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ABSTRACT 
The emergence of drug-resistant Staphylococcus aureus strains, such as methicillin-resistant S. aureus and vancomycin-
resistant S. aureus, and their spread not only inside hospitals but also outside hospitals has become a major problem 
worldwide. In this study, we investigated novel antimicrobial compounds targeting trimethoprim-resistant S. aureus 
dihydrofolate reductase (TMP-resistant saDHFR). A novel screening method, called the parallel compound screening 
(PCS) method, was established to analyze a common population of compounds that showed top scores using two 
docking tools, GOLD and AutoDock Vina. Using 154,118 compounds in the structural library, we conducted a three-
step in silico structure-based drug screening, including PCS, and identified nine candidate compounds targeting 
TMP-resistant saDHFR. The growth inhibitory effects of the candidate compounds on bacteria were examined on 
Staphylococcus epidermidis, a model microbial strain of S. aureus. Among the candidate compounds, two compounds 
showed strong growth inhibition against S. epidermidis. The IC50 values of the two compounds (6.34 and 56.94 µM) 
were determined. Molecular dynamics simulations predicted the direct and stable interactions between the active 
compounds and TMP-resistant saDHFR. The data regarding these active compounds from this study are expected to 
contribute to the development of new antibacterial agents against drug-resistant strains of S. aureus.

INTRODUCTION
Staphylococcus aureus (S. aureus) is a Gram-positive 

bacterium found on human skin and nasal cavity and causes 
pyogenic disease, sepsis, osteomyelitis, and endocarditis 
(Lakhundi and Zhang, 2018). Methicillin-resistant S. aureus 
(MRSA) and vancomycin-resistant S. aureus (VRSA) cause 
nosocomial infections (McGuinness et al., 2017). These resistant 
strains are not confined only to hospitals but have also spread in 
the community (community-acquired MRSA: caMRSA) (Khan 
et al., 2018). The caMRSA infection causes serious diseases 

such as necrotizing pneumonia and can be life-threatening. 
An outbreak of this species affected several people in the early 
2000s, and the disease spread worldwide. The spread of caMRSA 
infections is predicted to become a major problem in the future  
(Khan et al., 2018).

The de novo synthesis pathway, a nucleic acid synthesis 
pathway in S. aureus, produces the purine nucleotides ATP and 
GTP (Li et al., 2011). Inhibition of this pathway leads to decreased 
nucleic acid synthesis, which ultimately kills bacteria (Kobayashi 
et al., 2014). Dihydrofolate reductase (DHFR), which is involved 
in the de novo synthesis pathway, is a known target for developing 
antibacterial drugs and is gathering attention as an attractive drug 
target against MRSA and VRSA (He et al., 2020; Kobayashi 
et al., 2014). Trimethoprim (TMP) is a classical DHFR-targeting 
antimicrobial agent used to treat infections caused by S. aureus. 
TMP is prescribed together with sulfamethoxazole (SMX) as 
co-trimoxazole (Bactrim) to prevent the emergence of resistant 
mutations in bacteria (Wróbel et al., 2020). SMX is a specific 
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inhibitor of the dihydropteroate synthesis (DHPS) enzyme. It has 
been reported that the Phe98 group in DHFR is mutated to Tyr 
(F98Y) in many pathogenic S. aureus variants (Wang et al., 2022). 
Staphylococcus aureus with mutated DHFR developed resistance 
to the diaminopyrimidine (DAP) ring of TMP. Therefore, 
identifying compounds different from TMP and those that are 
devoid of the DAP ring would help develop new therapeutic 
agents for patients infected with TMP-resistant S. aureus strains, 
as well as MRSA, VRSA, and caMRSA strains (Holland et al., 
2014). Drug discovery targeting TMP-resistant S. aureus DHFR 
(TMP-resistant saDHFR) has attracted a great deal of attention 
(Huang et al., 2019; Keshipeddy et al., 2015; Reeve et al., 2019; 
Wang et al., 2022).

