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ABSTRACT 
Tea is one of the most popular beverages in the world. Some tea products are highly sought after and have higher 
commercial value. As a result, the authentication of tea is of importance and is frequently addressed in current 
literature. Multielemental determination with the aid of multivariate data analysis has been successfully performed 
to determine the authenticity of tea. We conducted a literature review on existing methods that applied elemental 
fingerprinting for tea authentication. We systematically searched the electronic database Web of Science for literature 
over the last two decades. The elemental determinations for tea authentication were performed using inductively 
coupled plasma-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, atomic absorption 
spectroscopy, X-ray fluorescence, and/or laser-induced breakdown spectroscopy. Principal component analysis, linear 
discriminant analysis, and artificial neural network were among the most frequently used multivariate data analysis 
techniques. The elemental fingerprinting technique appears to be a promising source of information for categorizing 
tea based on geographical origins, harvesting time, cultivars, and types.

INTRODUCTION
Tea is one of the world’s most popular beverages. 

Tea is primarily made from the leaves and buds of the tea plant 
(Camellia sinensis L.) (Zhang et al., 2019). The optimum climate 
for growing tea is 19°C–23°C with 2,500–3,000 mm per year of 
rainfall. Shoot growth is greatly reduced when the temperature is 
outside the 13°C–30°C range or the rainfall is less than 1,200 mm 
per year (Jayasinghe et al., 2019). Thus, tea is suitable for being 
cultivated in tropical and subtropical areas. According to 2019 
data, China is the world’s leading tea producer, accounting for 
nearly half of the global tea production. It is followed by India, 
Kenya, and Sri Lanka (FAO, 2021).

Tea from various geographical areas frequently has a 
distinct flavor. The elevation is one of the factors that influence 
tea aroma. Although tea can be grown at elevations ranging from 
0 to 2,200 m above sea level, higher elevations produce tea with 

a richer flavor due to more concentrated aromatic oils when the 
plant is grown under stress conditions (Jayasinghe et al., 2019). 
The disadvantage of cultivating in a stressed environment is that 
crop yield is lower. The combination of peculiar taste and limited 
availability prompts a higher economic value for authentic tea of 
a specific origin, particularly in this globalization era. Several teas 
have received a protected geographical indication (PGI) certificate 
which recognizes a regional specialty, such as Wuyi-Rock tea 
from Wuyi Mountain in the north of Fujian Province in China, 
Xihu Longjing tea from the Xihu district of Zhejiang Province in 
China, and Kangra tea from the Western Himalayas in northern 
India (European Commission, 2021).

As tea is a popular commodity with some products 
having a higher value than others, tea has been a target of 
counterfeiting or adulteration. Detecting counterfeit, mislabeled, 
or adulterated tea is a difficult task. The appearance of the 
fraudulent products is often identical to that of the originals, 
so they cannot be distinguished by appearance. Authentication 
is essential to ensure product quality and originality, which 
protects both consumers and legitimate producers. Elemental 
fingerprinting, defined by a unique pattern of elemental 
concentration in tea or tea infusion, has been used in many 
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publications for tea authentication, especially concerning the 
geographical origin of tea. Due to a large amount of data available 
in multielemental fingerprinting, multivariate data analysis is 
required to help interpret the results. A suitable multivariate data 
analysis technique provides a powerful prediction for the data 
sets.

The purpose of this review is to discuss the recent 
applications of elemental fingerprinting for the authentication 
of tea. The most commonly used multielemental determination 
techniques and multivariate data analyses in the literature over the 
last two decades are highlighted.

METHODS
A literature search was performed between May 10 

and 17, 2021, using the electronic database Web of Science from 
2000 to 2021. The keywords used in the literature search were 
“tea AND authentication AND element*” and “tea AND origin 
AND element*” and “tea AND classification AND element*.” The 
abstracts of the search results were examined for potential inclusion 
of the articles. A total of 67 articles were further reviewed, and 
unsuitable articles were excluded. The excluded articles included 

articles that did not use multivariate data analysis, articles that did 
not use tea (C. sinensis L.) as the main object of the study, and 
review articles. Two appropriate articles were included following 
a manual search of the reference lists of the included articles. A 
final total of 48 articles were used in this review study. Figure 
1 depicts a flowchart of the selection process. A summary of the 
research articles is available in Table 1.

