.2 
mg/ml):  
30.78 ± 0.1 mm, 
MIC: 0.005 mg/ml

Chakotiya et 
al., 2017

6. Phenolic extract Not stated Antibacterial
Agar well 
diffusion 
method

S. aureus,  
K. pneumoniae, 
P. mirabilis, and 
E. coli 

Inhibition zone 
(dose: 0.05 mg/
ml): 
16–25 mm, MIC: 
1.59–2.2 mg/ml

Not stated Saleh et al., 
2018

7. Crude extract and 
methanolic extract Rhizome Antibacterial Microdilution 

method S. mutans
Dose: 5 mg/ml 
MIC: 0.256 mg/
ml

Not stated Hasan et al., 
2015

8. Essential oil Rhizome Antibacterial Agar diffusion 
method

L. 
monocytogenes, 
S. aureus, E. coli, 
S. typhimurium, 
and  
P. aeruginosa

Inhibition zone 
(dose: 300 mg/
ml): 
13.0–37.0 mm, 
MIC: 2.3–9.4 
mg/ml

Not stated Silva et al., 
2018

9.
n-Hexane, ethyl acetate, 
methanol, and water 
extracts

Rhizome Antibacterial Agar diffusion 
method (n = 3)

S. mutans and  
S. sobrinus

Inhibition zone 
(dose: 2 mg/ml):  
n-Hexane: 12 ± 
4.9 to 18 ± 1.7 
mm, MIC: 0.8 
mg/ml  
Ethyl acetate: 
11.3 ± 1.0 to 19.3 
± 0.6 mm, MIC: 
0.8 mg/ml 
Methanol: 16.8 ± 
0.6 to 21.8 ± 0.6 
mm, MIC: 0.8 
mg/ml

Inhibition zone 
(dose: 40 mg/ml): 
Penicillin: 15.8 ± 
0.6 to 16.3 ± 1.1 mm

Babaeekhou 
and Ghane, 
2020

Continued
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No Tested substances Part Antimicrobial 
properties Method Tested 

microorganism

Results 
(using tested 
substances)

Comparison with 
positive control References 

10. Ethanol extract Rhizome Antibacterial
Agar well 
diffusion 
method

Enterococcal 
species

Inhibition zone 
(dose: 100 mg/
ml): 20 mm

Not stated Revati et al., 
2015

11. Essential oil Antibacterial

Resazurin 
microtiter 
assay plate (n 
= 3)

M. tuberculosis 

Dose: 0.0004–
0.25 mg/ml 
MIC: 0.063–0.25 
mg/ml

(Dose: 0.000007–
0.001 mg/ml) 
MIC of isoniazid:  
0.00003–0.004 
mg/ml

Baldin et al., 
2019

Broth 
microdilution 
method (n = 3)

Nontuberculous 
mycobacteria

(Dose: 0.0004–
0.25 mg/ml) 
MIC: 0.016–0.25 
mg/ml 

(Dose: 0.00003–
0.008 mg/ml) 
MIC of ciprofloxacin:  
0.00012–0.0005 
mg/ml

Baldin et al., 
2019

12. Essential oil Rhizome Antifungal

Broth dilution 
antifungal 
susceptibility 
testing

Aspergillus 
niger, 
Aspergillus 
fumigatus, 
Aspergillus 
flavus, 
Aspergillus 
ochraceus, P. 
citrinum, and P. 
chrysogenum

(Dose: 0.25–5 
mg/ml) 
MIC (mg/ml):  
A. niger: 2  
A. fumigatus: 1.5  
A. flavus: 1.8  
A. ochraceus: 1.3  
P. citrinum: 2  
P. chrysogenum: 
2.5 

Not stated Sharifzadeh 
et al., 2016

13. Crude and aqueous 
extract Rhizome Antibacterial

Agar well 
diffusion 
method (n = 3)

S. mutans

Inhibition zone 
(dose: 2 mg/ml): 
Crude: 7.65 ± 
0.27 mm, MIC: 0  
Aqueous: 14.02 
± 0.32 mm, MIC: 
50 mg/ml

Inhibition zone of 
0.2% chlorhexidine: 
22.57 mm

Jain et al., 
2015

14. Free phenolics Rhizome Antibacterial

Agar 
diffusion and 
conventional 
broth dilution 
method (n = 3)

H. pylori 

Inhibition zone 
(dose: 0.01 mg/
ml): 20 mm, MIC: 
0.049 ± 0.0041 
mg/ml

Inhibition zone of 
amoxicillin (dose: 
0.01 mg/ml): 23 
mm, MIC: 0.026 ± 
0.0032 mg/ml 

Siddaraju and 
Dharmesh, 
2007

15.