Structure-based drug screening (SBDS) has remained one 
of the most effective computational methods for developing new 
drugs (Pinzi and Rastelli, 2019). Based on the three-dimensional 
structure of the target protein, chemical compounds that bind to 
the pocket structure of the target were searched using protein-
compound docking tools. In silico SBDS was performed using 
docking simulation tools such as GOLD (Scarpino et al., 2018), 
DOCK (Kinjo et al., 2013), GLIDE (Reddy et al., 2020), FRED 
(Gentile et al., 2020), AutoDock Vina (Trott and Olson, 2010), 
and Hex (Uciechowska-Kaczmarzyk et al., 2019). Multistep in 
silico SBDS, which consists of two or more docking simulation 
tools, has been used as a more effective way to identify active 
compounds (Taira et al., 2017). In particular, a high hit rate can 
be achieved by utilizing a compound screening method in which 
multiple docking simulations are linked hierarchically (Kobayashi 
et al., 2014; Kuriki et al., 2021).

The emergence of drug-resistant strains threatens the 
pool of first-line drugs, and this issue has necessitated the rapid 
and continuous development of novel antimicrobial agents. 
Computer-aided drug discovery provides a solution because, in 
comparison with screening based on biological experiments, the 
technique enables a more rapid identification of lead compounds. 
However, there is still room to improve efficiency in distinguishing 
true or false positives. In this study, the structure of TMP-resistant 
saDHFR was used as a target protein to identify novel antimicrobial 
compounds that are effective against multidrug-resistant S. aureus 
strains. Many attempts at hierarchical in silico drug screening 
have been made (Pinzi and Rastelli, 2019). This study reports 
the parallel use of two flexible docking simulation tools based on 
genetic algorithms. We established an AutoDock Vina (ADV)-
GOLD parallel compound screening (PCS) method and identified 
novel antimicrobial chemical compounds. The dose-dependent 
inhibitory effects of the active compounds were confirmed and 
IC50 values were determined. The molecular dynamics (MD) 
simulation results indicated that the compounds directly interacted 
with TMP-resistant saDHFR.

MATERIALS AND METHODS

Compound structure library
The three-dimensional structural compound library 

(154,118 compounds from ChemBridge) was obtained from 
the Ressource Parisienne en Bioinformatique Structurale 
(RPBS) web-based database [available at http://bioserv.rpbs.
jussieu.fr/RPBS/cgi-bin/Ressource.cgi?chzn_lg=an&chzn_
rsrc=Collections (accessed Jun 10, 2012)]. The compound library 

was filtered using ADME/Tox filters to exclude compounds that 
were inappropriate as drugs. Compound structure libraries with 
multiple conformations were created, with a maximum of 10 
conformations per compound. Compound multicoordinates were 
generated using the LowModeMD method (Labute, 2010).

Crystal structures of target proteins
The X-ray crystal structure of DHFR (PDB ID: 3M09) 

of the TMP-resistant S. aureus used in this study was obtained 
from the Research Collaboratory for Structural Bioinformatics 
Protein Data Bank (PDB) [available at https://www.rcsb.org/ 
(accessed May 15, 2017)].

Molecular surface extraction and pocket search
The protein structure of 3M09 was downloaded and 

calculations were performed to add hydrogen atoms and charges to 
the 3D structure of DHFR, as described in a previous study (Kuriki 
et al., 2021). Before performing the in silico SBDS, molecular 
surface extraction and pocket searches were performed. We used 
the DMS program to extract the molecular surface and the sphgen 
program to search for pockets [(available at https://dock.compbio.
ucsf.edu/ (accessed April 2, 2017)]. The protein–ligand interaction 
(LI) region was restricted to the region close to the active site of 
the TMP-resistant saDHFR. NADP+, a coenzyme of DHFR, was 
prebound to the protein and other ligands were excluded.

Three-step hierarchical in silico SBDS with PCS method
 In silico SBDS was performed using DOCK version 

6.4, GOLD suite version 5.2.2, and ADV 1.1.2. DOCK, a grid 
docking tool that was used for the first screening. The scoring 
function of DOCK was calculated by predicting the protein–ligand 
binding affinity using van der Waals and electrostatic interaction 
energies. The binding affinities between the protein and the 
compounds selected in the first screening were evaluated using the 
genetic algorithm (GA) flexible docking simulation tools GOLD 
and ADV in the second screening effort. In the third screening, 
although the screening system was the same as in the second 
screening, docking simulation was performed for a 3D compound 
library with multiple configurations (compounds selected from the 
second screening). Finally, the compounds were filtered based on 
the following criteria: the score of the postscoring function RF-
ScoreVS (Wang and Zhang, 2017), the presence of important 
interactions, and Lipinski’s rule of five (Lipinski et al., 2012).