MULTIELEMENTAL DETERMINATION TECHNIQUES
Authentication of tea by means of elemental fingerprinting 

requires instruments that are suitable for high-throughput analysis. 
Inductively coupled plasma-mass spectrometry (ICP-MS) is 
the most popular technique for multielemental analysis in the 
authentication of tea (Table 1). Previously, inductively coupled 
plasma-optical emission spectroscopy (ICP-OES) was employed 
for multielement determination. Flame atomic absorption 
spectroscopy (FAAS), X-ray fluorescence (XRF), and laser-
induced breakdown spectroscopy (LIBS) were used in a limited 
application. ICP-MS outperforms other instruments mainly due to 
its low limit of detection (LOD) and wider linear dynamic range. 
Thus, ICP-MS can determine many more elements simultaneously. 

Figure 1. The flowchart of the literature search for this review.
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Table 1. Summary of the articles included in this study. 

Factors Variables Multielemental 
determination method Multivariate data analysis References

Geographical origins Multiple elements, stable 
isotope ICP-OES, ICP-MS PCA, LDA, OPLS-DA Liu et al., 2021b

Formulas Multiple elements, stable 
isotope ICP-OES, ICP-MS PLS-DA, LDA, PCA, HCA Liu et al., 2021a

Geographical origins, 
cultivars Multiple elements ICP-AES, ICP-MS PCA, LDA Zhang et al., 2021

Geographical origins Multiple elements XRF PCA, SIMCA, PLS-DA Lim et al., 2021

Geographical origins Multiple elements ICP-MS PCA, LDA Zhang et al., 2021

Production years Multiple elements stable 
isotope ICP-OES, ICP-MS HCA, PCA, PLS-DA, BP-

ANN, LDA Liu et al., 2020b

Geographical origins Multiple elements, stable 
isotope ICP-OES, ICP-MS HCA, PCA, PLS-DA, BP-

ANN, LDA Liu et al., 2020a, 2020d

Geographical origins Multiple elements ICP-AES, ICP-MS PCA, LDA Zhang et al., 2020a

Geographical origins Multiple elements, stable 
isotope ICP-MS RF Deng et al., 2020

Tea versus other herbal 
infusions Multiple elements XRF PCA Winkler et al., 2020

Geographical origins Multiple elements, stable 
isotope LIBS, ICP-MS PCA, PLS-DA, FDA Baskali-Bouregaa et al., 2020

Grades Multiple elements ICP-MS PLS-DA, CP-ANN Meng et al., 2020

Types Multiple elements ICP-OES PCA Pohl et al., 2020

Geographical origins, 
cultivars, seasons Multiple elements (REE) ICP-MS LDA Zhao and Yang, 2019

Geographical origins Multiple elements, stable 
isotope ICP-MS PCA, LDA Liu et al., 2019

Subtypes and leaf parts Multiple elements ICP-MS PCA, PLS-DA Zhang et al., 2019

Types Multiple elements ICP-MS PCA, LDA Ma et al., 2019

Geographical origins Multiple elements, organic 
compounds ICP-MS PCA Li et al., 2019

Harvest seasons Multiple elements ICP-MS LDA Zhao and Zhao, 2019

Organic tea Multiple elements ICP-AES PLS-DA, LS-SVM Xu et al., 2019

Geographical origins Multiple elements ICP-AES, ICP-MS PCA, LDA, OPLS-DA Zhang et al., 2018b

Geographical origins Multiple elements ICP-OES CA, PCA Li et al., 2018

Geographical origins Multiple elements ICP-MS LDA Zhang et al., 2018c

Geographical origins Multiple elements, stable 
isotope ICP-AES, ICP-MS LDA, PLS-DA, DT Ni et al., 2018

Cultivars Multiple elements LIBS PLS-DA Zhang et al., 2018a

Geographical origins, 
cultivars, seasons Multiple elements ICP-MS LDA Zhao et al., 2017a

Geographical origins Multiple elements, stable 
isotope XRF PCA, CDA Rajapaksha et al., 2017

Geographical origins Multiple elements ICP-MS LDA Zhao et al., 2017b

Geographical origins Multiple elements FAAS FA, CA Brzezicha-Cirocka et al., 2017

Geographical origins Multiple elements ICP-OES, ICP-MS LDA, SVM, KNN Ye et al., 2017

Geographical origins Multiple elements, stable 
isotope FAAS, ICP-MS SVM Lou et al., 2017

Continued 
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The growing popularity and availability of ICP-MS for elemental 
determination have aided the development of this topic, which has 
highly accelerated since 2017 (Fig. 2). 

