
Journal of Applied Pharmaceutical Science Vol. 12(01), pp 001-028, January, 2022
Available online at http://www.japsonline.com
DOI: 10.7324/JAPS.2021.120101
ISSN 2231-3354

Sani Yahaya Najib1 , Yusuf Oloruntoyin Ayipo1 , Abubakar Shaaban2 , Mohd Nizam Mordi1 , Abdullahi Rabiu 
Abubakar3 , Adekunle Babajide Rowaiye4 , Sayeeda Rahman5  , Rahnuma Ahmad6 , Bushra Ayat Meghla7 , Nihad 
Adnan7 , Mainul Haque8*   

2Department of Pharmaceutical and Medicinal Chemistry, Bayero University Kano, Kano, Nigeria.
3Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University Kano, Kano, Nigeria.
4National Biotechnology Development Agency, Abuja, Nigeria.
5School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados.
6Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh.
7Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh.
8Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, 
Kuala Lumpur, Malaysia.

ARTICLE INFO
Received on: 22/08/2021
Accepted on: 11/11/2021
Available Online: 05/01/2022

Key words:
SARS-CoV-2, COVID-19, 
antimicrobial agents, toxicity, 
resistance, preventive 
measures.

ABSTRACT 
The novel human coronavirus (CoV) 2019, similar to previous severe acute respiratory syndrome corona virus-1 outbreaks, 
has posed the unprecedented challenges that have shaped global action on preventive and easy to employ measures and 
policies, including regular disinfection. There is an indiscriminate use of antimicrobial agents, which may pose toxicity to 
humans, environmental hazards, and, in some cases, development antiviral drug resistance. This review comprehensively 
highlights the physical and chemical countermeasures applied to prevent various CoV infections and their potential 
toxicity on humans and the environment, as well as the danger of developing drug resistance. Literature information 
was sourced from PubMed, ScienceDirect, Embase, MEDLINE, and China National Knowledge Infrastructure databases 
using Google Scholars and Free Full PDF as search engines. Articles written in the English language were retrieved and 
included in the study. Researches covering the literature on physical and chemical severe acute respiratory syndrome 
corona virus-2 preventive measures, their toxicity, and possible ways of developing drug resistance were also discussed. 
The literature review reveals that physical inactivation under the influence of temperature, humidity, and light, especially 
ultraviolet-C radiation, has proven effective in reducing the spread of CoV infections. Similarly, chemical countermeasures 
such as the use of alcohol- and iodine-based disinfecting agents have demonstrated inhibitory potentials of the viruses on 
surfaces depending on nature, dose, and exposure time. The inactivation occurs through the interference of these agents 
with the lipid envelope, thereby disrupting the viral activity. A vast majority of the antimicrobial agents are reported to 
contain corrosive chemicals that are toxic to humans, especially children, and the environment. The toxicity is due to the 
unhealthy accumulation and pollution caused by the inappropriate disposal of biomedical waste. This study showed that 
chemicals might have long-term effects on public health, such as reproductive disorders, chronic obstructive pulmonary 
disease, cancers, skin damage, and central nervous system impairment. Therefore, further research on long-term preventive 
alternatives such as the formulation of these agents with natural products as active ingredients is necessary to mitigate the 
effects of alcohol- and iodine-based chemicals on humans and the environment.

INTRODUCTION
The outbreak of severe acute respiratory syndrome 

corona virus-2 (SARS-CoV-2) disease, mostly called coronavirus 
disease-19 (COVID-19), has proven that new infectious diseases 

*Corresponding Author
Mainul Haque, Faculty of Medicine and Defence Health, Universiti 
Pertahanan Nasional Malaysia (National Defence University of 
Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia E-mail: 
runurono @ gmail.com

© 2022 Sani Yahaya Najib et al. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License  
(https://creativecommons.org/licenses/by/4.0/).

Utilization of physical and chemical microbial load reduction
agents for SARS-CoV-2: Toxicity and development of drug
resistance implications

   Centre for Drug Research, Universiti Sains Malaysia, Pulau Pinang, Malaysia1

http://crossmark.crossref.org/dialog/?doi=10.7324/JAPS.2021.120101=pdf
https://orcid.org/0000-0003-3076-3706
https://orcid.org/0000-0001-5951-9788
https://orcid.org/0000-0002-5491-9851
https://orcid.org/0000-0002-0997-3867
https://orcid.org/0000-0002-9740-7856
https://orcid.org/0000-0002-8773-5944
https://orcid.org/0000-0002-7705-8801
https://orcid.org/0000-0001-7379-0822
https://orcid.org/0000-0002-9503-5753
https://orcid.org/0000-0002-4999-4793
https://orcid.org/0000-0002-6124-7993


002

can spread in humans rapidly to pose a global public health 
challenge, especially where the containment of the disease is 
difficult (García de Abajo et al., 2020). This sudden outbreak 
of COVID-19 has surprised the vast majority of healthcare 
practitioners and scientists, who are working tirelessly to 
educate people and combat the pandemic (Rai et al., 2020). The 
SARS-CoV-2 is an enveloped positive-sense, single-stranded 
ribonucleic acid (RNA) virus belonging to the class of beta-
coronaviruses (Anderson et al., 2020; Rahman et al., 2021). 
Severe Acute Respiratory Syndrome Corona Virus-1 (SARS-
CoV-1) and Middle East Respiratory-Corona Virus (MERS-
CoV) are endemic viruses that have previously wreaked havoc on 
human healthcare systems through animal-to-human, human-to-
human, and, recently reported, human-to-animal transmissions 
making it spread quickly (Ayipo et al., 2021; Banik et al., 2015; 
Cleary et al., 2020). Currently, no approved antiviral drug is 
used to treat SARS-CoV and MERS-CoV infections, but the 
deployment of several effective vaccines against SARS-CoV-2 
infection is in progress (Abubakar et al., 2020; Amanat and 
Krammer, 2020; Habas et al., 2020; Rahman et al., 2021). The 
SARS-CoV-1 and MERS-CoV are responsible for the epidemics 
of SARS in 2003 and MERS in 2012. The viruses are easily 
transmitted through droplets and air (Zhu et al., 2020). The 
effective and quick control of SARS-CoV-2 outbreaks can be 
achieved through the epidemiological knowledge of the disease, 
accurate viral detection, preventive strategies, and acceptable 
hygiene practices to decrease the risk of transmission. Although 
health practitioners in both developed and developing countries 
are overwhelmed with the pandemic, the need for a solid 
motivation to limit the spread and adopt future strategic plans for 
effective prevention remains necessary (Boyce and Pittet, 2002).

Viruses such as influenza, the common cold rhinovirus, 
and CoVs can be easily transmitted from an infected person to 
a healthy individual through coughing, sneezing, talking, and 
sometimes breathing (Asadi et al., 2020). Suggestively, these 
physiological actions produce aerosol droplets of various sizes 
and may carry infectious viruses that could initiate new infections, 
especially when inhaled by individuals (García de Abajo et al., 
2020). The people at high risk of hospital-acquired infections 
such as SARS-CoV-2 are the healthcare professionals (HCPs) and 
emergency rescue workers (Wilson et al., 2020). This was evident 
from early reports of several HCPs infected from the origin of 
SARS-CoV-2, Wuhan, China (Wang et al., 2020a). Not only are 
these exposed HCPs at higher risk, but they are also potential 
carriers of the virus, especially those with closer contact with 
patients such as dentists, emergency physicians, and maxillofacial 
surgeons. Hence, there is a need for regular disinfection, 
decontamination, and proper sterilization techniques to prevent 
viral transmission (Krajewska et al., 2020; Peng et al., 2020). 

One of the recommended practices for inactivating and 
removing pathogenic organisms from surfaces is disinfecting and 
sterilizing agents through stipulated procedures and protocols. 
Disinfection is a process of reducing virtually all recognizable 
pathogenic microorganisms using chemical agents only (Rai 
et al., 2020). Meanwhile, sterilization eliminates or destroys all 
microbial life forms by applying both chemicals and heat methods. 
Both sterilization methods at large are routinely carried out in 
healthcare facilities (Hassandarvish et al., 2020). 

There are scientific guidelines and protocols for 
selecting and using disinfectants in hospitals, laboratories, 
homes, and public places. This is to minimize health risks and 
ensure the appropriate use of chemicals (Rutala et al., 2000). 
However, recently, due to the outbreak of COVID-19, there has 
been an upsurge in the indiscriminate use of alcohol- and iodine-
based agents with no adherence to the stipulated guidelines and 
monitoring protocols for preventing and inactivating SARS-CoV-2 
(McDonnell and Russell, 1999). This malpractice exposes humans 
to public health dangers and environmental hazards. It also has 
negative consequences on biodiversity due to the toxicological 
effects of such disinfectants (Agnelo et al., 2020; Nabi et al., 
2020). Therefore, the excessive use of these antimicrobial agents 
has raised much public health and environmental concerns.