Compounds
All candidate compounds (JP1–9) used in this study 

were purchased from ChemBridge Corporation (San Diego, CA) 
and dissolved in dimethyl sulfoxide (DMSO, Sigma). Table 1 lists 
the compound numbers, names, and ChemBridge IDs.

Bacterial species and growth inhibition assay
Staphylococcus epidermidis was purchased from 

the Microbial Materials Development Laboratory, RIKEN 
BioResource Center (Saitama, Japan). S. epidermidis was 
cultured overnight in 2 ml of the culture medium [composition: 
1% peptone (BD), 1% beef extract (BD), and 0.5% NaCl (Wako, 
Japan), adjusted to pH 6.9] at 37°C and 240 rpm. The cultured 
S. epidermidis cells were diluted 52-fold and seeded in 96-well 



Nakashima et al. / Journal of Applied Pharmaceutical Science 12 (08); 2022: 036-047038

plates under 3 conditions: 0.3% DMSO (negative control), 
ampicillin (positive control), and the candidate compound. After 
6 h of incubation at 37°C and 240 rpm, the turbidity (OD595) of the 
culture medium was measured using a microplate reader (Bio-Rad 
Laboratories, Inc., Hercules, CA).

Molecular dynamics simulation
MD simulations were performed using the ligand–

protein complex structures predicted by GOLD docking 
simulations. The GROMACS package with the CHARMM36m 
force field was used as the MD tool [available at: https://www.
gromacs.org// (accessed Jan 15, 2020)]. A simulation system 
consisting of proteins, compounds, water molecules, and ions was 
constructed using the CHARMM-GUI web server [available at 
https://www.charmm-gui.org/ (accessed Feb 15, 2021)]. TIP3P 
was used as a water molecule. The cut-off distance for the van der 
Waals force and electrostatic interaction between the atoms was 
1.2 nm. The particle mesh Ewald method was used to calculate 
long-range electrostatic interactions. The LINCS constraint 
algorithm was used for the energy minimization, equilibration, and 
production MD calculations. Energy minimization calculations 
were carried out in up to 5,000 steps using the steepest descent 
algorithm. Equilibration calculations were then carried out in 
one step under NVT conditions (310.15 K), followed by two 
steps under NPT conditions (310.15 K, 1 bar). Finally, 30 ns 
production MD calculations were performed with a time step of 2 
fs. MD trajectories were analyzed using g_rms in the GROMACS 
package.

Statistical analysis
All statistical analyses were performed using R (The 

R Foundation for Statistical Computing, Vienna, Austria) and 
GraphPad Prism (GraphPad Prism Software, Inc., San Diego, CA).

RESULTS

The parallel compound screening method
We established the PCS method using the GA docking 

tools GOLD and ADV. This method selects a common population 
of compounds ranked in the top scores of the two docking tools. 
The datasets in the useful (docking) decoys-enhanced (DUD-E) 
database [available at http://dude.docking.org/ (accessed Jun 24, 

2019)] were used for accuracy validation (Mysinger et al., 2012). 
The DUD-E database contained 102 target protein structures and 
datasets of their active and inactive ligand structures. To evaluate 
the prediction performance of docking simulation tools, the 
docking score values were analyzed using the receiver operating 
characteristic (ROC) curve and the area under the curve values. 
PCS is a method of binarization (classification) based on whether 
the compound is in the common population, and it does not 
provide specific parameters. Thus, the ROC curve analysis cannot 
be used to validate the accuracy of the PCS method. Therefore, 
the PCS method was evaluated using enrichment factor (EF) and 
success rate (SR) values (Wang and Zhang, 2017). The EF is a 
measure of the number of active compounds included in candidate 
compounds. The SR is a measure that calculates the proportion of 
proteins in a group of target proteins for which at least one active 
ligand is obtained. The accuracy of the PCS method was verified 
for all 102 target proteins in the DUD-E. We used a 200-compound 
dataset consisting of 20 true-active ligands and 180 pseudo-active 
compounds (decoys) that are similar to the active ligands but 
did not bind to the protein for each target protein. The results 
are presented in Table S1. The percentage of the EF2% (PCS) ≥ 
EF2% (GOLD) group was 74.5%, and the percentage of EF2% 
(PCS) ≥ EF2% (ADV) was 82.4%. The SR values for the GOLD, 
ADV, and PCS methods were 81.4, 83.3, and 85.3%, respectively. 
In terms of both EF2% and SR, the PCS method performed better 
than GOLD and ADV. Among the two indicators, the PCS method 
showed superior performance compared to the conventional 
method GOLD alone and ADV alone.