The introduction of a sample into an ICP instrument 
requires a suitable system, which is dependent on the type of 
sample. A pneumatic nebulizer and spray chamber are typically 
used to introduce liquid samples. For volatile elements, such 
as As and Hg, a hydride generator is an appropriate sample 
introduction system. A laser-ablation system can be coupled 
to an ICP instrument, allowing it to analyze solid samples, etc. 
ICP efficiently atomizes and ionizes the sample that enters the 
instrument. Elements with  ionization energy of less than 8 eV are 
almost completely ionized, whereas metalloids and nonmetals can 
be partially ionized. 

The ions produced by ICP are then carried by argon gas into 
a mass spectrometry detector (for ICP-MS) or an optical emission 
spectroscopy detector (for ICP-OES). Both instruments allow the 
rapid and simultaneous detection of multiple elements in a single 
analysis. ICP-MS can be equipped with a quadrupole-based, time-

of-flight (TOF), or sector-field detector. Quadrupole-based ICP-MS 
is the preferred instrument for elemental quantification, where exact 
ion mass determination and high mass resolution are not required. 
It offers sufficiently fast analysis and high sensitivity at a lower 
cost compared to TOF and sector-field detectors. TOF is a faster 
instrument that has better performance for transient signals (for 
coupling with laser-ablation or HPLC). Sector-field ICP-MS offers 
higher resolution, and in the case of multicollector sector-field ICP-
MS, it has superior precision that is suitable for the determination 
of exact mass, i.e., for isotopic analysis. Further reviews of ICP-MS 
instrumentations are available elsewhere (Jakubowski et al., 2011; 
Meermann and Nischwitz, 2018). In ICP-OES, the instrumentation 
can be differentiated by the viewing of the light emitted from the 
plasma. The conventional radial view examines the plasma from 
the side, while the axial view examines the plasma from above. As 
more light is examined by the axial system, the sensitivity is higher, 
but it suffers more from noise which affects the precision. Thus, 
the selection of the instrument depends on the concentration of the 
analyte and the complexity of the matrices (de Souza et al., 2008).

Factors Variables Multielemental 
determination method Multivariate data analysis References

Geographical origins Multiple elements FAAS FA, CA Brzezicha-Cirocka et al., 2016

Geographical origins Multiple elements ICP-MS PCA, CA, LDA Ma et al., 2016

Types Multiple elements LIBS LDA Wang et al., 2016

Types Multiple elements FAAS, ICP-OES PCA, LDA Szymczycha-Madeja et al., 
2016

Types Multiple elements FAAS, ICP-OES PCA, LDA Szymczycha-Madeja et al., 
2015

Types Multiple elements FAAS PCA, CA Paz-Rodríguez et al., 2015

Geographical origins and 
types

Multiple elements, organic 
compounds, etc. ICP-OES SIMCA, PLS-DA, SPA-LDA Diniz et al., 2015

Types Multiple elements, inorganic 
anions ICP-MS PCA, LDA Minca et al., 2015

Geographical origins Multiple elements ICP-MS LDA Han et al., 2014

Types Multiple elements ICP-OES PCA, HCA Froes et al., 2014

Types Multiple elements ICP-AES LDA, PNN McKenzie et al., 2010

Geographical origins Multiple elements, stable 
isotope ICP-MS LDA Pilgrim et al., 2010

Cultivars Multiple elements ICP-AES PCA, HCA, LDA, BP-NN Chen et al., 2009

Geographical origins Multiple elements ICP-AES, ICP-MS PCA, CA, LDA, SIMCA Moreda-Piñeiro et al., 2003

Geographical origins and 
types Multiple elements ICP-AES PCA, LDA, ANN Fernández-Cáceres et al., 2001

Geographical origins Multiple elements ICP-AES, ICP-MS PCA, CA, LDA, SIMCA Moreda-Piñeiro et al., 2001

