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ABSTRACT 
Cyclin-dependent kinases (CDKs) are important targets for combating various types of cancer. Inhibitors of the CDK4 
enzyme are promising agents for clinical use as anticancer agents. In this study, structure-based and ligand-based drug 
design methods were applied on a dataset of 52 pyrido[2,3-d]pyrimidin-7-one-based CDK4 inhibitors. Predictive 
2D- and 3D-quantitative structure-activity relationship (QSAR) models were developed and were analyzed for 
understanding the important molecular properties that affect the activity. Molecular docking was conducted to analyze 
the binding interactions between the ligands and the target enzyme. Also, virtual screening of the ChEMBL database 
was carried out using the validated QSAR model and the molecular docking procedure. A total of six compounds 
were identified as potentially novel CDK4 inhibitors that have favorable drug-like properties and can serve as lead 
compounds for the development of anticancer therapeutic agents. 

INTRODUCTION
Cyclin-dependent kinases (CDKs) are members 

of the serine/threonine protein kinases family and are 
important modulators of the cell cycle process. Targeting 
the CDKs for the treatment of various types of cancer has 
been shown to be a valid and promising therapeutic approach 
(Wenzel and Singh, 2018). The CDK4 enzyme is involved in 
controlling the progression of the cell cycle’s G1 phase and 
inhibiting this enzyme prevents cell division. As the CDK4 
has been observed to be overexpressed in several types of 
cancer, it has gained attention as a target for small molecules 
anticancer agents, in particular for the treatment of breast 
cancer (Bendris et al., 2015; Brown et al., 2015; Pandey 
et al., 2019). Derivatives of the pyrido[2,3-d]pyrimidin-7-
one scaffold (shown in Table 1) have been shown to have 
CDK4 inhibitory activity with modest selectivity towards 
other kinases (Barvian et al., 2000). However, very limited 

computational studies have been applied to this class of 
CDK4 inhibitors. In this study, computer-aided drug design 
(CADD) methods have been applied to a dataset of CDK4 
inhibitors to gain a better understanding and insights into the 
binding process and the structural requirements for achieving 
high activity. Ligand-based CADD methods including 2D- 
and 3D-quantitative structure-activity relationship (QSAR) 
were used to develop quantitative models that can be used 
for predicting the activity of novel compounds as well as for 
demonstrating the important physicochemical properties that 
affect the activity of the compounds (Kubinyi et al., 2006; 
Lewis and Wood, 2014). Also, molecular docking, which 
is a structure-based CADD method, was used to elaborate 
the binding interactions of the compounds inside the active 
site of the CDK4 enzyme (Pinzi and Rastelli, 2019; Torres 
et al., 2019). Finally, virtual screening was carried out on 
the ChEMBL database by applying the developed and 
validated QSAR model and the molecular docking to identify 
potentially active novel CDK4 inhibitors with improved 
pharmacokinetic properties (Gaulton et al., 2017; Guedes 
et al., 2018; Neves et al., 2018).
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Table 1. The structures of the dataset compounds and their reported pIC50 values.