Three-step hierarchical in silico SBDS including PCS
A 3-step hierarchical in silico SBDS approach  

(Fig. 1) was used to screen 154,118 compounds in the structural 
library [available at http://bioserv.rpbs.jussieu.fr/RPBS/cgi-bin/
Ressource.cgi?chzn_lg=an&chzn_rsrc=Collections (accessed Jun 
10, 2012)] for TMP-resistant saDHFR (PDB ID: 3M09). In the first 
screening, rigid grid-docking simulations were performed using 
DOCK. In the second screening, we used the GA-based docking 
tools, GOLD and ADV in parallel, to screen compounds in singular 
coordination using the PCS method. In the third screening, the 
same PCS method as that in the second screening was applied to 
compounds with multiple conformers. The interactions between 
the protein and compound were then checked using the LI tool 

Table 1. Details of the compounds used in this study.

Name IUPAC name ID

JP1 2-Methyl-5-(4-{[4-(1-piperidinylcarbonyl)phenyl]amino}-1-phthalazinyl)benzenesulfonamide 6339168

JP2 N-(2,3-Dimethylphenyl)-2-{[1-(1-naphthyl)-1H-tetrazol-5-yl]thio}acetamide 6566533

JP3 N-(5-Benzoyl-2-hydroxybenzyl)-2-[(5-benzyl-4-methyl-4H-1,2,4-triazol-3-yl)thio]acetamide 7013416

JP4 2-Imino-10-methyl-5-oxo-N-(1-phenylethyl)-1-(3-pyridinylmethyl)-1,5-dihydro-2H-dipyrido[1,2-a:2',3'-d]
pyrimidine-3-carboxamide 7172775

JP5 N-(4-{[(5-Methyl-3-isoxazolyl)amino]sulfonyl}phenyl)-2-phenyl-2-(phenylthio)acetamide 7294426

JP6 4-({2-[(3-Methylbenzoyl)amino]benzoyl}amino)benzoic acid 7319967

JP7 2-[(4,6-Dianilino-1,3,5-triazin-2-yl)thio]-N-(2-methoxyphenyl)acetamide 7704952

JP8 3-[5-({2-[(Diphenylmethyl)amino]-2-oxoethyl}thio)-1H-tetrazol-1-yl]benzoic acid 7919462

JP9 3-[5-(3-{[(2-Methoxyphenoxy)acetyl]amino}phenoxy)-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl]propanoic acid 7968035
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as a filter to confirm the binding mode near the pocket (Ahmed 
et al., 2021). The RF score was then calculated using RF-Score-
VS (Wang and Zhang, 2017) using GOLD scores, a postscoring 
function that uses machine learning. Finally, the compounds were 
filtered by applying Lipinski’s rule of five. The final selected nine 
compounds are listed in Table 1. Table 2 presents the GOLD and 
ADV scores for each compound.

Bacterial growth inhibition assay for the candidate compounds
Nine candidate compounds (named JP1–9) predicted via 

the three-step hierarchical in silico SBDS were analyzed for their 
growth inhibitory effects on bacteria. S. epidermidis (biosafety 
level 1) was used as a model S. aureus bacterium in this growth 
inhibition assay (Kobayashi et al., 2014) because our laboratory 
is not equipped to perform experiments using S. aureus (biosafety 
level 2). The amino acid sequences of TMP-resistant saDHFR and 

Figure 1. Flowchart of the three-step hierarchical in silico SBDS with PCS method. 