FAAS: flame atomic absorption spectroscopy; ICP-MS: inductively coupled plasma-mass spectrometry; ICP-OES: inductively coupled plasma-optical emission 
spectrometry, also known as ICP-AES: inductively coupled plasma-atomic emission spectroscopy; LIBS: laser-induced breakdown spectroscopy; XRF: X-ray 
fluorescence. BP-ANN: back propagation-artificial neural network; BP-NN: back propagation-neural network; CA: cluster analysis; CP-ANN: counter propagation-
artificial neural network; DT: decision tree; FA: factor analysis; HCA: hierarchical cluster analysis; KNN: K-nearest neighbor; LDA: linear discriminant analysis; 
LS-SVM: least squares support vector machine; OPLS-DA: orthogonal projection to latent structures-discriminant analysis; PCA: principal component analysis; 
PLS-DA: partial least square-discriminant analysis; SIMCA: soft independent modeling of class analogy; PNN: probabilistic neural network; RF: random forest; 
SVM: support vector machine.



Hastuti and Rohman / Journal of Applied Pharmaceutical Science 12 (03); 2022: 045-054 049

ICP-MS is superior to ICP-OES in terms of LOD. 
Zhang et al. (2019) validated multielemental analysis of 64 
elements in tea via ICP-MS. The LOD was typically under 1 
ng/ml, ranging from 0.0004 ng/ml (for Re) to 35.906 ng/ml 
(for Ca). The LODs of 14 elements analyzed by ICP-OES were 
0.001–0.045 µg/ml (McKenzie et al., 2010). Thus, ICP-MS is 
capable of analyzing rare earth elements (REEs) in tea, which are 
present in ultra-trace concentrations. ICP-MS, but not ICP-OES, 
can distinguish isotopes of an element as additional parameters 
for the authentication of tea (Liu et al., 2020a, 2020d). However, 
the ICP-MS comes with higher purchasing and operating costs. A 
standard quadrupole ICP-MS costs around €150,000 to purchase, 
which is two to three times higher than the cost of an ICP-OES. 
On top of that, due to the high sensitivity of this instrument, the 
operating costs of ICP-MS increase to maintain a low-level metal 
environment, such as the need for a clean room, trace metal grade 
acids, and perfluoroalkoxy alkane vessels instead of glassware.

FAAS can be used in the authentication of tea despite its 
limitations. FAAS is much cheaper (around €20,000) and easier 
to operate than ICP instruments. Thus, FAAS is appropriate for 
routine analysis in a nonspecialized laboratory. However, it is not 
widely used for tea authentication because it takes a long time to 
analyze multiple elements. As a result, it is not cost-efficient and 
requires a high number of samples for multielemental analysis. 
While ICP instruments usually require less than 1 g of tea sample, 
FAAS may need up to 10 g for the analysis of 14 elements (Ca, 
K, Mg, Na, P, Mn, Fe, Zn, Cu, Co, Cd, Cr, Ni, and Pb). Moreover, 
the LOD was 0.01–0.40 µg/g for the 14 elements analyzed, which 
was much higher than the ICP-based methods. Additional sample 
preparation procedures were required to compensate for matrix 

and spectral interferences in FAAS analysis, such as the addition 
of cesium chloride for K and Na measurements to increase analyte 
atomization and the addition of lanthanum (III) oxide for Ca 
and Mg measurements to dissociate the analyte from the matrix 
(Brzezicha-Cirocka et al., 2016). 

ICP-MS, ICP-OES, and FAAS commonly require 
samples in solution form. Sample preparation prior to analysis 
is critical as it affects analytical performance and often takes a 
significant amount of time. Sample preparation may include sample 
size reduction, digestion, and dilution. Sample digestion is needed 
to release the analyte and eliminate the matrix. Microwave-assisted 
digestion is available for fast and efficient digestion. The digestion 
by the microwave digestion system required only 30 minutes of 
gradient heating (120°C for 10 minutes, 160°C for 10 minutes, 
and 180°C for 10 minutes) with a common digestion solution of 
5 ml of 65% HNO3 and 1 ml of 30% H2O2 (Li et al., 2019). On 
the other hand, conventional wet digestion required the samples to 
be digested with a strong acid (such as HNO3) overnight at room 
temperature before adding H2O2 and heating to achieve complete 
digestion, ensuring a quantitative process (Meng et al., 2020). The 
latter remains a choice when the microwave digestion system is 
not available or is limited by the number of vessels. 