MATERIALS AND METHODS
Literature information was sourced from PubMed, 

ScienceDirect, Embase, MEDLINE, and China National 
Knowledge Infrastructure (CNKI) databases using Google 
Scholars and Free Full PDF as search engines. Articles written 
in the English language were retrieved and included in the study. 
This article discussed the physical and chemical countermeasures 
of microbial reduction agents and the prevention of CoVs, their 
potential toxicity, and safety to humans and the environment 
during the COVID-19 pandemic. Lastly, possible ways of 
developing drug resistance due to indiscriminate production and 
practices were highlighted.

DISINFECTANTS AND STERILIZING AGENTS
Disinfection is a process that eliminates many or all 

microorganisms from inanimate objects, whereas sterilization 
removes all microbes. Agents used to kill pathogenic microbes 
from inanimate objects or surfaces are called disinfectants, and 
those capable of destroying all microbes are sterilizing agents 
(Rutala and Weber, 2013; 2016). 

Physical disinfectants and sterilant
Disinfectants that destroy pathogens utilizing physical 

agents such as heat, pressure, light, and irradiation are referred 
to as physical disinfection. These agents can directly damage 
microbes by various mechanisms such as damage to the cell 
membrane, deoxyribonucleic acid (DNA) or RNA, enzyme, or 
protein (Rutala and Weber, 2013; 2016). 

Heat 
Heat treatment is one of the simplest, widely used, most 

effective, and oldest methods. Heat can be applied in a hydrated 
(moist heat; 121°C–134°C) or dry state (160°C–180°C). Heat 
sterilization denatures or coagulates the protein or enzyme of the 
virus or cell, which causes the cell to die. Dry heat kills microbes 
through oxidative damage (Popat et al., 2010). Incineration, hot 
air oven, red heat, flaming, and infrared are examples of dry heat 
sterilization (Rutala and Weber, 2013; 2016). To supply heat, there 
are various methods as follows.

a. Solar
Solar energy can be used for disinfection. Several 

reactors are available that can convert energy from solar 
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irradiation (Abraham et al., 2015). Ultraviolet (UV) and visible 
light inactivation is often used along with solar power and can 
be used alone, such as for black-box solar heaters or solar water 
heat exchangers. Light is not exposed to the media (Safapour and 
Metcalf, 1999). It is necessary to use a thermometer or indicator as 
sunlight may not supply enough heat (Ray and Jain, 2014).

b. Microwave 
1–350 GHz is the lethal range of microwave for microbes, 

with deadly peak effects at 60 GHz (Fleming, 1944; Green et al., 
1997). Microwaves kill microbes by affecting proteins and depend 
highly on the molecules’ bound water content. Absorbed energy is 
converted to heat energy (Hong et al., 2014; Park et al., 2006). It has 
the advantage of fast heating and lowers energy expenditure, but they 
need more equipment and technical expertise (Green et al., 1997).

Sonication
Sonic or supersonic waves kill microbes by a rapid 

compression and liquid release, tearing the suspended cells into 
pieces (Otte et al., 2018; Rahn, 1945).

Radiation processes
Electromagnetic radiation (UV light and gamma rays) 

and particulate radiation such as accelerated electrons are used for 
sterilization. Radiation targets microbial DNA to kill them. Free 
radical is produced when exposed to gamma rays, whereas UV 
light causes excitation. Cobalt-60 is the source of gamma rays. 
260 nm is the optimum wavelength of UV sterilization, and a 
mercury lamp that gives peak emission at 254 nm is a suitable 
source (Rattanakul and Oguma, 2018).

Pulsed electric field
A system that produces an electric field utilizing two-

electrode generates acoustic and shock waves, UV irradiation, and 
reactive oxygen species. Although it is unaffected by particles, this 
process is expensive and very effective for disinfection (Anpilov 
et al., 2002; Frey et al., 2013; Gusbeth et al., 2009; Poyatos et al., 
2011; Yadollahpour et al., 2014).

Hydrodynamic cavitation
Despite having a similar mechanism as sonication, high 

pressure and local temperatures are achieved by rapid mixing or 
pumping the process solution. Steam injection, shock wave, high-
speed homogenizer, high-pressure systems, and liquid whistle are 
the types of reactors used (Gogate, 2011; Gogate and Pandit, 2010).

Plasma emission and shock waves
Plasma emission and shock waves, visible light emission, 

and UV are used for disinfection. The inactivation mechanism is 
thought to be irreversible destruction of membrane for bacteria 
and DNA and RNA damage for viruses (Mosqueda-Melgar et al., 
2008; Sale and Hamilton, 1967; Sabino et al., 2020; Stratton et al., 
2015).

Ultrasound
It is a complex process that inactivates microbes by the 

growth of bubbles. Dust or bacteria become part of the bubbles in 
company with vapor and gas. When the bubble collapse, microbes 

are exposed to high pressure (100 MPa) and temperature (5,000 
K) for a few seconds, which cause their inactivation (Crum, 1994; 
Flint and Suslick, 1991; Suslick et al., 1999; Tandiono et al., 2011).

Magnetic treatment
Magnetic treatment is a new method of physical 

disinfection of water. The magnetic field creates a polarizing effect 
on ions and water molecules when the water and its impurities 
are in a state of thermodynamic equilibrium. There are several 
different hypotheses about the mechanism of magnetic treatment, 
and more research is needed for a better understanding (Biryukov 
et al., 2005; Li et al., 2020b; Vaskina et al., 2020).

Filtration
It is the process that removes microbes without 

destroying them. Trapping, sieving, and adsorption within the 
matrix of filter material is the mechanism involved in the filtration 
technique (Nnadozie et al., 2015).

Chemical disinfectants and sterilant
Disinfectants are chemically diverse agents with small 

and usually lipophilic molecules that eliminate many pathogenic 
organisms and penetrate the skin quickly to induce a direct 
reaction. Therefore, they can destroy pathogenic microorganisms 
on surfaces (Chernyshov and Kolodzinska, 2020). There are 
different types of chemical disinfectants, and they kill microbes 
through other mechanisms.

Alcohols
Other than bacterial spores, alcohol can kill microbes 

efficiently. The antimicrobial effect of alcohol depends on 
the presence of water, as proteins tend to denature quickly in 
the presence of water. Ethyl alcohol and isopropyl alcohol are 
most commonly used in healthcare settings, and their optimum 
bactericidal concentration is 60%–90% v/v in water. Alcohol-
based disinfectant activity against microbes drops when the 
concentration is below 50% (Block, 2001; Morton, 1950; Jing 
et al., 2020; McDonnell and Russell, 2001). Concentration 
between 60% and 80% of ethyl alcohol is an effective virucidal 
agent for all lipophilic viruses and many hydrophilic viruses such 
as rotavirus and adenovirus, but not hepatitis A virus or poliovirus 
(Mbithi et al., 1990; Tyler et al., 1990). On the other hand, 
isopropyl alcohol is active against lipid viruses (Armstrong and 
Froelich, 1964; Kampf et al., 2020). 

Chlorine and chlorine compounds
The most commonly used chlorine disinfectants are 

the hypochlorites, available in solid (sodium hypochlorite) 
and liquid (calcium hypochlorite) forms as a household 
bleach sodium hypochlorite is used as an aqueous solution at 
5.25%–6.15% concentration (Rutala and Weber, 1997). Sodium 
dichloroisocyanurate, chlorine dioxide, and chloramine-T 
are the chlorine-releasing agents used in healthcare settings 
as their bactericidal effect is more prolonged (Clasen and 
Edmondson, 2006; Coates and Wilson, 1989). There are 
various possible mechanisms of action for these compounds, 
although the precise mechanism is not known. Sulfhydryl 
enzymes and amino acids oxidation, losing intracellular 
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contents, protein synthesis inhibition, decreasing uptake of 
nutrients and oxygen, respiratory component oxidation, DNA 
breaks, decreased production of adenosine triphosphate, ring 
chlorination of amino acids, and depressed DNA synthesis 
are the possible modes of action of these disinfectants (Block, 
2001). The combination of these factors or the effect of the 
disinfectant on a binding site may cause the death of microbes 
(Hernández-Navarrete et al., 2014).

Formaldehyde
Formaldehyde is an effective disinfectant and 

sterilant in its aqueous and gaseous form (Kinyoun, 2006; Lin 
et al., 2020). The aqueous solution of formaldehyde is known 
as formalin which contains 37% formaldehyde (McCulloch and 
Costigan, 1936). Alkylation of the ring nitrogen atoms present 
in purine bases and sulfhydryl amino groups of the proteins 
by formaldehyde causes the microbe to be inactivated (Block, 
2001). Formaldehyde is a potent carcinogen, and the US Federal 
Agency on Occupational Safety and Health Administration 
instructed it to be handled carefully in the workplace. It can be 
fatal if ingested by employees and can cause skin irritation and 
respiratory problems (Costa et al., 2019; Sweatt, 2020).