Table 2. Score values for the nine candidate compounds identified by 
SBDS with the PCS method.

Name GOLD scorea ADV scorea

JP1 75.65 ± 1.83 −10.11 ± 0.48

JP2 64.42 ± 1.49 −9.01 ± 0.3

JP3 80.56 ± 3.4 −9.27 ± 0.05

JP4 67.72 ± 0.96 −9.45 ± 0.14

JP5 84.81 ± 1.61 −9.26 ± 0.07

JP6 71.82 ± 1.37 −9.27 ± 0.23

JP7 78.88 ± 3.53 −8.95 ± 0.07

JP8 75.12 ± 1.17 −9.4 ± 0.13

JP9 80.58 ± 5.6 −9.29 ± 0.35

aEach value represents mean ± standard error.
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S. epidermidis DHFR were analyzed using BLAST [available at 
https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed Aug 20, 2017)] 
and UniProt [available at https://www.uniprot.org/ (accessed Aug 
20, 2017)]. The residues near the active site of TMP-resistant 
saDHFR were completely conserved in S. epidermidis, and 
the RMSD value between both protein structures was 0.543 Å 
(Kobayashi et al., 2014). JP5 and JP9 showed a strong inhibitory 
effect among the candidate compounds, while JP7 showed a weak 
inhibitory effect (Fig. 2). Figure 3A–C shows the structures of the 
three compounds that had an inhibitory effect on bacterial growth, 
and these three compounds were not structurally similar to each 
other. Both GOLD and ADV predicted that all three compounds 
would bind close to the active site of the DHFR (Fig. 3D–F, data of 
ADV not shown). The dose-dependent effects of two compounds 
(JP5 and JP9) on the growth of S. epidermidis were investigated. 
The IC50 value of JP9 was 6.34 ± 0.47 µM, while the effect was 
weaker for JP5, with an IC50 value of 56.94 ± 3.16 µM (Fig. 4).

Binding mode prediction of the hit compounds
The interactions between TMP-resistant saDHFR and hit 

compounds (JP5 and JP9) were evaluated using the LI and protein–
LI fingerprint (PLIF; data not shown) tools in Molecular Operating 
Environment (MOE) version 2011. 10 (Ahmed et al., 2021). Figure 
5 shows the binding mode predictions by LI using the ligand–protein 
complex structures with the highest score calculated by GOLD in 
the third screening step. All hit compounds were located near the 
active site of DHFR (Fig. 3D–F). The results of the combined LI and 
PLIF analyses using multiple conformers are shown in Table 3. The 
analyses suggested that both the active compounds interacted with 
Phe92 (Fig. 5 and Table 3). JP5 appeared to form a hydrogen bond 
with Phe92, and JP9 binds to Phe92 via arene–arene interaction. 
The benzyl group of JP5 formed a hydrogen bond with Leu28, and 
the carboxyl and amide groups of JP9 formed a hydrogen bond 
with His30 and Leu20, respectively. In addition, PLIF analysis with 

Figure 2. Results of growth inhibition assay of S. epidermidis by candidate compounds (JP1–9). The concentration of all compounds was 100 µM. DMSO 
(0.3%) and ampicillin (100 µg/mL) were used as the negative and positive controls, respectively. All values represent mean ± SEM of four independent 
experiments. Bonferroni’s all-pairs comparison test was performed (n.s.: not significant; ***: p < 0.001; **: p < 0.002; *: p < 0.033). CPD: compound.
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multiple conformers revealed the potential interactions of JP9 with 
Val6, His23, Asp27, and Thr11 (Table 3).