R3

R2
H
NN

N

N
R1

O

No.a Activity (pIC50) R1
b R2

b R3
b

1* 5.2612 CH3 H H

2 6.2076 CH2CH3 H H

3 6.2328 CH2CH3 H OH

4 5.382 CH2CH2OCH3 H H

5 6.8386 CH2(CH3)2 H H

6 6.2573 CH2CH2CH3 H H

7 5.8539 CH2CH3 F H

8 5.9073 CH2CH3 H F

9 6.2218 CH2CH3 H OCH3

10 5.5436 CH2CH2OCH3 H H

11 6.7212 sec-butyl H H

12* 6.5272 iso-butyl H H

13 5.8254 n-butyl H H

14 5.301 O* H H

15 6.6778 Cyclopentyl H H

16 5.1079 CH2CH2OCH3 H H

17 6.7986 CH2CH2CH2(CH3)2 H H

18 5.7387 CH2CH3 OCH3 OH

19 4.5086 CH2COOCH3 H H

20 6.4815 CH2CH3 H N(CH3)2

21* 5.389 CH2CH3 OCH3 OCH3

22 5.7781 Phenyl H H

23 7.3279 Cyclohexyl H H

24 6.0269 Benzyl H H

25 4.8697
*

H H

26* 6.7399 Cycloheptyl H H

27* 5.5607 CH2CH3 H N*

28 7.4202
*

H H

29* 5.6321 CH2CH3 H OCH2CH2 OCH3

Continued



Al-Attraqchi and Mordi / Journal of Applied Pharmaceutical Science 12 (01); 2022: 165-175 167

No.a Activity (pIC50) R1
b R2

b R3
b

30 5.8539 CH2CH3 H N(CH2CH3)2

31 6.5229 CH2CH3 H
O

N*

32 6.5229 CH2CH3 H N*

33 7.0706 CH2CH3 H
N

N
*

34 5.1061 CH2CH3

F F

O *

F

F H

35 6.8539 Cyclopropyl H
N

N
*

36* 6.7959 CH2CH3 H OCH2CH2N(CH3)2

37 7.4949 CH2(CH3)2 H
N

N
*

38* 7.3468 CH2(CH3)2 H OCH2CH2N(CH3)2

39 8.0458 Cyclopentyl H
N

N
*

40* 7.8861 CH2CH2CH2(CH3)2 H
N

N
*

41 5.7825
OH

OH*
H

N
N

*

42* 6.0458 CH2CH3 H
OH

N*

43* 9.1549 Cyclopentyl H OCH2CH2N(CH3)2

44* 6.757 Phenyl H
N

N
*

45* 8.3979 Cyclohexyl H
N

N
*

Continued
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No.a Activity (pIC50) R1
b R2

b R3
b

46 8.2218
*

H
N

N
*

47 7.9586 Cyclohexyl H OCH2CH2N(CH3)2

48 8.3979 Cycloheptyl H OCH2CH2N(CH3)2

49 6.3468
*

H OCH2CH2N(CH3)2

50 7.4685 Cyclopentyl H
OH

N*

51 8.0969
*

H
OH

N*

52 5.6778 O*
H

N
N

*

a * Indicates a test set compound.
b * indicates the attachment to the scaffold site.

MATERIALS AND METHODS

Dataset
The dataset selected for molecular modeling studies 

compromises 52 CDK4 inhibitors based on the pyrido[2,3-d]
pyrimidin-7-one scaffold (Table 1) that has a phenyl ring attached 
to secondary amine (Barvian et al., 2000). The structures of the 
dataset and their reported pIC50 values are listed in Table 1. All 
the compounds have been assayed using the same method and 
conditions. The activity of the compounds spans a wide range 
of more than three orders of magnitude with a good activity 
distribution. These properties make the dataset suitable for 
molecular modeling studies, in particular for QSAR analysis 
(Tropsha, 2010). 

2D-QSAR modeling
The 2D-QSAR method uses molecular descriptors that 

are based on the graph of the structure (i.e., 2D information) and 
correlates those descriptors with the activity (Lewis and Wood, 
2014). In this study, the PaDEL-Descriptor software was used to 
calculate a total of 1,444 2D-descriptors (Yap, 2011). The dataset 
was divided into a training set (75%, 39 compounds) and a test set 
(25%, 13 compounds) using the Kennard--Stone algorithm (Puzyn 
et al., 2011). Table 1 indicates the training and test set compounds. 
A common pretreatment process was applied on the calculated 
descriptors, including the removal of descriptors with constant or 
near-constant values (a variance cutoff of 0.001 was used) and the 

removal of highly intercorrelated descriptors (a correlation cutoff 
of 0.6 was used). The remaining descriptors were used to develop 
the 2D-QSAR model using multiple linear regression (MLR). A 
genetic algorithm (GA) was used as a variable selection method 
(Ambure et al., 2015). The developed model was validated 
internally and externally using common validation procedures. 
Internal validation included leave-one-out (LOO) cross-validation 
(CV), as well as calculation of common parameters such as the 
root mean square error (RMSE) and correlation coefficient 
of CV (Q2

LOO). The test set was used for external validation to 
assess the predictive ability of the model (Roy et al., 2016; 
Veerasamy et al., 2011).