Glutaraldehyde
It is a saturated dialdehyde which is not only an 

effective disinfectant but also a sterilant. An aqueous solution 
of glutaraldehyde is not sporicidal unless activated by adding an 
alkylating agent (pH 7.5–8.5) with a shelf-life of a minimum of 
14 days. To overcome this limitation, a novel formulation such 
as glutaraldehyde-phenol-sodium phenate, potentiated acid 
glutaraldehyde, and stabilized alkaline glutaraldehyde is used, 
having its microbicidal activity for 28–30 days (Miner et al., 1977; 
Sehmi et al., 2016). Glutaraldehyde kills microbes by altering 
DNA, RNA, and proteins by alkylating the hydroxyl, carboxyl, 
sulfhydryl, and amino groups (Block, 2001). Because of its 
excellent biocidal property, ability to work even in the presence 
of organic load (20% bovine serum), and noncorrosive action to 
various equipment, it is used widely in healthcare facilities (Lu 
et al., 2020; Rutala et al., 1991). 

Quaternary ammonium compounds (QACs)
They are an established disinfectant and good cleaning 

agent. However, cotton and gauze pad-like materials and high-
water hardness can make them less microbicidal. The active 
ingredient can be absorbed by cotton and gauze materials and 
insoluble precipitates, respectively (Gerba, 2015; Nasr et al., 
2018). The disintegration of the cell membrane, essential cellular 
protein denaturation, and energy-producing enzyme inactivation 
caused by these compounds kill microbes (Kampf et al., 2020; 
Ogilvie et al., 2021; Pratelli, 2008; Saknimit et al., 1988). Alkyl 
didecyl dimethyl ammonium chloride, alkyl dimethyl benzyl 
ammonium chloride, and dialkyl dimethyl ammonium chloride 
are some of the QACs used in healthcare settings. Fourth-
generation QACs, also referred to as twin-chain or dialkyl 
quaternary (e.g., dioctyl dimethyl ammonium bromide and 
didecyl dimethyl ammonium bromide), are capable of retaining 
their activity in hard water and also can tolerate anionic residues 
(Block, 2001).

Phenolics
Phenols are protoplasmic poisons at high concentrations; 

they precipitate the cellular proteins by penetrating and distorting the 
cell wall. Phenol derivatives of low molecular weight and phenols 
of low concentration inactivate (Walsh et al., 2019),  essential 
enzyme systems cause critical metabolite leakage, resulting in 
bacterial death (Block, 2001). Ortho-phenylphenol and ortho-
benzyl-para-chlorophenol are commonly used phenol derivatives 
found in hospital disinfectants, and they work more efficiently than 
the parent compound. Porous materials absorb the phenolics, and 
the residual disinfectant is capable of irritating tissue. Para-tertiary 
butyl-phenol and para-tertiary amyl phenol in phenolic detergent 
can cause skin depigmentation (Kahn, 1970).

Peracetic acid
It is an effective agent that works against all microbes 

and has several advantages. It does not leave any residue, can 
remove organic material, and does not disintegrate into harmful 
products such as acetic acid and reactive oxygen species (Ao et al., 
2021; Block, 2001; Kahn, 1970). Although not clearly understood, 
it is assumed to work similarly to other oxidizing agents such 
as protein denaturation, disruption of cell walls permeability 
oxidation of sulfhydryl and sulfur bonds in enzymes, proteins, and 
other metabolites (Block, 2001; McDonnell and Russell, 1999). 

Diluted peracetic acid solution (e.g., 1%) is less stable, but with 
higher concentration (e.g., 40%), it retains its activity for a more 
extended period. Its corrosive effect on several metals (e.g., steel, 
galvanized iron, copper, bronze, and brass) can be minimized 
by pH modification and additives (Ao et al., 2021; Block, 2001; 
Kahn, 1970).

Hydrogen peroxide
Hydrogen peroxide is a strong and effective biocidal 

agent and works against a wide range of microbes and spores. 
It produces destructive hydroxyl free radicals that attack DNA, 
essential cell components, and membrane lipids. Although aerobic 
and facultative anaerobes with cytochrome systems can withstand 
metabolically produced hydrogen peroxide, they cannot tolerate 
the concentration of hydrogen peroxide in disinfectants (Block, 
2001; Ríos-Castillo et al., 2017). 3% hydrogen peroxide is an 
effective disinfectant when used on inanimate surfaces, and 3%–
6% concentration is used for soft contact lenses (Silvany et al., 
1990), ventilator (Judd et al., 1968), endoscope (Vesley et al., 
1992), fabrics (Neely and Maley, 1999), and tonometer biprisms 
(Lingel and Coffey, 1992).

Ortho-phthalaldehyde
Ortho-phthalaldehyde (OPA) is a clear, pale-blue liquid 

that contains 0.55% 1,2-benzenedicarboxaldehyde with a pH of 
7.5. Despite having a similar mode of action as glutaraldehyde, 
OPA has less potency in cross-linking. It is reimbursed by its 
lipophilic aromatic nature that assists its uptake by the outer layer 
of Gram-negative bacteria and mycobacteria (Simons et al., 2000; 
Walsh et al., 1999). OPA kills spores by blocking their germination 
process (Cabrera-Martinez et al., 2002). Although excellent 
material compatibility, it stains protein in gray and should be 
handled carefully (Rutala and Weber, 1999).
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Iodophors
Iodophors are a mixture of iodin and its solubilizing 

agent or carrier. They are iodine-releasing agents. The released 
iodine can penetrate the microbial cell membrane and damage 
proteins by attacking the sulfuryl and disulfide bonds. It can 
also damage nucleic acid. Povidone-iodine is the most common 
and widely used iodophor. They are nonstaining, nontoxic, and 
nonirritating (Block, 2001; Eggers et al., 2018a; 2018b; Gharpure 
et al., 2020; Kariwa et al., 2006).

CORONAVIRUSES
The main component of the virus, a nucleic acid, is 

surrounded by capsids which protect the nucleic acid and facilitate 
binding of the virus to the host cell. The nucleic acid is the 
component that codes for the essential element for viral replication 
(Martin, 2003). Viruses are incapable of replicating when they are 
outside of the host cell. Still, they can survive for a defined time 
depending on the environment and infect a suitable host cell to 
replicate. Viruses use the host cell machinery to replicate (Yeargin 
et al., 2016). They can infect various host cells, including bacteria, 
and cause disease (Sidwell et al., 1966). CoVs are the member of 
the subfamily Orthocoronavirinae from the family Coronaviridae 
of the order Nidovirales. They are +ssRNA enveloped viruses 
(V’kovski et al., 2021). They can infect a wide range of hosts 
(Saif et al., 2019) and cause respiratory disease. Although human 
coronaviruses (HCoVs) cause mild respiratory diseases and 
common cold in humans, the adapted forms from the nonhuman 
host such as SARS-CoV-1, MERS-CoV, and SARS-CoV-2 are 
capable of causing severe illness (Xu, 2020a).

The novel coronavirus, SARS-CoV-2, contains spike 
glycoprotein that binds to the sialic acid receptor of the host 
cell (Tortorici et al., 2019). It is an enveloped virus and causes 
respiratory infection (V’kovski et al., 2021; Xu, 2020b). The 
binding of the spike glycoprotein to the specific receptor of 
the human respiratory tract, angiotensin-converting enzyme-2, 
facilitates viral entry. The low endosomal pH helps with the 
proteolytic activation of the spike glycoprotein. So, the coating 
structure that enables the access of the virus to the host cell is a 
crucial target of antiviral drug discovery (Zhang et al., 2020). The 
disinfectants inactivate viruses by causing damage to either their 
proteins or their genome (Alvarez and O’Brien, 1982; Dennis Jr 
et al., 1979; Kim et al., 1980; O’Brien and Newman, 1979; Roy 
et al., 1981). Disinfecting agents used for different coronaviruses 
are shown in Table 1.

STABILITY OF SARS-COV-2 IN AIR AND ON 
DIFFERENT SURFACES

The SARS-CoV-2 is spread on the dry surfaces 
through respiratory droplets secreted from the infected person’s 
nose, mouth, and eyes and is considered the primary route of 
transmission of this virus (Chan et al., 2020). Low humidity and 
temperatures increase the viability of SARS-CoV-2 in the droplets 
(Moriyama et al., 2020). HCoVs can remain infectious for 2 hours 
to 9 days at room temperature on different surfaces (Kampf et al., 
2020). This time can be up to 28 days for veterinary coronaviruses, 
and an increase in the temperature to 30°C or more induces shorter 
endurance of coronavirus (Kampf et al., 2020). Studies by Kampf 

et al. (2020) and van Doremalen et al. (2020) also showed that 
SARS-CoV-2 could survive on a variety of surfaces from hours 
to days (Table 2) (Choi et al., 2021; van Doremalen et al., 2020). 
The SARS-CoV-2 was more stable on plastic and stainless steel 
than on copper and cardboard, and the viable virus was detected 
up to 72 hours, and its titer was significantly reduced afterward 
(van Doremalen et al., 2020). The virus can remain infectious 
and feasible in aerosols for 3 hours and on surfaces up to days 
(van Doremalen et al., 2020). The persistence time on inanimate 
surfaces varied from minutes to days, depending on environmental 
conditions. SARS-CoV-2 can be sustained in the air in closed 
unventilated buses for at least 30 minutes without losing 
infectivity. Additionally, MERS-CoV can survive 28 days or more 
(Ren et al., 2020). Absorbent materials like cotton are safer than 
unabsorbent materials for protection from virus infection. The 
risk of transmission via touching contaminated paper is low (Ren 
et al., 2020). However, the significance of indirect communication 
through contamination of inanimate surfaces is uncertain and 
requires further investigation (Armstrong and Froelich, 1964; 
Chan et al., 2020; Choi et al., 2021; Moriyama et al., 2020; Ren 
et al., 2020; van Doremalen et al., 2020).