XRF provides an alternative method for a rapid 
multielemental analysis, eliminating the necessity of sample 
digestion. Sample preparation is normally nondestructive, 
involving only sample size reduction and homogenization (Lim 
et al., 2021; Rajapaksha et al., 2017). However, the method is 
limited by the concentration of the elements in the sample. The 
element with a concentration of <3 µg/g exhibited a very high 
RSD due to its low sensitivity. Furthermore, elements with low 

Figure 2. The number of studies on the authentication of tea using elemental concentrations and multivariate data analysis from 2001 to mid-2021. 
The increasing number of studies was influenced by the higher utilization of ICP-MS instruments.
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atomic numbers, such as Na, are difficult to analyze using XRF 
(Lim et al., 2021). Because the energy level of light elements is 
low (around 1 keV), the fluorescence is mostly absorbed by the 
sample, and the detector is not sensitive enough to detect the 
remaining unabsorbed fluorescence. Additionally, the fluorescence 
undergoes scattering effects, such as Rayleigh and Raman 
scattering (Da-Col et al., 2015).

LIBS has recently been used for elemental analysis. 
LIBS can detect multiple elements simultaneously with a 
minimum sample preparation step. Prior to analysis, the sample 
is usually dried to achieve an accurate and precise result. The 
sample is then ground and compressed into a tablet. Although the 
accuracy and precision of LIBS are generally lower than those 
of XRF, LIBS has better performance for the analysis of lighter 
elements. In LIBS instrumentation, a laser is focused through 
a lens to generate intense plasma on the sample’s surface. The 
emitted light is collected and transmitted to a detector. The signal 
is sent to a personal computer for data acquisition and analysis. 
To observe the elements, the resulting spectra are compared to an 
established database, such as those from the National Institute of 
Standards and Technology (Wang et al., 2016). Aside from metal 
elements such as Ca, Fe, Al, Mn, Mg, K, and Si, molecular spectra 
of CN and C2 can be observed from the LIBS spectra generated 
from tea leaves (Wang et al., 2016; Zhang et al., 2018a). 

MULTIVARIATE DATA ANALYSES
Multielemental determination for authentication study 

generates a large amount of data. Multivariate data analysis is 
essential for data analysis in the context of pattern recognition 
to determine whether the data sets have some shared similarities 
that are homogeneous enough to be classified into a group. 
Multivariate data analysis can be categorized into unsupervised 
and supervised methods based on the algorithm used to build the 
models. Unsupervised methods do not make any assumptions on 
sample grouping prior to modeling, so the algorithm discovers 
the inherent pattern in the data. On the other hand, supervised 
methods assign data into groups before constructing a model. The 
model learns the pattern of the group through iterative prediction.

Principal component analysis (PCA) and hierarchical 
cluster analysis (HCA) are the most common unsupervised 
methods of multivariate data analysis used in tea authentication 
(Table 1). PCA generates principal components (PCs) from 
variables to explain data variation. The PCs with most variations 
are usually depicted in order to visualize the clusters and the 
contributing variables. HCA assigns the data into clusters based 
on the straight-line (Euclidean) distance between the objects using 
Ward’s method. The data is visualized as a dendrogram as a result 
of the analysis (Moreda-Piñeiro et al., 2003). Because PCA and 
HCA are unsupervised data analysis techniques that seek natural 
patterns in data, the classification does not always have enough 
confidence to cluster the samples (Liu et al., 2020c; Zhang et al., 
2018b). The techniques can therefore be used to first explore and 
find a pattern in the data for further statistical analysis.

Linear discriminant analysis (LDA) is a widely used 
multivariate data analysis technique for authentication of tea. 
LDA is categorized as a supervised pattern recognition method 
because sample groups are assigned a priori. The dimensionality 
reduction is made by creating discriminant functions from a 

linear combination of the descriptors to maximize between-group 
variance while minimizing within-group variance (Ni et al., 
2018). When developing an LDA model, one can use all available 
variables or perform a selection to eliminate variables that do not 
potentially influence clustering. Analysis of variance (ANOVA) 
can be used to eliminate elements that are not significantly 
different between groups, resulting in a more accurate prediction 
by LDA (Zhang et al., 2018b, 2020b). Liu et al. (2019) utilized the 
first few PCs of PCA to create an LDA model that distinguished 
Westlake Longjing tea from tea products from nearby regions in 
the same province. The resulting LDA model was satisfactory, 
with an accuracy of at least 97.6% in the training set and 87.8% 
in the testing set, despite the high similarity between samples (Liu 
et al., 2019). Another alternative is to use stepwise selection of the 
variables using Wilks’ lambda criterion to reduce the number of 
variables. The method is known as stepwise LDA, which produces 
a better discrimination model (Liu et al., 2021b; Ni et al., 2018).