Analysis of compound-protein interaction by MD simulation
MD simulations of 30 ns were performed using the ligand–

protein complex structures, JP5–TMP-resistant saDHFR, and JP9–
TMP-resistant saDHFR, predicted by GOLD in the third screening. 
The 30 ns simulations with the complex structure of the TMP–
TMP-resistant saDHFR protein were also performed. The complex 
structure was generated by docking simulation using GOLD (GOLD 
score = 67.70). A previous study showed that ligand binding ability 
could be assessed with high accuracy by analyzing ligand RMSD 
values in MD simulations with 56 proteins and 569 ligands (Guterres 
and Im, 2020). The time-dependent change of ligand RMSD value 
was analyzed for 30 ns production MD simulations, and the ligand 
RMSD value of TMP exceeded 0.65 nm by 2 ns and then exceeded 
1.0 nm after 16 ns. At 2 ns, TMP dissociated from the active site 
pocket and never returned to the pocket. The mean RMSD value of 
TMP was 0.66 nm, indicating that TMP does not bind to the TMP-
resistant saDHFR protein stably. On the contrary, the ligand RMSD 
values of JP5 and JP9 were stable throughout the simulation, with 
mean ligand RMSD values of 0.25 nm and 0.27 nm, respectively, 
indicating that JP5 and JP9 may stably and directly bind to the 
TMP-resistant saDHFR protein. 

Toxicity assessment using the toxicity prediction tools
The toxicities of the candidate compounds were assessed 

by calculating the predicted LD50 values for oral administration 

in rats using TEST, a toxicity prediction tool [available at http://
www.epa.gov/nrmrl/std/qsar/qsar.html (accessed Aug 20, 2020)]. 
TEST predicted LD50 values of 1902.8 and 3147.1 mg/kg body 
weight for JP5 and JP9, respectively. JP5 and JP9 were predicted 
to have sufficiently low toxicity compared with TMP (LD50 = 
1648.1 mg/kg body weight). ToxiM, a machine learning-based 
toxicity prediction tool, estimated the toxicity classification scores 
of JP5, JP9, and TMP (Sharma et al., 2017). The toxicity scores 
of JP5, JP9, and TMP were 0.978, 0.860, and 0.926, respectively, 
suggesting that JP9 was less toxic than TMP.

DISCUSSION
We constructed and validated a novel screening method, 

the PCS method, and found that it performed better than the 
conventional methods. PCS was incorporated into the screening 
pathway targeting TMP-resistant saDHFR, and three compounds 
with growth inhibitory effects on S. epidermidis were identified. 
The interactions of the compounds (JP5 and JP9) identified in this 
study were predicted by LI and PLIF analyses. JP5 was predicted 
to form a hydrogen bond with Leu28, which is the same as that 
of TMP (Kobayashi et al., 2014). The significance of the Leu20 
interaction in wild-type saDHFR has also been reported in previous 
studies investigating other inhibitory compounds (Kobayashi 
et al., 2014). LI analysis also predicted an interaction between JP9 
and His30. These are likely to explain the difference in the growth 
inhibitory effects of JP5 and JP9. Leu20 is considered an important 
residue not only in wild-type saDHFR but also in TMP-resistant 
saDHFR. Furthermore, compounds with growth inhibitory effects 
commonly interact with Phe92. Therefore, interactions with 

Figure 3. Structures of the compounds with antibacterial activity. (A) JP5, (B) JP7, and (C) JP9. The 
complex structures of compounds and the TMP-resistant saDHFR are shown in (D–F). (D) JP5–TMP-
resistant saDHFR. (E) JP7–TMP-resistant saDHFR. (F) JP9–TMP-resistant saDHFR. The amino acid 
residues of the active site pockets are shown in red color.
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Leu20, His30, and Phe92 are likely to be important for inhibiting 
the enzyme activity of DHFR.

There exists compatibility between docking simulation 
tools and target proteins (Pereira et al., 2016). Hence, selecting 
an appropriate tool for each target protein is important to identify 
hit compounds with a high probability. However, in the absence 
of a sufficient dataset, the ROC curve analysis cannot be used to 
assess the validity of a target protein/tool combination. Even in 
the absence of a sufficient ligand dataset, the PCS method can 
provide information on the compatibility between the docking 
tool and target protein. If the percentage of common compounds 
in the total compounds selected by each of the two tools is zero 
or very low, then it indicates that one or both tools may not be 
suitable for evaluating the target protein. Such information on 
the compatibility between target proteins and tools is extremely 
important for planning strategies for in silico drug discovery.