PHYSICAL INACTIVATION OF SARS-COV-2 
The inactivation of airborne viruses and those deposited 

on active surfaces reduces disease transmission, which is a necessary 
counterpreventive measure in combating the COVID-19 pandemic. 
Physical factors such as temperature and humidity greatly influence 
the survival of viruses on surfaces. However, scientists reported 
the rapid inactivation of gastroenteritis virus (TGEV) and mouse 
hepatitis virus (MHV) at all humidity levels (Casanova et al., 
2010). Furthermore, in an indoor space, heat and irradiation such 
as UV inactivated TGEV and MHV (Casanova et al., 2010; Garcia 
de Abajo et al., 2020). Nevertheless, a study has shown that the 
spread of SARS-CoV-2 is not strongly affected by the change in 
weather conditions (Casanova et al., 2010). Therefore, it is crucial 
to efficiently decrease viral transmission rates within indoor spaces 
such as shared offices, classrooms, healthcare facilities, and public 
transport vehicles. The use of physical disinfecting agents in such 
areas is easily deployable and economically affordable (Garcia de 
Abajo et al., 2020). 

HEAT AND ULTRAVIOLET IRRADIATION
Sufficient physical inactivation of SARS-CoV-2 can be 

achieved through exposure to heat and UV radiation. For instance, 
more than 50% viral inactivation was effectively achieved within 
5 min of exposure of SARS-CoV-2 to heat at 56°C or by applying 
UV irradiation. The viral cytopathic effect and infectivity were 
drastically distorted due to physical manipulations on the cells, 
affecting the titer, stability, and virulence (Kariwa et al., 2006). A 
study revealed that the SARS-CoV-2 virus is highly stable at 4°C, 
and when exposed to varying temperatures, exceptionally as high 
as 56oC, the virus loses its infectivity and virulence. The decrease 
in viral titer supports heat as a crucial physical inactivator of the 
virus during the pandemic (Abraham et al., 2020; Chin et al., 2020). 
Similarly, prolonged exposure of the virus to heat for about 30 
min reportedly affects viral infectivity and stability, and therefore, 
a high temperate climate might be beneficial in inactivating the 
virus (Kariwa et al., 2006).
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Table 1. Disinfectants and their ability to reduce the viral load for different coronaviruses (Bedell et al., 2016, Dellanno et al., 2009, Eggers et al., 
2015, Eggers et al., 2018a, Emmoth et al., 2011, Goyal et al., 2014, Hindawi et al., 2018, Kariwa et al., 2006, Leclercq et al., 2014, Noorimotlagh 
et al., 2021, Pratelli, 2007, Pratelli, 2008, Rabenau et al., 2005a, Rabenau et al., 2005b, Saknimit et al., 1988, Sattar et al., 1989, Siddharta et al., 

2017, Tyan et al., 2018, Wood and Payne, 1998).

Coronaviruses Disinfectants (concentration) Viral load reduction 
(log10)

Reference

TGEV (transmissible gastroenteritis coronavirus 
of pigs,a SARS-CoV surrogate)

Three different volumes of Hydrogen peroxide 
vapor (HPV): 25, 27, and  33mL >4.94–5.28 Goyal et al., 2014

canine coronavirus

2-propanol (70%) >3.3 

Saknimit et al., 1988

2-propanol (50%) >3.7 

Formaldehyde (0.7%) >3.7

Sodium hypochlorite (0.01%) 1.1

Benzalkonium chloride (0.05%) 0.9

Sodium hypochlorite (0.001%) > 3.7

Chlorhexidine digluconate (0.02%) 0.3

Mouse hepatitis virus, MHV

(Strain MHV1 and MHV–N)

Ethanol (70% ) > 3.9

Saknimit et al., 1988

Formaldehyde (0.7%) > 3.5

Benzalkonium chloride (0.05%) > 3.7

Chlorhexidine digluconate (0.02%) >3.7

Sodium hypochlorite (0.01%) 2.3–2.8

Sodium hypochlorite (0.001%) 0.3–0.6

2-propanol (50%) 0.7–0.8

MHV (Strain MHV-1) sodium hypochlorite (0.21%) ≥ 4.40 Dellanno et al., 2009

MHV (Strain A59) Whole-room UV-C disinfection system using an 
automate, continuous, multiple-emitter 2.71 Bedell et al., 2016

CCoV (Strain S37)
Benzalkonium chloride (0.00175% ) 3.0

Pratelli, 2007Didecyl-dimethyl-ammonium chloride, DDA 
(0.0025%) > 4.0

CCoV (Strain S378) Formaldehyde (0.009%) > 4.0 Pratelli, 2008

Feline coronavirus,FCoV [Strain DF2, American 
Type Culture Collection (ATCC) VR-2004] Ammonia disinfection (25%) > 5.0 Emmoth et al., 2011

Human coronavirus, HCoV (Strain 229E)

Ethanol (70%) > 3.0

Sattar et al., 1989

Glutardialdehyde (2%) > 3.0

Benzalkoniumchloride (0.04%) < 3.0

Sodium hypochlorite (0.5%) > 3.0

Sodium hypochlorite (0.1%) > 3.0

Sodium hypochlorite (0.01%) < 3.0

HCoV (Strain 229E, ATCC VR-7) Sodium hypochlorite (0.5% ) ≥ 4.50 Tyan et al., 2018
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Coronaviruses Disinfectants (concentration) Viral load reduction 
(log10)

Reference

HCoV (ATCC VR-759, strain OC43) Benzalkonium chloride (0.2%) 0.0 Wood and Payne, 1998

SARS-CoV-1 (Isolate Frankfurt-1)

Ethanol (80%) ≥ 4.25

Rabenau et al., 2005a, 
Rabenau et al., 2005b, 
Siddharta et al., 2017

Ethanol (85%) ≥ 5.5

Ethanol (95%) ≥ 5.5

Isopropanol (45%), n-propanol (30%) ≥ 4.25

2-propanol (100% and 70%) ≥ 3.31

2-propanol (75%) ≥ 4.0

Desderman N (0.2% 2-biphenylol, Ethanol 78%) ≥ 5.01

2-propanol (45%), 1-propanol (30%)
≥ 2.78

Glutaraldehyde (0.5%) ≥ 4.01

Formaldehyde (0.7% and 1.0%) 
≥ 3.01

Incidin plus (2%) glucoprotamin (26%) ≥ 1.68

Temperature (4°C) 0

Temperature (56°C) ≥ 5.01

Temperature (60°C) ≥ 5.01

SARS-CoV-1 (Strain Tor 2) Gamma irradiation at 1 Mrad from a cobalt-60 
source > 4.0 Siddharta et al., 2017

SARS-CoV-1 (Hanoi strain)

Glutaraldehyde, 2.5% > 4.0

Kariwa et al., 2006

Povidone iodine (PVP-I), 1%(1 min) > 4.0

PVP-I, 0.47% 3.8

PVP-I, 0.25% > 4.0

PVP-I, 0.23% >4.0

MERS-CoV [Strain Erasmus Medical Center 
(EMC)]

Ethanol (80%) >4.0
Siddharta et al., 2017

2-propanol (75%) ≥4.0

MERS-CoV(MERS-CoV/Hu/Taif/SA/2015 ) amotosalen and Ultraviolet A disinfection >4.67 Hindawi et al., 2018

MERS-CoV (Hu/France–FRA2_ 130569/2013 
(FRA2)) 

Heat inactivation by three different temperatures; 

Leclercq et al., 2014Temperature 65 °C (1 min) 4.0

Temperature 56 °C (25 min) 4.0

Temperature 25 °C (2 h) 0

MERS-CoV (Isolate HCoV-EMC/2012)

PVP-I, 1.0% 4.3

Eggers et al., 2015PVP-I, 4.0% 5.0

PVP-I, 7.5% 4.6

MERS-CoV (Isolate HCoV- EMC/2012) 0.23% PVP-I ≥ 4.4 Eggers et al., 2018a
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Furthermore, UV, especially UV-C radiation, is one of 
the primary methods for the physical inactivating of viruses. It 
is harmful to pathogenic microorganisms due to its molecular 
damage to RNA and DNA bases. At the range of 200−280 nm 
wavelength, specifically using fluorescence light of 254 nm, UV-C 
reportedly inactivates influenza and SARS-CoV-2 viruses. Thus, 
using these specific lights in the sterilization process in hospitals, 
laboratories, and homes is essential (Abraham et al., 2020; 
Derraik et al., 2020; Garcia de Abajo et al., 2020). A previous 
study revealed the advantages of UV-C in preventing infection 
by viruses, especially SARS-CoV-2 (Mackenzie, 2020; Szeto 
et al., 2020). In animals, UV-C has proven to decrease Canine 
CoV (CCoV), seen in puppies (Fig. 1). Therefore, this can ideally 
experiment on human CoVs (Pratelli, 2008).