3D-QSAR modeling

Alignment
The alignment of structures is a crucial step in the 

process of 3D-QSAR modeling. In this study, two different 
alignment methods implemented in the Open3DAlign software 
were used, namely, the atom-based and the pharmacophore-based 
methods (Tosco et al., 2011). Both methods require a template for 
aligning the other structures onto it. Compound 43 was used as the 
alignment template as it is the most active compound. The atom-
based method operates by attempting to match the atoms of the 
template structure and the atoms of the probe structure (i.e., the 
structure to be aligned). The matching of the atoms is based on 
the properties of the atoms such as the partial charge (Tosco et al., 
2011). The pharmacophore-based method represents the structures 
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by their pharmacophore features only, and then it attempts to 
align the structures in a way that maximizes the overlap of their 
pharmacophore features that are of the same type (Taminau et al., 
2008). Both methods were applied to generate two alignments. 
The alignment with the higher score was selected for developing 
the 3D-QSAR model. 

Model development
The aligned structures were used for developing 

3D-QSAR models. The Open3DQSAR software was used for 
calculating the molecular interactions fields (MIFs) as well as 
for partial least squares regression (PLS) analysis (Tosco and 
Balle, 2011). Electrostatic and steric MIFs were calculated and 
the common procedure for variables pretreatment was carried out 
including the truncation of grid points with extreme energy values 
(cut off = 30.0 kJ/mol) and the exclusion of variables with constant 
or near-constant values. Following the variables pretreatment 
processes, PLS regression was used to develop the statistical 
models (Kubinyi et al., 2006). The number of PLS components 
was determined based on the value of the Q2. The models were 
validated internally and externally in a similar manner as described 
for the 2D-QSAR model.

Molecular docking
Molecular docking is an essential tool in the drug 

design and discovery process. In this study, docking was used to 
understand the ligand–protein interactions as well as in virtual 
screening to identify novel CDK4 inhibitors (Torres et al., 2019). 
The AutoDock Vina software was used for docking the structures 
(Trott and Olson, 2010). Although several crystal structures of 
the CDK4 enzyme are available in the Protein Data Bank (PDB) 
database, none of them has a cocrystallized ligand, and they are in 
an inactive state. In this study, a hybrid model of the CDK4 enzyme 
constructed by Shafiq et al. (2012) was used for the docking 
experiment. Briefly, the model is constructed using a homology 
modeling approach from both a CDK4 crystal structure (inactive 
state) and a CDK2 crystal structure (in the active state) to produce 
a CDK4 hybrid model in the active state. The model was further 
refined and validated using molecular dynamics simulation.

Although the CDK4 hybrid model is in the active state, 
it lacks a ligand in the active site. To do a redocking experiment 
and validate the docking procedure, the CDK4 hybrid model was 
superimposed onto a crystal structure of a CDK6 (PDB-ID: 2EUF) 
enzyme that has a cocrystallized ligand, and then the protein of the 
CDK6 was removed, leaving the ligand in the hybrid model active 
site as a ligand–protein complex. The sequence identity between 
the CDK4 and CDK6 is 68%. This strategy has been successfully 

used by Al-Warhi et al. (2020). Redocking of the ligand and 
measurement of the root mean square deviation (RMSD) was 
carried out to assess the accuracy of the docking procedure.