MD simulations using the complex structures of JP5 
and JP9 with TMP-resistant saDHFR showed that the complexes 
remained stable for 30 ns with low RMSD values, suggesting that 
JP5 and JP9 can bind directly to TMP-resistant saDHFR. On the 
contrary, TMP deviated from the active site pocket of the TMP-
resistant saDHFR early during the 30 ns MD simulation and did 
not return to the pocket. JP9 inhibited the growth of the bacteria at 
low concentrations (IC50 value = 6.34 µM) and was also predicted 
to be less toxic than TMP by the two independent tools for toxicity 
prediction. Considered together, multiple lines of evidence from 
in silico simulations and in vitro experiments suggest that JP9 is 
a promising molecule for future antimicrobial drug development. 
The hit rate of the three-step in silico SBDS method with the 
newly proposed screening system with PCS was 22% (33%, 
including the one that showed weak growth inhibition). This hit 
rate is extremely high compared to experimental high-throughput 
screening. Not only the active compounds but also the compound 
that showed only a weak growth inhibition effect is likely useful 
as lead compounds for the next step of drug discovery, which is to 
search for analogues with modified functional groups. The three-
step in silico SBDS method used in this study is thought to be 
effective in terms of both time and cost for identifying new active 
lead compounds.

Figure 4. Results of the verification of the dose-dependent effect 
of JP5 and JP9 on the growth of S. epidermidis. The vertical 
axis represents the bacterial growth rate (%) of S. epidermidis 
after 6 hours of incubation, and the horizontal axis represents 
the concentration of each compound on a logarithmic scale 
(log M). Each plot represents mean ± SEM of four independent 
experiments. The IC50 values were determined using nonlinear 
regression analysis. Each IC50 value was determined using four 
independent experiments and nonlinear regression analysis. (A) 
JP5 and (B) JP9. 

Figure 5. Binding mode prediction of TMP-resistant saDHFR and hit compounds using LI.
(A) JP5 and (B) JP9. Purple circles: polar amino acids. Green circles: hydrophobic amino acids. Green and blue 
dotted arrows are side chain and backbone hydrogen bonds, respectively. Green double benzene indicates arene–
arene interaction. Blue blurred regions indicate ligand exposure atoms. 
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CONCLUSION
In this study, compared with the conventional strategy, 

the PCS method exhibited advantages in the two metrics, EF2% 
and SR, and out of nine experimentally validated candidates, 
JP5 and JP9 were identified as active inhibitors. Furthermore, 
the MD simulation strongly suggested that JP5 and JP9 can 
form stable complexes with the active sites in TMP-resistant 
saDHFR. Considering that JP5 and JP9 have unique structures, 
these compounds could be novel leads for anti-infectives against 
S. aureus with TMP resistance. In the context of effectively 
identifying lead compounds, we believe that integrating the 
PCS method into an in silico SBDS platform could improve the 
computer-assisted strategy of identifying competitive inhibitors.
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SUPPLEMENTARY MATERIAL
Table S1. Accuracy validation results of DUD-E No. 1-102 proteins.

Protein Name PDBID EF2%(GOLD) EF2%(ADV) EF2%(PCS)