Moreover, UV-C is recently used in reducing air 
transmission of viruses. It is also an essential method of inactivating 
viruses and, therefore, can experiment in the disinfection process 
against the SAR-CoV-2 (Beck et al., 2017; Mphaphlele et al., 
2015; Xia et al., 2019). However, precautionary measures should 
be adopted in applying UV-C light as a sterilization method 
because it can significantly damage eyes and produce carcinogenic 
effects considerably if the recommended limit exceeds (Garcia de 
Abajo et al., 2020). 

Several other scientific studies also highlighted the 
importance of UV-induced viral inactivation. Inagaki et al. 
(2020) reported the concentration-dependent rapid inactivation of 
SARS-CoV-2 upon exposure to UV light-emitting diode (LED) 
of wavelength 280 ± 5 nm and subsequent decrease in cytopathic 

effect. In addition to heat and UV, sunlight is one of the physical 
inactivation processes of the SARS-CoV-2 virus. It was reported 
that bright day sunlight above sea level causes variations in the 
life cycle of CoVs and rapidly inactivates the virus on the surface. 
This implies that viruses in indoor and outdoor spaces are affected 
by the different amounts of radiation. However, this needs to be 
further investigated to ascertain the effects of sunlight (Fig. 2) 
(Ratnesar-Shumate et al., 2020). The variations in the reported 
cases of CoV infection across various temperate regions have not 
realistically proven the hypothesis. For instance, the total reported 
cases in France as of November 2020 stand at 2,086,288 (3.19%). 
In comparison, a less temperate Ukraine recorded 583,510 (1.34%) 
with a death rate of 2.26% and 1.78%, respectively (Quinn et al., 
2021), indicating the need for further investigation to assert the 
hypothesis. 

It is imperative to note that fomites, inanimate objects 
contaminated with infectious agents, serve as a medium 
for spreading endemic diseases, including coronaviruses. 
Therefore, there is a need to decontaminate and inactivate 
surfaces and other indoor places to avoid spreading the disease 
(Castaño et al., 2021; Choi et al., 2021). Physical inactivation 
is relevant to disease control due to the destruction of the 
glycoprotein and the lipid membrane bilayer of the virus leading 
to molecular structural damage. The UV-C light is proven to 
effectively reduce the cytopathic effects of the virus, reducing 
the air transmission of viruses. Hence, UV-C light is essential 
for further advances in curbing the spread of viral diseases, 
including SARS-CoV-2.

Figure 1. Effect of UV-C radiation on the infectivity of CCoV in vitro. Virus aliquots were placed at about 4 cm from the UV-C source, then 
removed, and then titrated by the TCID50 assay at fixed time points. The straight line delineates the detection limit of the test (reprinted with 
permission from Pratelli et al. (2008), licensed under CC-BY-4.0, Copyright, (2008), @ Elsevier Ltd.).
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Figure 2. Inactivation rates for SARS-CoV-2 suspended in simulated saliva as a function of UVB irradiance. Linear regression fits SARS-CoV-2 suspended in 
simulated saliva and recovered from stainless steel coupons following exposure to different light conditions. Inactivation rates for exposure to any level of UVB 
irradiance were significant than those observed in darkness (p < 0.001). Additionally, the inactivation rates observed for UVB irradiances of 1.6 and 0.7 W/m2 were 
significantly greater than those observed for 0.3 W/m2 (p ≤ 0.065). The slope of the regression line for darkness was not significantly different from zero. Goodness of 
fit parameters, specifically r2 and standard deviation of the residuals (RMSE), for each fit were (A) r2 = 0.922 and RMSE = 0.24; (B) r2 = 0.906 and RMSE = 0.28; (C) 
r2 = 0.670 and RMSE = 0.40; and (D) r2 = 0.041 and RMSE = 0.32. CI, confidence interval; TCID50, median tissue culture infectious dose (reprinted with permission 
from Ratnesar-Shumate et al. (2020), licensed under CC-BY-4.0, Copyright (2020), @ Elsevier).

CHEMICAL INACTIVATION OF SARS-COV-2
Some of the most influential and domestic-friendly 

disinfectants are recommended by the World Health Organization 
(WHO) for hand rubbing include ethanol (80% v/v) and isopropanol 
(75% v/v) (Pittet et al., 2009). Classes and examples of common 
disinfectants are depicted (Table 3) (Al-Sayah, 2020; Benzoni 
and Hatcher, 2019; Kim et al., 2018), commonly applied during 
the COVID-19 pandemic (Chernyshov and Kolodzinska, 2020). 
Unfortunately, disinfection alone may not prevent the spread of 
any pandemic. General hygienic conditions such as hand washing 
using soap and water, antiseptic, and hand sanitization, especially 
using alcohol-based sanitizers or hand rubs, are essential in curbing 

pandemic spread (Gold et al., 2021). Gold and Avva (2018) 
reported the WHO definition of alcohol-based hand rub (ABHR) 
as “an alcohol-containing preparation (liquid, gel or foam) 
designed for application to the hands to inactivate microorganisms 
and temporarily suppress their growth. Such preparations may 
contain one or more types of alcohol, other active ingredients with 
excipients, and humectants” (WHO, 2009). Other classes that are 
nonalcohol-based are also available. Still, they are less preferred by 
health agencies like the Centre for Disease Control and Prevention 
(CDC) (Berardi et al., 2020) and the WHO (Kampf and Kramer, 
2004; Todd et al., 2010) in fighting COVID-19. They have low 
efficacy and a narrow spectrum of activity compared to alcohol-
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based products and hence the recommendation and acceptability 
of alcohol-based products (Yip et al., 2020). 

Most disinfectant products contain additional ingredients 
which aid in fighting several pathogenic organisms. Such active 
ingredients include QACs, hydrogen peroxide, peroxyacetic 
acid, isopropanol, ethanol, sodium hypochlorite, octanoic acid, 
phenolic, trimethylene glycol, L-lactic acid, and glycolic acid 
(Table 2) (Nawrocki et al., 2010). On many occasions, the products 
are designed to achieve particular needs and avoid the harmful 
effects of the chemicals involved. For instance, isopropanol is 
irritating to the skin; as such, emollients (glycerol or propylene 
glycol) are added to decrease possible skin irritations when 
applied (Berardi et al., 2020). It is essential to carefully read the 
labels of all products before use to avoid toxic and harmful effects 
on human health.

IODINE-BASED AGENTS
Povidone-iodine, chemically known as 

polyvinylpyrrolidone (PVP-I), is an iodine-based synthetic 

polymer obtained by polymerizing a monomeric compound 
N-vinylpyrrolidone. The PVP-I can incorporate hydrophilic and 
hydrophobic compounds due to its chemical characteristics such as 
nontoxic, stability of pH, high temperature-resistant, compatibility, 
inert, and biodegradable properties. These properties enable the 
PVP-I to be formulated in various domestic personal hygiene 
solutions to effectively prevent pathogenic microorganisms, 
including the CoVs disease (Kurakula and Rao, 2020). The 
virucidal activities of five personal hygiene products including 
antiseptic solution (10%), skin cleanser (7.5%), gargle/mouth wash 
(1%), gargle/mouth wash (1.0%, 1:2 dilution), and throat spray 
(0.45%) were reported to contain PVP-I at different percentages. 
They have been assessed against SARS-CoV-2 using suspension, 
cytotoxicity (on Vero E6 cells), and virus kill-time assays. The 
products demonstrated satisfactory virucidal activity of ≥ 99.99%, 
equivalent to 4 log10 reductions of viral titer against SARS-
CoV-2 just within a 30 s period of contact. Anderson et al. (2020) 
reported the virucidal activity of different PVP-I products (Table 4) 
(Hassandarvish et al., 2020). Similar action has been previously 

Table 2. Sustainability of SARS-CoV-2 on different surfaces as reported by Choi et al. (2021) 
and van Doremalen et al. (2020).

Type of surface Viability of SARS-CoV-2

Copper >4 hours

Stainless steel 3 days

Glass 2 days

Plastic 4 days

Wood 4–5 days

Cardboard 1 day

Clothing 2 days

Paper 4–5 days

Table 3. Commonly used disinfectants and other additional compounds.