[6]-Dehydrogingerdione, 
[6]-shogaol, 
[10]-gingerol, and 
[6]-gingerol

Rhizome Antibacterial
Broth 
microdilution 
method

Extensively 
drug-resistant  
A. baumannii

Dose: 0.01–0.2 
mg/ml

MIC: 0.132–0.347 
mg/ml

Not stated Wang et al., 
2010

16. Methanol, ethanol, and 
acetone extract Rhizome Antibacterial Disc diffusion 

(n = 3)

S. aureus, P. 
aeruginosa,  
K. pneumoniae,  
E. coli, B. 
subtilis, and  
P. mirabilis

Inhibition zone 
(dose: 0.03 mg/
ml):  
Methanol: 
10.3–13.6 mm, 
MIC: 0.008 to 
0.026 ± 0.00007 
mg/ml 
Ethanol: 10.6–
12.3 mm, MIC: 
0.011 to 0.034 ± 
0.00027 mg/ml 
Acetone: 
10.6–14.6 mm, 
MIC: 0.011 to 
0.028 ± 0.000024 
mg/ml

Ampicillin (dose: 
0.03 mg/ml): 
Inhibition zone > 
15 m (P. aeruginosa 
and P. mirabilis), 
MIC < 0.1 mg/ml 
Inhibition zone < 
15 mm (S. aureus, 
K. pneumoniae, E. 
coli, and B. subtilis), 
MIC > 0.5 mg/ml

Chakraborty 
et al., 2014

Continued
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Table 3. The quality assessment of the data included in the study.

Author
Risk of bias domain

Random sequence 
generation

Allocation 
concealment

Incomplete 
outcome data

Selective 
reporting Other biases Overall risk  

of bias

Abdul Qadir et al., 2017 L L L L L L

Babaeekhou and Ghane, 2020 L L L L L L

Baldin et al., 2019 L L L L L L

Bhaskar et al., 2020 L L L L L U

Chakotiya et al., 2017 L L L L L L

Chakraborty et al., 2014 L L L L L U

Chang et al., 2013 L L L L L L

Hasan et al., 2015 L L L L L L

Imane et al., 2020 L L L L L L

Jacob et al., 2019 L L U L L U

Jain et al., 2015 L L L L U U

Karuppiah and Rajaram, 2012 L L L L L L

Revati et al., 2015 L L L L L L

Saleh et al., 2018 L L L L L L

Sharifzadeh et al., 2016 L L L L L L

Siddaraju and Dharmesh, 2007 L L L L L L

Silva et al., 2018 L L L L L L

Snuossi et al., 2016 L L L L L L

Wang et al., 2010 L L L L L L

L = low risk, U = unclear, and H = high risk (Higgins and Green, 2011).

No Tested substances Part Antimicrobial 
properties Method Tested 

microorganism

Results 
(using tested 
substances)

Comparison with 
positive control References 

17. Ethanol extract Rhizome Antibacterial
Serial tube 
dilution 
technique

E. coli, 
Enterobacter sp., 
P. aeruginosa, 
Proteus sp., 
Klebsiella sp., 
S. aureus, and 
Bacillus sp.

Inhibition zone 
(dose: 0.025–0.2 
mg/ml): 

4–16 mm, MIC: 
0.075–0.186 mg/
ml 

Not stated
Karuppiah 
and Rajaram, 
2012

18. [6]-Gingerol Not stated Antibacterial alamarBlue 
assay

M. tuberculosis 
strain H37Rv, 
multidrug-
resistant MDR 
(JAL-2261), 
extensively drug-
resistant XDR 
(MYC-431), and 
bacilli