1 AA2AR 3eml 5 0 2.5

2 ABL1 2hzi 0 7.5 7.5

3 ACE 3bkl 5 0 2.5

4 ACES 1e66 5 5 7.5

5 ADA 2e1w 7.5 2.5 5

6 ADA17 2oi0 2.5 7.5 5

7 ADRB1 2vt4 5 2.5 2.5

8 ADRB2 3ny8 5 0 5

9 AKT1 3cqw 7.5 2.5 5

10 AKT2 3d0e 5 5 5

11 ALDR 2hv5 0 2.5 5

12 AMPC 1l2s 10 2.5 2.5

13 ANDR 2am9 0 10 0

14 AOFB 1s3b 2.5 7.5 5

15 BACE1 3l5d 10 2.5 7.5

16 BRAF 3d4q 5 10 7.5

17 CAH2 1bcd 0 0 0

18 CASP3 2cnk 10 2.5 5

19 CDK2 1h00 5 10 7.5

20 COMT 3bwm 10 2.5 7.5

21 CP2C9 1r9o 7.5 5 5

22 CP3A4 3nxu 2.5 0 0

23 CSF1R 3krj 7.5 2.5 5

24 CXCR4 3odu 0 0 0

25 DEF 1lru 0 2.5 0

26 DHI1 3frj 2.5 5 5

27 DPP4 2i78 5 2.5 2.5

28 DRD3 3pbl 2.5 2.5 5

29 DYR 3nxo 7.5 2.5 7.5

30 EGFR 2rgp 10 2.5 7.5

31 ESR1 1sj0 5 7.5 10

32 ESR2 2fsz 5 5 5

33 FA10 3kl6 7.5 7.5 7.5

34 FA7 1w7x 10 10 10

35 FABP4 2nnq 5 10 10

36 FAK1 3bz3 5 2.5 2.5

37 FGFR1 3c4f 0 0 2.5

38 FKB1A 1j4h 2.5 2.5 0

39 FNTA 3e37 2.5 2.5 0

40 FPPS 1zw5 10 0 0

41 GCR 3bqd 2.5 2.5 5

Continued
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Protein Name PDBID EF2%(GOLD) EF2%(ADV) EF2%(PCS)

42 GLCM 2v3f 0 0 5

43 GRIA2 3kgc 0 5 5

44 GRIK1 1vso 2.5 0 2.5

45 HDAC2 3max 2.5 5 10

46 HDAC8 3f07 2.5 7.5 2.5

47 HIVINT 3nf7 5 10 10

48 HIVPR 1xl2 7.5 2.5 10

49 HIVRT 3lan 2.5 5 0

50 HMDH 3ccw 7.5 5 10

51 HS90A 1uyg 2.5 0 0

52 HXK4 3f9m 2.5 0 0

53 IGF1R 2oj9 5 7.5 7.5

54 INHA 2h7l 2.5 2.5 2.5

55 ITAL 2ica 0 0 0

56 JAK2 3lpb 2.5 5 5

57 KIF11 3cjo 0 10 2.5

58 KIT 3g0e 2.5 5 7.5

59 KITH 2b8t 7.5 10 10

60 KPCB 2i0e 0 10 5

61 LCK 2of2 0 7.5 5

62 LKHA4 3chp 10 10 10

63 MAPK2 3m2w 5 7.5 10

64 MCR 2aa2 0 2.5 0

65 MET 3lq8 7.5 2.5 7.5

66 MK01 2ojg 10 2.5 10

67 MK10 2zdt 7.5 10 10

68 MK14 2qd9 2.5 2.5 2.5

69 MMP13 830c 2.5 2.5 2.5

70 MP2K1 3eqh 7.5 5 10

71 NOS1 1qw6 10 2.5 7.5

72 NRAM 1b9v 2.5 0 2.5

73 PA2GA 1kvo 7.5 2.5 2.5

74 PARP1 3l3m 2.5 10 10

75 PDE5A 1udt 2.5 2.5 0

76 PGH1 2oyu 2.5 5 2.5

77 PGH2 3ln1 2.5 2.5 7.5

78 PLK1 2owb 0 0 0

79 PNPH 3bgs 5 7.5 5

80 PPARA 2p54 10 2.5 10

81 PPARD 2znp 10 5 7.5

82 PPARG 2gtk 7.5 5 10

83 PRGR 3kba 0 2.5 2.5

84 PTN1 2azr 10 7.5 10

Continued
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Protein Name PDBID EF2%(GOLD) EF2%(ADV) EF2%(PCS)

85 PUR2 1njs 10 2.5 10

86 PYGM 1c8k 0 5 5

87 PYRD 1d3g 7.5 10 10

88 RENI 3g6z 7.5 2.5 7.5

89 ROCK1 2etr 7.5 0 7.5

90 RXRA 1mv9 10 10 10

91 SAHH 1li4 0 7.5 7.5

92 SRC 3el8 5 5 7.5

93 TGFR1 3hmm 5 7.5 10

94 THB 1q4x 0 7.5 2.5

95 THRB 1ype 7.5 7.5 7.5

96 TRY1 2ayw 7.5 0 7.5

97 TRYB1 2zec 10 2.5 2.5

98 TYSY 1syn 10 10 10

99 UROK 1sqt 10 10 10

100 VGFR2 2p2i 10 7.5 10

101 WEE1 3biz 10 10 10

102 XIAP 3hl5 5 7.5 10