S/No. Classification Examples

1 Alcohols Ethanol, isopropanol

2 Aldehydes Glutaraldehyde

3 Bases

Calcium dihydroxide, calcium hydroxide, calcium magnesium oxide,

calcium magnesium tetrahydroxide, calcium oxide

Carbonates

Sodium carbonate, sodium carbonate peroxyhydrate, ammonium bicarbonate,

ammonium carbonate

5 Chlorine and chlorine compounds
Chlorine dioxide, hydrochloric acid, hypochlorous acid, sodium chlorite,

sodium hypochlorite, sodium dichloro-S-triazinetrione (sodium dichloroisocyanurate)

6 Glycols Triethylene glycol, 1,2-hexanediol

7 Iodophors Polyvinylpyrrolidone iodine

9 Organic acids

α-Hydroxy acids

Citric acid, glycolic acid, lactic acid

Caprylic acid (octanoic acid), pelargonic acid (nonanoic acid)

10 Peroxygen compounds Hydrogen peroxide, peroxyacetic acid (peracetic acid), potassium peroxymonosulfate

11 Phenolic compounds Ortho-phenylphenol, ortho-benzyl-para-chlorophenol, thymol, chlorocresol
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reported for the products against SARS-CoV-1 and MERS-
CoV, suggesting their applicability as effective disinfectants in 
preventing CoV infections (Hassandarvish et al., 2020). 

In another separate study, the virucidal effects of an oral 
antiseptic PVP-I solution at concentrations of 0.5%, 1.0%, and 1.5% 
were evaluated in vitro against SARS-CoV-2 using 70% ethanol as 
a positive control. The infectivity of the virus was demonstrated and 
quantified using dilution assay and the reduction of log value (LRV) 
in comparison with the positive control (ethanol) and negative control 
(water). The results indicate that SARS-CoV-2 viruses become 
inactivated by all tested concentrations after 15 s of administration 
better than 70% ethanol, whose inactivation effect was later 30 s. 
At each concentration, 0.5%, 1.0%, and 1.5% solutions show a 
virus titer and LRV of < 0.67 and 3.0, respectively, compared to 
70% ethanol with virus titer of 1.5 and LRV 2.17 after 15 s. The 
oral antiseptics display a potent virucidal activity even at a low 
concentration of 0.5%, suggesting its applicability and effectiveness 
in preprocedural oral rinsing as adjunctive treatment in patients 
infected with SARS-CoV-2 (Bidra et al., 2020b). Similarly, PVP-I 
oral antiseptic rinses show more potent virucidal activity in vitro at 

concentrations of 0.5%, 1.25%, and 1.5% compared to hydrogen 
peroxide (H2O2) at 1.5% and 3.0%. At the same time, ethanol 
and water serve as positive and negative controls, respectively. 
Subsequently, the SARS-CoV-2 strains were entirely inactivated by 
the tested concentrations of PVP-I after 15 and 30 s of contact time. 
Simultaneously, minimal virucidal effects were observed with H2O2 
at lower and higher concentrations, suggesting PVP-I preprocedural 
oral rinsing preference over H2O2 (Bidra et al., 2020a). The PVP-I at 
a concentration of 0.23% was reported to rapidly inactivate SARS-
CoV, MERS-CoV, influenza virus A (H1N1), and rotavirus after 15 
s of exposure. In another study, when used as mouthwash at 7% 
concentration, PVP-I possesses virucidal activity against SARS-
CoV-1, MERS-CoV, and influenza virus A quantitatively using 
suspension assay. Furthermore, PVP-I at a dilution ratio of 1:30 with 
water (concentration of 0.23%) inactivated SARS-CoV-1, MERS-
CoV, influenza virus A, and rotavirus and significantly decreased 
viral titer value from 4.00 to 6.00 log10 TCID50/ml, equivalent to ≥ 
99.99% just after 15 seconds of contact time. However, Eggers et 
al. (2018a) and Bidra et al. (2020b) reported little or no significant 
change when extending contact time (Table 5). Therefore, PVP-

Table 4. Virucidal activity of PVP-I products against SARS-CoV-2 virus with 30s contact time 
as rreported by Hassandarvish et al. (2020).

PVP-I product Reduction in viral titers (log10 TCID50/ml)

Antiseptic solution (PVP-I 10.0%) ≥ 4.00

Throat spray (PVP-I 0.45%) ≥ 4.00

Skin cleanser (PVP-I 7.5%) ≥ 4.00

Gargle/mouth wash (PVP-I 1.0%) ≥ 4.00

Gargle/mouth wash (PVP-I 1.0%, 1:2 dilution) ≥ 4.00

Table 5. Virucidal activity of various concentrations of PVP-I in mouthwash against SARS-CoV-1, SARS-CoV-2, MERS-CoV, influenza virus 
A, and rotavirus as reported by Bidra et al. (2020b) and Eggers et al. (2018a).

Virus Povidone-iodine 
concentration (%) Log10 reduction factor with a 95 % confidence interval

Clean conditions Dry conditions

15 seconds 30 seconds 60 seconds 120 seconds 15 seconds 30 seconds

Influenza virus A 
subtype HIN1 0.23 5.67 ± 0.43 5.67 ± 0.42 nd. nd. 6.00 ± 0.47 6.00 ± 0.47

0.023 4.50 ± 0.54 4.83 ± 0.68 nd. nd. 0.33 ± 0.63 0.50 ± 0.65

0.0023 0.83 ± 0.54 1.00 ± 0.70 nd. nd. 0.17 ± 0.58 0.17 ± 0.58

SARS-CoV 0.23 4.60 ± 0.80 nd nd. nd. 4.40 ± 0.79 nd.

MERS-CoV 0.23 4.40 ± 0.79 nd. nd. nd. 4.40 ± 0.87 nd.

SARS-CoV-2 1.5 3.0 3.33 nd. nd. nd. nd.

0.75 3.0 3.33 nd. nd. nd. nd.

0.5 3.0 3.33 nd. nd. nd. nd.

Non-enveloped 
human rotavirus 0.23 ≥ 4.67 ± 0.42 ≥ 4.67 ± 0.42 ≥ 4.67 ± 0.42 ≥ 4.67 ± 0.42 nd. nd.

Strain Wa 0.023 1.83 ± 0.54 2.00 ± 0.60 2.00 ± 0.60 2.17 ± 0.61 nd. nd.

0.0023 -0.33 ± 0.42 0.00 ± 0.60 0.17 ± 0.61 0.67 ± 0.42 nd. nd.

The bolded numbers indicate no significant change in cleaning and drying conditions in reducing viral titer value from 4.00 to 6.00 log10 TCID50/ml, equivalent 
to ≥ 99.99% just after 15 seconds of contact time using Povidone-iodine concentration.
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I’s comprehensive coverage and effective inactivation make it an 
oropharyngeal agent of choice for protecting individuals from viral 
infections (Eggers et al., 2018a).

Some PVP-I products were reported to effectively 
reduce SARS-CoV-2 infectivity below detectable limits, 
similar to 70% ethanol (Kariwa et al., 2006). They have 
overwhelming acceptability as disinfectants due to their broad 
virucidal activity against many pathogens. Therefore, this 
suggests a strong indication that PVP-I products are adequate 
for the inactivation of SARS-CoV-2 and other pathogenic 
microorganisms. However, the inefficiency of iodine-based 
compounds has been documented earlier for environmental/
surface disinfection of hepatitis A virus (HAV). Similarly, few 
other studies found Iodophors with less virucidal efficacy (Bond 
et al., 1983; Lloyd-Evans et al., 1986; Sattar et al., 1989). In 
addition, many iodine-based products and their by-products 
such as diatrizoate, iomeprol, and iopamidol are unavailable for 
surface disinfection due to their staining and toxicity pollution 
properties to the environment and in some instances highly 
persistent and difficult to remove from surfaces. Accumulation 
of such compounds in large amounts might pose potential 
threats and destabilization of the ecosystem. Therefore, iodine-

based products are mostly not recommended for surface 
disinfection (Steger-Hartmann et al., 2002).

ALCOHOL-BASED AGENTS
Alcohol-based hand preparations containing 

isopropanol, ethanol, n-propanol, or their combinations are 
undoubtedly some of the most frequently used hand rubs during 
the SARS-CoV-2 pandemic and other viral pandemics such as 
MERS. The effectiveness of the preparations depends on the 
type of alcohol and the quantity applied, concentration, and time 
of exposure (Boyce and Pittet, 2002; Todd et al., 2010). The 
enveloped viruses, including SARS-CoV-2, SARS-CoV-1, and 
MERS-CoV, possess a lipid layer protecting the viral core, of 
which most antiseptic agents can effectively inactivate within 
1 min of exposure (Wang et al., 2020b). One of the strategic 
approaches to inactivate CoVs is to target the lipid envelope, 
representing the organism’s virucidal potency. In the 2003 
SARS outbreak, the strategy was applied using 60%–70% 
ethanol concentration to decontaminate viral material detected 
on surfaces within a hospital effectively. Therefore, ethanol at 
higher concentrations will effectively interfere with the lipid 
envelope of CoV (Hulkower et al., 2011; Sattar et al., 1989). 