Other methods that have been frequently used in 
authentication of tea are partial least square-discriminant analysis 
(PLS-DA), soft independent modeling of class analogy (SIMCA), 
and ANN. The PLS-DA algorithm focuses on the discrimination 
of classes in the model. On the other hand, SIMCA models 
individual classes and calculates the distance between unknown 
samples and the center of the class (Lim et al., 2021). ANN 
is a group of classification modeling techniques that employ 
variables as inputs to a “neuron.” These inputs are subjected to a 
mathematical function that yields values (outputs). The “neurons” 
are connected by nonlinear functions depending on the type of 
the method, such as back propagation-artificial neural networks 
(BP-ANN) and counter propagation-artificial neural networks 
(CP-ANN) (Marini, 2009). Reviews of the ANN in food analysis 
and authentication are available elsewhere (Liang et al., 2020; 
Marini, 2009). 

In building a classification model, overfitting can 
occur when too many irrelevant variables, referred to as noise, 
are incorporated into a model. The model closely fits the initial 
(training) data but will struggle to predict and classify other data 
as the generalization of the model is diminished. Some of the most 
common methods for selecting relevant variables are Pearson’s 
correlation and ANOVA. Pearson’s correlation can be used to select 
elements whose concentrations have a significant correlation in 
tea and soil to build a stronger classification model of tea based on 
geographical origin (Zhang et al., 2021). ANOVA can be applied 
to identify elements that differ significantly between groups, e.g., 
those of different origins (Zhang et al., 2018b). 

APPLICATIONS

Geographical origin
Many tea products have been certified based on their 

geographical origin as certain regions produce premium products. 
Multielemental analysis has been extensively applied to the 
authentication of tea based on its geographical origin. Green tea 
from Guizhou Province in China, which has a PGI certificate, 
displays a distinct multielement profile when compared to tea 
from other provinces. The analysis was carried out using LDA 
and orthogonal projection to latent structure-discriminant analysis 
(OPLS-DA) based on 31 elemental concentrations of mostly 
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REEs and four stable isotopes of C, N, H, and O. Over a smaller 
geographical area, green tea collected from different counties in 
the same province shows clustered samples on LDA and OPLS-
DA score plots (Liu et al., 2021b). The distinct elemental profile 
was also observed in the protected designation of origin product of 
Westlake Longjing (Westlake Dragon Well) green tea. The product 
was well separated from green tea products from the surrounding 
area and other provinces in China based on the random forest 
model generated from 17 elemental concentrations and 5 stable 
isotopes. The most important geographical proxies were Rb and 
Mg, which contributed to 20.58% and 12.5% of the prediction, 
respectively (Deng et al., 2020). Tea from various tea-growing 
regions in Sri Lanka, all of which were on the same island, was 
correctly classified by canonical discriminant analysis (CDA) of 13 
elemental concentrations and two stable isotopes of C and N. PCA 
revealed that variations in elemental concentrations, primarily Rb, 
Mn, Cu, K, and Fe, had a higher contribution to the loading scores 
compared to 13C and 15N. Therefore, the stable isotopes of 13C and 
15N did not have a strong influence on the provenance (Rajapaksha 
et al., 2017). 

Systematic studies on paired soil and tea samples 
revealed a strong correlation between the concentrations of many 
elements in soil and tea. Zhao et al. (2017a, 2017b) analyzed 
tea and soil samples from different provinces in China. Of 20 
elements, the concentrations of Na, Mg, Ca, Cr, Fe, Ni, Rb, Sr, Cd, 
Tl, and Pb in tea had a significant correlation with the elemental 
concentrations in the corresponding topsoil and subsoil (depths 
of 0–20 cm and 20–40 cm, respectively) (Pearson’s correlation, 
P < 0.01). Therefore, the concentration of the aforementioned 
elements in tea was affected by the soil parent material. On the 
other hand, the concentrations of Al, K, V, Mn, Co, As, Se, Mo, 
and Sn in tea did not significantly correlate with the elemental 
concentrations in soil (Zhao et al., 2017b). Zhang et al. (2020a, 
2020b) used 16 elemental concentrations in tea and soil that were 
significantly correlated to distinguish tea from different areas in 
Guizhou Province (Pearson’s correlation, P < 0.05 or P < 0.01). 
The resulting PCA model generated five PCs, with the first PC 
explaining 71.2% of the total variance. Co, Mn, Tl, Y, P, and 
Pb contributed as the highest loadings on PC 1. Even when two 
tea cultivars were included, the stepwise LDA based on Sr, Cr, 
Pb, P, U, and Cd provided a 100% correct classification rate on 
geographical origin (Zhang et al., 2020a).