Virtual screening
To discover novel potentially active CDK4 inhibitors 

with improved drug-like properties, virtual screening of the 
ChEMBL database compounds was carried out. The ChEMBL 
database is widely used in drug discovery as it contains a large 
number of curated drug-like compounds (Gaulton et al., 2017). 
Initially, a substructure search was carried out to retrieve 
compounds from the database that have the general scaffold of 
the compounds used in the study. In the next step, the compounds 
were filtered using the Lipinski rule of five to retain only the 
compounds with good absorption, distribution, metabolism, and 
excretion (ADME) profile (Pollastri, 2010). The activities of 
the remaining compounds were predicted using the 3D-QSAR 
model; initially, the alignment was carried out onto the template 
structure, and then the developed model was applied to predict 
the activities. Compounds with submicromolar predicted activities 
were retained while others were removed. In the final step, the 
remaining compounds were docked into the target enzyme using 
the validated docking procedure, and compounds that were 
successfully docked were visually inspected and selected as 
potential novel CDK4 inhibitors.

RESULTS AND DISCUSSION

2D-QSAR modeling
A total of five descriptors were selected by the GA-

MLR method, the descriptors alongside their contribution and 
description are shown in Table 2. The equation of the model is as 
follows:

pIC50 = 5.617(±0.279) +2.081(±0.414)AVP_2 -0.635 
(±0.543)VR1_Dt–1.602(±0.621) MATS5s –0.018(±0.567) MDEO_ 
12+1.378(±0.410) VE1_Dzv

The initial term in the equation corresponds to the 
Y-intercept and the standard deviation values are in the parenthesis. 
The statistical parameters of the obtained 2D-QSAR model via 
GA-MLR are presented in Table 3. The model exhibited significant 
internal and external validation parameters, as demonstrated by a 
Q2-value of 0.629, which is higher than the threshold value (0.5) 
for considering the model predictive. Similarly, the coefficient of 
determination (R2

(test)) value of 0.697 is higher than the threshold 
value (0.6) for considering the model predictivity (Golbraikh 
and Tropsha, 2002). Also, both the RMSE and RMSE(test) have 

Table 2. The molecular descriptors selected by the GA-MLR method.
Descriptor Contribution Description

AVP-2 Positive Average valence path, order 2

VR1_Dt Negative Randic-like eigenvector-based index from detour matrix

MATS5s Negative Moran autocorrelation - lag 5/weighted by I-state

MDEO-12 Negative Molecular distance edge between all primary and secondary oxygens 

VE1_Dzv Positive Coefficient sum of the last eigenvector from Barysz matrix/weighted by van der Waals volumes



Al-Attraqchi and Mordi / Journal of Applied Pharmaceutical Science 12 (01); 2022: 165-175170

relatively low values, indicating the validity of the model (Wenzel 
and Singh, 2018). Figure 1 shows the plot of the predicted activity 
by the model and the observed activity of the compounds.

3D-QSAR modeling
The pharmacophore-based alignment of the compounds 

was used for 3D-QSAR modeling as it demonstrated a higher 
score than the atom-based alignment methods. The aligned 
structures are shown in Figure 2. The 3D-QSAR model exhibited 
more statistically significant parameters compared to the 
2D-QSAR model. In terms of internal validation, the 3D-QSAR 
model showed a higher value of R2, F-value, and Q2 while the 
RMSE was lower than the 2D-QSAR model. Also, the external 
validation parameter R2

(test) is higher, and the RMSE(test) value 
was lower, indicating a more predictive model. In general, the 
improved validation parameters of the 3D-QSAR model indicate 

the importance of the 3D conformations of the structures in the 
binding process to the target protein. As the 3D-QSAR model was 
validated internally and externally and demonstrated predictive 
ability, the contour maps of the steric and electrostatic fields were 
visualized onto the most active compound (43).

3D-QSAR visualization
Visualization of the contour maps of the 3D-QSAR 

model allows for the identification of regions where electrostatic 
or steric substituents improve or reduce the activity. Figure 3a 
shows the visualization of the electrostatic field onto compound 
43. The red contours represent regions where negatively charged 
substituents or hydrogen bond acceptors are favorable for high 
activity. The most significant region is near the phenyl ring, which 
can be explained by the partially negative nature of the aromatic 
ring due to the cloud of pi-electrons. Also, the partial negative 

Table 3. The statistical parameters of the developed QSAR models.
Model R2 F- values Q2

(LOO) RMSE R2
(test) RMSE(test)

GA-MLR (2D-QSAR) 0.75 20.48119 0.6292 0.475436684 0.6974 0.719274486

PLS (3D-QSAR) 0.9135 123.1485 0.7453 0.28330398 0.7649 0.580873085

Figure 1. The observed activity against the predicted activity plot: (a) the 3D-QSAR model and (b) the 2D-QSAR model (blue points indicate 
training set and red points indicate test set).