Dose: 0.025 mg/
ml 
MIC: 
H37Rv: 0.012 
mg/ml 
MDR: 0.003 mg/
ml 
XDR: 0.050 mg/
ml 
Bacilli: 0.0015 
mg/ml

Not stated Bhaskar  
et al., 2020

19. Essential oil Rhizome Antibacterial Disc diffusion 

S. aureus, 
Enterococcus 
faecalis, and  
E. coli

Inhibition zone 
(dose: 0.01 mg/
ml): 
9.7–11.5 mm, 
MIC: 0.15–9.85 
mg/ml

Not stated Imane et al., 
2020

The characteristics of the included studies for the systematic review of the antimicrobial-related outcomes. The results were presented in mean ± standard deviation 
(SD). 
MIC: Minimum inhibition concentration; n: sample size.
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of some microorganisms such as E. coli, P. multocida, S. aureus, 
K. pneumoniae, B. subtilis, P. aeruginosa, and P. mirabilis (Abdul 
Qadir et al., 2017; Chakraborty et al., 2014). 

The Z. officinale root essential oils exhibited effective 
inhibitors for pathogens (Silva et al., 2018). Ginger essential oil 
(GEO) was effective against Gram-positive and Gram-negative 
bacteria. Essential oil at concentrations of 0.01 and 50 mg/ml 
inhibited the growth of both Gram-positive and Gram-negative 
bacteria with inhibition zones ranging from 6 to 22.33 mm 
(Imane et al., 2020; Snuossi et al., 2016). On the basis of the agar 
diffusion method, GEO (300 mg/ml) inhibited the growth of S. 
aureus, Listeria monocytogenes, Salmonella typhimurium, and 
P. aeruginosa. In addition, GEO also revealed antifungal activity 
by inhibiting Penicillium citrinum, E. coli, and Penicillium 
chrysogenum through broth dilution antifungal susceptibility 

testing (Sharifzadeh et al., 2016). Susceptibility testing of 
GEO against Mycobacterium tuberculosis and nontuberculous 
mycobacteria presented significant results at the concentration of 
0.25 mg/ml with an MIC value of 0.25 mg/ml (Baldin et al., 2019).

A finding by Chang et al. (2013) showed that the hot 
water extract of ginger was able to reduce the infection rate of the 
human respiratory syncytial virus (HRSV) by 50% at a dose of 
0.3 mg/ml. Ginger nanofiber (GNF) is a product from the remains 
after ginger oil and oleoresins are extracted from the ginger. The 
research conducted by Jacob et al. (2019) stated that the bacterial 
susceptibility of GNF by the agar diffusion assay was 0.013 mg/
ml against Bacillus cereus, 0.012 mg/ml against E. coli, 0.018 mg/
ml against S. aureus, and 0.031 mg/ml against S. typhimurium. 
The phenolic extract also showed a significant antibacterial 
property against S. aureus, K. pneumoniae, P. mirabilis, E. coli, 

Figure 3. Qualitative and quantitative analysis of heterogeneity for “overall outcome” findings (CI: confidence interval).

Figure 4. Qualitative and quantitative analysis of heterogeneity for “inhibition zone” findings (CI: confidence interval).

Figure 5. Qualitative and quantitative analysis of heterogeneity for “mean inhibitory concentration” findings (CI: confidence interval).
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and Helicobacter pylori on the basis of the agar well diffusion, 
agar diffusion, and conventional broth dilution methods. The dose 
of 0.05 mg/ml on the agar well produced inhibition zones ranging 
from 16 to 25 mm with MICs ranging from 1.59 to 2.2 mg/ml 
while the dose of 0.01 mg/ml in the conventional broth dilution 
and agar produced a 20 mm inhibition zone and an MIC value of 
0.049 mg/ml (Saleh et al., 2018; Siddaraju and Dharmesh, 2007). 