Figure 3. Physical and chemical inactivation of SARS-CoV-2.
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Studies have also indicated that, to effectively inactivate the lipid 
envelope of some viruses, alcohol-based antiseptic preparations 
such as isopropanol at 70%–91.3% and ethanol at 60%–71% 
concentrations are highly recommended (Berardi et al., 2020; 
Kampf et al., 2020). The United States Federal Drug Agency 
reaffirmed the concentration-dependent effectiveness of some 
alcohol-based disinfectants and recommended them during the 
COVID-19 health emergency (Baye et al., 2021). Furthermore, 
the CDC recommends a baseline concentration of 60% for 
ethanol preparations meant for healthcare and the public for 
adequate disinfection, especially when foam and water are not 
easily accessible (Ramphul and Mejias, 2020). Moreover, a 
recent study conducted on Zika virus, Ebola virus, SARS-CoV-1, 
and MERS-CoV indicated that alcohol-based formulations 
such as ethanol 80% (v/v), isopropyl alcohol 75% (v/v), or the 
combination of both preparations effectively killed the envelope 
viruses and therefore, the WHO recommended the concentrations 
during the SARS-CoV-2 pandemic (Siddharta et al., 2017). To 
further buttress this point, commercially available alcohol-based 
hand sanitizers in the US market with a concentration of 70% 
ethanol effectively decreased the amount of SARS-CoV-2 virus 
below the threshold limit of >3 log10 reductions (Leslie et al., 
2021). Similarly, ethanol at >30% concentration efficiently 
inactivated the virus when exposed within 30 seconds (Kratzel 
et al., 2020). The alcohol-based sanitizers have a significant 
setback in skin dryness, primarily when used for a long time. 
Therefore, emollients such as glycerol and glycerine are added to 
overcome such effects (Ahmed-Lecheheb et al., 2012).

Generally, alcohol-based hand sanitizers are the most 
commonly employed hand rubbing disinfecting agents against 
SARS-CoV-2 and other endemic viruses. One of the most common 
added ingredients in alcohol-based disinfectants with potential 
antiviral activity is the QACs, with a broad spectrum of activity 
against enveloped viruses and CoVs. Illustrations regarding 
different types of disinfectants that are physical and chemical 
inactivation of SARS-CoV-2 are shown in Figure 3. 

OTHER DISINFECTANTS
Other essential disinfectants effective in 

decontaminating and inactivating viruses include chlorine-
based, halogen compounds, potent oxidizing agents, and 
sodium hypochlorite (Chernyshov and Kolodzinska, 2020; 
Pradhan et al., 2020). Recently, large amounts of chlorine-based 
disinfectants have been widely used to control the spread of the 
SARS-CoV-2 outbreak in environments due to low cost and 
effectiveness on viral infection. Chlorine-based disinfectants 
are the most common agents that threaten aquatic life and the 
environment. Halogen compounds such as hypochlorous acid 
and hypochlorite ions are effective in decontamination and 
inactivating viruses and pathogenic microorganisms. Scheme 1 
represents how sodium hypochlorite solutions can be prepared 
by reacting chlorine and sodium hydroxide solutions to give 
hypochlorous acid (HOCl) and sodium hypochlorite (NaOCl) 
solution (Pradhan et al., 2020).

Cl2 + H20 favored in alkaline pH → HOCl + H+ + Cl− 
HOCl + NaOH favored in alkaline pH → NaOCl + H+

Scheme 1. Formation of sodium hypochlorite solution.
The hypochlorous acid is a potent oxidizing agent with 

higher biocidal potency compared to NaOCl. The recommended 
disinfectant concentration of sodium hypochlorite is 5% in 1:100 
dilutions for effective mopping of nonporous surfaces at ≥ 10 
min contact time. In contrast, 30 min contact time is required 
(Carr et al., 1996; Chen et al., 2016). Sodium chlorite is another 
essential disinfectant with proven efficacy against HAV compared 
to other disinfectants such as chlorhexidine digluconate, sodium 
hypochlorite, phenol, sodium phenate, and diethylenetriamine 
disinfectants (Abad et al., 1997). However, sodium chlorite 
was ineffective at 0.275% concentration against HAV (Mbithi 
et al., 1990). Recently, a more environmentally friendly chemical, 
N-decyl dimethyl ammonium chloride or bromide, effectively 
inactivates SARS-CoV-2 on surfaces within 0.5 min in a laboratory 
experiment. Therefore, this could be suggested to disinfect surfaces 
contaminated with the virus (Xiling et al., 2021).

Oxidizing agents are one of the most effective 
disinfectants that inactivate viruses and other pathogenic 
microorganisms. Oxidizing solid compounds such as 1% 
hydrogen peroxide are disinfectants in intraoral procedures due to 
their effectiveness (Ather et al., 2020; Diegritz et al., 2020; Izzetti 
et al., 2020; Jamal et al., 2021; Zimmermann and Nkenke, 2020). 
Hydrogen peroxide is recommended because it can inactivate 
SARS-CoV-2 through an oxidation mechanism (Peng et al., 
2020). Furthermore, it is worth noting that 62%–71% ethanol, 
0.5% hydrogen peroxide or 0.1% sodium hypochlorite, and 
povidone-iodine can rapidly inactivate CoVs such as SARS and 
MERS on inanimate surfaces within 1 min of exposure (Kampf 
et al., 2020). A study by Mileto and coworkers reported the 
inactivation of SARS-CoV-2 using a diluted solution of 3% H2O2 
with citric acid and an aqueous solution of sodium percarbonate 
on surfaces within 5 and 15 minutes, respectively, while H2O2 with 
no additives displayed little or no virucidal activity (Ayipo et al., 
2021; Brown et al., 2021).

Similarly, a combination of 0.1% chlorhexidine, 0.05% 
cetylpyridinium chloride, H202 0.1% chlorhexidine, and 0.05% 
cetylpridiniumchloride inactivated SARS-CoV-2 particles within 
30 s application as a mouth rinse, while H2O2 and chlorhexidine 
alone have no virucidal effects. Therefore, the combination might 
be used in preprocedural mouth rinse during dental treatments 
(Koch-Heier et al., 2021). Moreover, in SARS-CoV-2 positive 
subjects, 1% hydrogen peroxide used as mouth rinse could not 
reduce oral viral load. Therefore, hydrogen peroxide preparation 
alone is not recommended as an oral rinse to destroy the SARS-
CoV-2 virus (Gottsauner et al., 2020). Other commonly used 
disinfectants include peroxides and peracids, which act by 
generating free radicals. These free radicals oxidize the important 
biochemical content of the virus, including nucleic acid, proteins, 
and lipids bilayer, and subsequently inactivate the virus. However, 
the free radicals-based preparations are usually considered the 
last option as disinfectants, replacing formaldehyde due to their 
severe systematic and neurological toxicity associated with their 
exposure. Hence, this limited their use against the SARS-CoV-2 
virus (Songur et al., 2010).

Most disinfectants meant for household use have 
additional ingredients, such as the same amount of 0.50% triclosan, 
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0.12% parachlorometaxylenol, 0.23% pine oil, and 0.10% QACs, 
which are invariably reported to inactivate hepatitis virus. Among 
these compounds, QACs are the most common ingredients in 
more than 200 disinfectant preparations against the SARS-CoV-2 
pandemic (Cegolon et al., 2020; Dellanno et al., 2009). There 
are three classes of QACs identified to have antiviral activity 
against CoVs and other pathogenic microorganisms, namely, (i) 
cetylpyridinium chloride, which is used to reduce pathogenic 
organisms in the mouth. It is also used in cosmetics as cleaning 
and personal care agents, (ii) ammonium chloride, an antiviral 
agent in many disinfectant preparations, and (iii) miramistin, 
which has a broad spectrum of activity against nonenveloped and 
enveloped viruses (Cegolon et al., 2020; Sanderson et al., 2003). 

Therefore, these agents can be formulated with other disinfectants 
for effective decontamination and inactivating viruses and other 
pathogenic microorganisms through additive and synergistic 
activity (Dellanno et al., 2009). This is evident when two 
formulated detergents containing QACs demonstrated an efficient 
inactivation of the SARS-CoV-2 by disrupting the lipid envelope 
and the spike glycoprotein of the virus, which eventually would 
have invaded lung cells of the host when interacting with the 
angiotensin-converting enzyme-receptor of the infected person 
(Schrank et al., 2020). In another research, it was indicated that 
a combination of commercially available disinfectants containing 
about 70% alcohol with N-alkyldimethylbenzylammonium 
chloride produced a reduction in viral titer by 2.03-fold.

Table 6. Effective antiseptics for different HCoVs (Chin et al., 2020, Eggers et al., 2018a, Kratzel et al., 2020, Rabenau et al., 2005a, Rabenau et 
al., 2005b, Ren et al., 2020, Saadatpour and Mohammadipanah, 2020, Saknimit et al., 1988, Sattar et al., 1989, Siddharta et al., 2017).