Figure 2. The alignment of the structures used for 3D-QSAR modeling aligned onto compound 43.
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charge of the oxygen directly attached to the phenyl ring which 
can act as a hydrogen bond acceptor in compound 43 contributes 
to this region. The blue areas represent regions where negatively 
charged groups or hydrogen bond acceptors reduce the activity. 
The most significant areas are positioned near the R1 group. They 
can be explained as the compounds with low activity contain 
substituents with negative partial charges; for instance, compound 
19 which is the least active compound contains an ester substituent; 
similarly, compounds 16, 4, and 14 contain substituents with 
partially negative ether groups. 

Figure 3b shows the visualization of the steric field’s 
contour map onto compound 43. The green regions indicate areas 
where bulky substituents can increase the activity. The most 
significant contour region is around the R1 substituent. They can 
be seen as the most active compounds of the series that have a 
cycloalkyl group at this position. For instance, the three highest 
active compounds 43, 45, and 48 contain cyclopentyl, cyclohexyl, 
and cycloheptyl substituents at this position, respectively. On the 
other hand, most compounds with moderate to low activity have 
methyl or polar substituents at this position. Also, a similarly 
significant area extended from the R2 position is present. This 
indicates that analogs with extended R2 substituents can be 
beneficial for activity, as in compounds 43 and 48. The yellow 
regions indicate areas where bulky substituents decrease the 
activity. The most significant region is extended near the R1 
position; this shows that substituents with high extension from 
the R1 position can be detrimental to the activity. The least active 
compounds 19, 25, and 16 have a substituent with an alkyl chain 
from this position. Overall, a cycloalkyl group directly attached 
to the R1 without extension is the optimum substituent for high 
activity.

Molecular docking
The redocking experiment of the ligand in the CDK4 

hybrid model successfully reproduced a close conformation with 
an RMSD value of 1.292 Å, indicating the validity of the docking 
accuracy. The cocrystallized ligand in the 2EUF PDB record is 
highly similar to the structures of this study. Figure 4 shows the 
superimposed docked ligand on the original one.

The binding interactions between compound 43 and 
the residues of the active site are shown in Figure 5. The amine 
N acts as a hydrogen bond donor forming a hydrogen bond with 
VAL96; the distance of the interaction was determined to be 2.7 
Å, which makes it in the optimum range for a strong hydrogen 
bond interaction. The other hydrogen bond is formed between the 
side chain of HIS95 and the ring N at a distance of 3.0 Å (Fabiola 
et al., 2002). The bi-ring system is stabilized in the binding 
pocked via several hydrophobic and pi-alkyl interactions with 
the hydrophobic residues including ALA33, LEU147, VAL72, 
and ALA157. Those hydrophobic interactions seem to have a 
crucial role in positioning the structure inside the active site. The 
cyclopentyl ring is extended in the hydrophobic pocket making 
favorable hydrophobic interactions with VAL20. The phenyl ring 
is positioned feasibly to form amide–pi stacked interaction with 
a backbone amide group of ASP97. Also, the hydrophobic side 
chain of ILE12 is positioned at a close distance to the phenyl ring 
for the formation of hydrophobic interactions. 

Figure 6 summarizes the effects of the different groups 
on the activity of the compounds deduced from the 3D-QSAR 
interpretation. Also, the interactions of different parts of the 
structure elaborated from the molecular docking are shown on the 
most active compound (43). 