Besides the elemental concentrations in soil, altitude 
and soil pH influence the elemental concentrations in tea. Li 
et al. (2018) used Pearson’s correlation tests to determine the 
correlation of soil pH and altitude to the elemental concentrations 
in tea. The concentrations of Ni, Mn, Cu, and K in tea had a 
significant negative correlation with soil pH (Li et al., 2018). The 
tea plant thrives in acidic soil with a pH of 4–6.5. At lower pH, 
the trace element mobility from the soil to the plant is increased 
because of the lower metal adsorption and higher desorption. 
This factor may influence the correlation between soil pH and 
elemental concentrations in tea (Neina, 2019). Meanwhile, the 
altitude had a significant positive correlation with Zn, Mg, Cu, 
and K concentrations and a significant negative correlation with 
Ca concentrations in tea according to Pearson’s correlation (Li 
et al., 2018). The level of precipitation may have an effect on 
the correlation of altitude with metal concentrations in plants. 

Higher altitudes have more precipitation, which generally brings 
more metal to the soil. The metal is then absorbed by the plant, 
influencing the metal concentration in the plant (Zechmeister, 
1995).

Harvesting time
Aside from geographical origin, harvesting time affects 

the variability of elemental content in tea. Tea harvested in spring, 
summer, and autumn of the same year had a distinct REE fingerprint 
which lowered the correct classification rates of the stepwise 
LDA model for the geographical provenance. In comparison to 
geographical origin and variety, multiway ANOVA revealed that 
the variability of the levels of La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, 
and Yb in tea was mostly affected by season. Interestingly, the 
REE concentrations in the soil of the corresponding tea-growing 
locations did not vary by season (Zhao and Yang, 2019). It could 
be speculated that the seasonal variability of elemental contents 
was influenced more by climatic factors such as temperature, 
rainfall, and sunlight duration, which varied in spring, summer, 
and autumn (Zhao and Zhao, 2019).

Tea from different harvesting years was difficult to 
classify using elemental fingerprinting in combination with stable 
isotopes. The tea samples were collected from the same region 
by the same manufacturer and harvested in different years over a 
5-year period. Tea from various years was clustered in the same 
area based on PCA, PLS-DA, LDA, and HCA. Although the 
elemental fingerprinting was only moderately successful, Mn, Zn, 
and Tl had a significant impact on the differentiation of tea from 
different production years. The authors argued that the elemental 
concentration in tea was affected by differences in annual climate 
and the use of different fertilizers (Liu et al., 2020a, 2020c, 2020d).

Cultivars
The elemental fingerprint of tea infusion was distinct 

from that of other herbal infusions (other than Theaceae) as 
modeled by PCA of 13 elements (Winkler et al., 2020). When 
grown in a research garden, eight different tea cultivars could 
be distinguished from each other with 100% accuracy using 
HCA, LDA, and back propagation-neural network (BP-NN). 
The research garden had a regulated environment, whereby the 
elemental concentrations, pH, and percentage of organic matter in 
the soil were all comparable. Mn and Al were the most important 
factors in distinguishing the cultivars as revealed by LDA (Chen 
et al., 2009). Similarly, PLS-DA of either 98 or 261 LIBS spectral 
peaks representing C, Fe, Mg, Mn, Al, and Ca clearly separated 
six cultivars each with 100 tea samples. All of the samples were 
acquired from the same research institute (Zhang et al., 2018a).