The crude extract of ginger inhibits the growth of S. 
mutans at a dosage of 2 mg/ml with an inhibition zone of 7.65 
mm. Meanwhile, the aqueous extract of ginger inhibits S. mutans 
at a similar concentration with an inhibition zone of 14.02 mm, 
which is higher than the crude extract. The finding showed that 
the aqueous extract of ginger is more effective than the crude 
extract in inhibiting the growth of S. mutans (Jain et al., 2015). 
The ginger compounds ([6]-dehydrogingerdione, [6]-shogaol, 
[10]-gingerol, and [6]-gingerol) derived from ginger display 
good antibacterial properties against extensively drug-resistant 
Acinetobacter baumannii when using the broth microdilution 
method (MIC value: 0.132–0.347 mg/ml) (Wang et al., 2010). A 
further experiment was done on the basis of the alamarBlue assay 
to test gingerol against the M. tuberculosis drug-sensitive and 
drug-resistant clinical strains. Gingerol at a dose of 0.025 mg/ml 
inhibits the growth of the drug-sensitive and drug-resistant clinical 
strains of M. tuberculosis with MIC values ranging from 0.0015 to 
0.05 mg/ml (Bhaskar et al., 2020). 

The concentrations of Z. officinale in previous papers 
included in this study were different with a range of 0.01 to 300 
mg/ml. Variation in Z. officinale extract concentrations was also 
observed, which included four studies that used the methanol 
extract ranging from 0.03 to 100 mg/ml, six studies that used the 
ethanol extract ranging from 0.03 to 300 mg/ml, five studies that 
used the essential oil ranging from 0.01 to 300 mg/ml, and two 
studies that used acetone ranging from 0.03 to 100 mg/ml and 
two studies that used the crude extract ranging from 2 to 5 mg/
ml. Additionally, the concentration of Z. officinale in some of the 
included studies was unclear. Hence, there is insufficient evidence 
to support the antimicrobial activity of Z. officinale. The SMD is 
used to measure the antimicrobial activities of Z. officinale across 
the included studies. SMD converts data from different scales to 
a common scale which causes the original information for each 
measurement of the included studies to be missing. However, the 
value of SMD is able to provide a significant level of the effect 
of Z. officinale when compared to the positive controls (Higgins 
and Green, 2011). The result of the meta-analysis for the mean 

inhibitory concentration displays that the effects of the positive 
controls in the previous research selected in this study were more 
effective than the effects of the Z. officinale extract [SMD: 0.0201 
(CI; 0.0166–0.0235), I2 = 34%]. However, the previous reports 
showed that Z. officinale were more effective than its selective 
positive control. These findings included in the study that used 
GNF showed an MIC value higher than that of ampicillin which 
were 0.031 and 0.012 mg/ml, respectively (Jacob et al., 2019). 
Secondly, the study that used the methanol, n-hexane, and ethyl 
acetate extracts of ginger at a dose of 2 mg/ml presented higher 
inhibition zones than that of penicillin (40 mg/ml) (Babaeekhou 
and Ghane, 2020). The other related study was conducted by 
Baldin et al. (2019) who demonstrated that GEO (0.25 mg/ml) has 
a higher MIC value than isoniazid and ciprofloxacin. The results 
might be because of insufficient relevant data from these studies to 
be included in the meta-analysis.

CONCLUSION
In a nutshell, the overall findings revealed that the Z. 

officinale extracts and bioactive compounds have antimicrobial 
activities similar to the positive controls for antimicrobial analysis 
related to the overall outcome and inhibition zone [overall 
outcome SMD: −0.6003 (95% CI; −0.7092 to −0.4913), I2 = 100%, 
inhibition zone SMD: 0.8771 (CI; −8.1288 to 9.8829), I2 = 99%]. 
However, the verification of the Z. officinale as an antimicrobial 
agent still needs further study with more available data from 
several other databases.

LIST OF ABBREVIATIONS 
B. subtilis: Bacillus subtilis; CI: Confidence interval; GEO: 

Ginger essential oil; GNF: Ginger nanofiber; E. coli: Escherichia 
coli; K. pneumonia: Klebsiella pneumoniae; L. monocytogenes: 
Listeria monocytogenes; MIC: Minimum inhibition concentration; 
M. tuberculosis: Mycobacterium tuberculosis; P. aeruginosa: 
Pseudomonas aeruginosa; P. multocida: Pasteurella multocida; 
P. mirabilis: Proteus mirabilis; S. aureus: Staphylococcus aureus; 
SMD: Standardized mean difference; S. typhimurium: Salmonella 
typhimurium; Z. officinale: Zingiber officinale
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