Figure 3. Visualization of the 3D-QSAR contour maps. (a) The electrostatic field (red regions: negatively charged groups and hydrogen bond 
acceptors are favorable; blue regions: negatively charged groups and hydrogen bond acceptors are unfavorable). (b) The steric field (green regions: 
bulky substituents are favorable; yellow regions: bulky substituents are unfavorable).

Figure 4. The docked ligand (green) conformation with the redocked ligand 
(orange) conformation superimposed. The RMSD value is 1.292 Å.
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Figure 5. The ligand–protein interactions of the docked compound 43 in the active site of the CDK4 enzyme: (a) the 3D-pose and interactions with 
the residues in the active site and (b) the 2D-depiction of the interactions. Green dashed lines indicate hydrogen bonds and pink dashed lines indicate 
hydrophobic interactions.

Figure 6. Summary of the favorable type of groups as well as the important interactions visualized on compound 43.

Virtual screening
The substructure query of the ChEMBL database using 

the general scaffold of the studied compounds retrieved a total of 
445 matching structures. These structures were preprocessed and 
filtered using the Lipinski rule of five to only retain compounds with 

good ADME properties. A total of 226 compounds were retrieved 
after this step. Those remaining compounds were aligned onto the 
template compound (43) and the 3D-QSAR model was applied to 
predict their activities. The 3D-QSAR model was used because 
it demonstrated a better predictive ability and more statistically 
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significant validation parameters. A total of 90 compounds with 
submicromolar predicted activity were found. The final stage of 
the virtual screening involved docking and visual inspection of 
compounds to select the best lead-like structures. A total of six novel 
compounds were selected as potential CDK4 inhibitors with good 
ADME properties. Table 4 shows a list of the chemical structures 
of the compounds with their respective QSAR-predicted activity 
and the binding energy calculated by docking. The calculated 
docking binding energies of the compounds indicate potentially 
good binding affinity, which is consistent with the predicted 

activity by the QSAR model. Compound 1 has the highest activity 
predicted by the QSAR model and the second highest binding 
affinity calculated by docking, making it the best candidate lead 
compound. On the other hand, compound 6 has the lowest activity 
predicted by the QSAR model as well as the least binding affinity 
calculated by the docking, indicating a lower probability of being 
highly active. The Lipinski rule of five properties of the identified 
compounds is reported in Table 5. Overall, all these derivatives 
have not been previously reported as CDK4 inhibitors and are 
promising lead-like compounds.

Table 4. The compounds identified by virtual screening.

No. Structure ChEMBL ID Predicted activity (3D-QSAR) Docking binding energy (kcal/mol)

1

N
N

H
N

N
N+

O

O
-

ONN CHEMBL

3115663
7.778 −8.7

2

N
N

H
N

N
S

O

O
ONN CHEMBL

3115664
7.481 −8.6

3

O

N
H

N O

N

N
H

N
N

N CHEMBL

3633146
6.980 −9.3

4

O

N
H

N

O N

N

N O

O

CHEMBL

381282
6.865 −8.0

5

N
N

H
N

N
Cl

Cl

ONN
CHEMBL

51283
6.645 −8.4

6

NO

Cl

Cl
N

H
N

N
H OH

OH

N
CHEMBL

567068
6.466 −7.9
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CONCLUSION
Structure-based and ligand-based CADD methods 

were applied on a dataset of CDK4 inhibitors to gain a better 
understanding and insights into the physicochemical properties 
required for activity. Validated 2D- and 3D-QSAR models were 
developed using GA-MLR and PLS methods, respectively. The 
3D-QSAR model possessed more statically significant validation 
parameters and predictive power. Also, contour maps of the 
3D-QSAR model were visualized and revealed the important 
regions in terms of electrostatic and steric properties that affect 
the activity. Molecular docking was carried out and revealed the 
important binding interactions between the compounds and the 
residues at the active site of the target enzyme. The developed 
3D-QSAR model and the validated docking procedure were 
used in virtual screening of the ChEMBL database and six novel 
compounds were identified as potential CDK4 inhibitors with 
drug-like properties. 
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