In real-world samples, cultivars had a minor influence 
on the elemental fingerprints. Among the 12 REEs, only Er and Yb 
differed significantly between cultivars (Zhao and Yang, 2019). 
Another study found that the concentrations of only 2–4 elements 
(among As, Cr, Cu, Pb, Sb, and Zn) out of the 24 elements analyzed 
significantly differed between tea cultivars, based on the ANOVA 
test. The stepwise LDA model of 17 elemental concentrations in 
tea was applied to classify tea grown in different geographical 
regions within a province. Although each region has 2–3 tea 
cultivars, the stepwise LDA model successfully classified tea 
based on geographical origin with a 94.25% discrimination rate 
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(Zhang et al., 2021). Thus, the geographical origin was a stronger 
determinant for the classification of tea compared to cultivar.

Types
Various types of tea that are produced by different 

postharvesting processes are available in the market. Tea is 
typically oxidized at controlled temperature (20°C–30°C) 
and humidity (95%–98%), which are optimized to produce 
consistent quality and optimal yield (Pou, 2016). The level of 
oxidation, mostly by enzymatic processes, determines the tea 
types produced. White tea is made by drying the buds and leaves 
as soon as they are harvested, allowing for the least amount of 
oxidation. Green tea is minimally oxidized, whereas black tea 
undergoes full oxidation before being stored in a cool and humid 
environment. To produce Puerh tea, secondary fermentation is 
applied to black tea after full oxidation and heating (McKenzie 
et al., 2010; Minca et al., 2015). 

LDA successfully distinguished green and black tea 
using Zn, Mn, Fe, Mg, Cu, Ti, Al, Sr, Ca, Ba, Na, and K with 
a 98.7% accuracy (Fernández-Cáceres et al., 2001). Similarly, 
Wang et al. (2016) used the LIBS technique in combination with 
discriminant analysis to classify green, black, white, and Puerh tea 
to achieve a minimum of 92% classification accuracy. However, 
LDA showed lower sensitivity and specificity (64%–100%) than 
classification by a probabilistic neural network (PNN) (93%–
100%) when 10 selected elements (Al, Ba, Ca, Cu, Fe, Mg, K, Sr, 
S, and Zn) were used to classify black, green, and Puerh tea. In this 
case, a nonlinear approach of PNN showed better suitability than 
a linear model of LDA to study the relationship between elemental 
fingerprints and tea types (McKenzie et al., 2010). Different levels 
of oxidation, however, did not always result in a distinct elemental 
profile for each type of tea. PCA was frequently unsuccessful in 
distinguishing tea types (Diniz et al., 2015; Paz-Rodríguez et al., 
2015; Pohl et al., 2020). Another study successfully classified 
green, black, and Puerh tea by stepwise LDA based on 12 
elements (Li, Be, Cr, Co, Cu, Zn, Cd, Pb, Mn, Mg, Sc, and Ce). 
However, because each tea type originated in a different province, 
the geographical origin of the tea also influenced its classification 
(Ma et al., 2019).

CONCLUSION
Many studies have reported on the authentication of 

tea using elemental analysis in combination with multivariate 
data analysis. ICP techniques, both ICP-MS and ICP-OES, have 
remained the methods of choice for elemental fingerprinting 
due to their high sensitivity, sufficient accuracy and precision, 
and high-throughput capability. In fact, the availability of ICP-
MS, which has recently become more accessible, has been 
assisting in the advancement of this field. Various multivariate 
data analyses, with PCA and LDA being the most popular 
methods, were optimized and implemented for the authentication 
study. Elemental fingerprinting has a lot of potential as a 
tool for tea authentication, especially in distinguishing the 
geographical origin of tea. The method can be further applied 
for authentication of other high-valued plants, such as saffron, 
white truffle, specialty coffee, medicinal plants (e.g., American 
ginseng (Panax quinquefolium L.), Indian snakeroot (Rauvolfia 
serpentina), turmeric (Curcuma longa L.), etc. In the case of 

medicinal plants, geographical origin may influence the level and 
proportion of active substances, thereby influencing biological 
activities.

While ICP-MS remains the most popular method for 
multielemental determination for tea authentication, the lengthy 
preparation procedure is a limiting step for high-throughput 
analysis. The development of faster preparation methods, possibly 
using a laser-ablation technique, will further accelerate the 
progress in this field. XRF and LIBS, which require less sample 
preparation than ICP-MS, can be improved to increase sensitivity 
and precision, thereby expanding the number of elements that can 
be analyzed using these methods.
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