HCoV strain Antiseptic (concentration) Viral load reduction (log10) Reference

HCoV 229E

Povidone iodine (PVP-I) (2.3% to 7.5%) > 3.0 to >5.0 (dependent on 
concentration) Sattar et al., 1989

Ethanol (70%) 3.9 Saknimit et al., 1988

Tetra-para-sulfonato-calix [33]arene (C[33]S) 0.1% 3 Geller et al., 2010

Chlorhexidine gluconate + cetrimide + ethanol (0.05% + 
0.5% + 70%) ≥ 3 Sattar et al., 1989

Chlorhexidine gluconate + ethanol (0.1% + 70%) ≥ 3 Sattar et al., 1989

SARS-CoV-1

2-propanol (100%) ≥ 3.3 Rabenau et al., 2005a

2-propanol (75%) ≥ 4.0 Siddharta et al., 2017

2-propanol (70%) ≥ 3.30 Rabenau et al., 2005a

Ethanol (95%) ≥5.50 Rabenau et al., 2005b

Ethanol (80%) ≥4.30 Siddharta et al., 2017

Ethanol (78%) ≥5.0 Rabenau et al., 2005a

2-propanol + 1-propanol (45% + 30%)
≥ 2. 8 /

≥4.3
Rabenau et al., 2005a, Rabenau et 

al., 2005b

Isopropanol + glycerol + hydrogen peroxide (75% + 
1.45% + 0.125%) Not determined (ND) Siddharta et al., 2017

Povidone iodine (PVP-I) (0.23%) ≥4.4 Eggers et al., 2018a)

MERS-CoV

Glycerol +Isopropanol + hydrogen peroxide (1.45% + 
75% + 0.125%) ND Siddharta et al., 2017

Povidone iodine (PVP-I) (0.23%) ≥4.4 Eggers et al., 2018a

2-propanol (75%) ≥4.0 Siddharta et al., 2017

SARS-CoV-2

Isopropanol + hydrogen peroxide + glycerol (75% + 
0.125% + 0.725% ) ≥5.9 Kratzel et al., 2020

Ethanol (70%) 3.9 Saknimit et al., 1988

Povidone iodine (PVP-I) (7.5%) ND Ren et al., 2020

Chlorhexidine (0.05%) ND Chin et al., 2020
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In contrast, phenolic disinfectant (o-phenyl phenol 
and p-tertiary amyl phenol) with ortho-phthalaldehyde reduced 
the titer value by 2.27 folds, indicating superior efficacy of the 
first combination against TGEV (Hulkower et al., 2011). Only 
two disinfectants, containing Nalkyldimethylbenzylammonium 
chloride and Lysol, demonstrated excellent activity below the viral 
reduction factor against poliovirus, indicating not all products 
are effective against viruses (Rutala et al., 2000). In another 
study, QAC’s, hydrochloric acid, and sodium hypochlorite-based 
formulations inactivated SARS-CoV-2 and other coronaviruses 
with virucidal efficacies between ≥ 3 and ≥ 6 log10 reduction factors 
(Ijaz et al., 2021). Consequently, a viral reduction factor of ˃3 has 
been suggested as the most effective benchmark for inactivation 
of virucidal activity of CoVs and other life-threatening infections 
during surface decontamination (Abad et al., 1997; Hulkower 
et al., 2011; Rutala et al., 2000). However, natural products 
with disinfectant properties such as vinegar were less toxic and 
effective than commercial household disinfectants against some 
pathogenic organisms (Schrank et al., 2020).

Antiseptics 
Substances that arrest microbial growth or activity, 

especially in or on living tissue, by either inhibiting their action 
or destroying them are antiseptics (Patterson, 1932). Skin can 
be contaminated directly when contact with patient secretions or 
indirectly by touching contaminated surfaces (L’Huillier et al., 
2015). Some chemical disinfectants that are safe to use in or on 
tissue are used as antiseptics. Table 6 shows the efficacy of the 
antiseptics used for HCoVs.

Antimicrobial Resistance 
Antimicrobial agents are natural, synthetic, or 

semisynthetic substances capable of killing or inhibiting microbial 
growth in vivo by interacting specifically with a target component 
(Donaghy et al., 2019). The ability of a microorganism to grow 
despite an antimicrobial agent is referred to as antimicrobial 
resistance (AMR), which can be acquired or intrinsic (Wales and 
Davies, 2015). Unlike antimicrobial agents, disinfectants and 
sanitizers nonspecifically target multiple components of microbes, 
frequently causing lethal damage to their membranes or damaging 
their proteins by reacting with a functional group. Because of their 
nonspecific nature and multiple modes of action, the microbes are 
less likely to become resistant to these chemicals (Donaghy et al., 
2019; Wales and Davies, 2015). It is unclear that the COVID-19 
pandemic has increased AMR. Many patients infected with 
COVID-19 were treated with antibiotics due to secondary bacterial 
coinfection (Rodrigo et al., 2020). About 70% of the COVID-19 
patient who was hospitalized received antibiotics and often broad-
spectrum antibiotics, whereas only 16% developed secondary 
coinfections (Abelenda-Alonso et al., 2020; Beović et al., 2020; 
Langford et al., 2020). The increased use of antibiotics is seen in 
nursing homes and long-term care facilities. A possible increase 
in self-medication with antibiotics is seen in some countries or 
regions of the world, increasing the risk of rising AMR (Nasir 
et al., 2020).

Despite having huge factors that increase the risk 
of raising AMR during this pandemic, some factors might 
favor decreasing AMR. A study result shows that only 1.3% 

of COVID-19 patients from the Intensive care unit and no 
other units got infected with nosocomial superinfection with 
AMR bacteria (Fattorini et al., 2020). Another study shows 
that only 3.5% of COVID-19 patients got bacterial coinfection 
(Langford et al., 2020). A significant decrease in international 
air travel also decreased AMR bacteria and genes (Kommenda, 
2020; Murray, 2020).

RESISTANCE OF PATHOGENIC ORGANISMS TO 
INACTIVATING AGENTS

A considerable number of disinfectants containing 
antibiotics have been used in public. The high concentration of 
these disinfectants wastewater and the soil leads to environmental 
and aquatic toxicity and, in some cases, resistance to viruses 
(Chen et al., 2021; Wang et al., 2020b). Resistance poses a serious 
global concern, thereby exposing the vast, vulnerable population 
to devastating situations. Many disinfectants contain chlorine-
releasing agents. Excessive use of these can give rise to chlorine-
tolerant microbes, which are also competent cells and can more 
efficiently transfer plasmids (Jin et al., 2020). Therefore, it is 
pertinent to monitor disinfectants for potential risks of developing 
resistance due to the discriminate application of the agents during 
the pandemic period (Berardi et al., 2020; Dellanno et al., 2009; 
Okeke et al., 2005).

Moreover, the CDC and the European Committee for 
Standardization recommend methods and testing protocols for 
disinfectant preparations to effectively determine efficiency and 
inactivation potential against viruses, especially on enveloped 
viruses. This represents the vast majority of emerging infectious 
diseases. Therefore, it is recommended to use tested and 
well-recommended formulations such as PVP-I and ethanol 
preparations less susceptible to resistance development when used 
appropriately (Boyce and Pittet, 2002; Eggers, 2019). As discussed 
under iodine-based disinfecting products, PVP-I is one of the most 
widely used alternative antiseptics to alcohol prepared in clinical 
settings for disinfecting skin during and after surgical operations. 
It inactivates resistant strains of pathogenic microorganisms 
effectively (Gottrup et al., 2014). It was demonstrated by Eggers 
et al. (2018), that iodine has superior activity against enveloped 
and nonenveloped viruses (Table 7), hence its lack of cross-
resistance among many pathogens. Besides its inability to 
develop resistance, PVP-I has been more effective and superior 
to chlorhexidine against pathogenic microorganisms, especially 
handwashing disinfectants (Eggers, 2019).

So far, no significant resistance has been acquired by 
iodine, mainly when used for specific purposes and stipulated 

Table 7. Comparison of anti-viral activities of standard antiseptic 
classes as indicated by Eggers et al. (2019).

Antiseptic type Inactivates

Enveloped viruses Non-enveloped viruses

Quaternary ammonium + +

Chlorine + +

Ethanol + Variable

Iodine + +

Phenolic + Variable



Najib et al. / Journal of Applied Pharmaceutical Science 12 (01); 2022: 001-028016

procedures (Eggers, 2019). Iodine maintains equilibrium due 
to constant replacement by the PVP-bound iodine, leading to 
disruptions and leakage of the organism (Mayer et al., 2001). 
Therefore, the long-lasting efficacy and continuous supply of 
iodine during its action suggest decreased possibility of resistance 
developed by many pathogenic organisms (Eggers, 2019). In 
summary, PVP-I and ethanol preparations are less susceptible to 
resistance development when used appropriately and adequately. 
PVP-I’s constant equilibrium supply and efficacy during its action 
against viruses make it one of the disinfectants of choice for many 
decades. The development of resistance to various disinfectants 
and antimicrobial agents is demonstrated (Fig. 4).

TOXICITY OF INACTIVATING AGENTS 
The WHO’s declaration of COVID-19 as a global 

pandemic and misinformation on the public health emergency 
leads to misconceptions, rumors, and subsequently cynicism 
on the disease by some individuals (Xu and Li, 2020). In 
addition, misinformation on the use of disinfectants triggers 
panic, anxiety, and hysteria in people. Thus, individuals adopt 
inappropriate, excessive, and unethical actions such as the 
application of equipment sterilizers on the skin, washing food 

products with disinfectants, and in some instances, ingesting 
chemicals, all in the name of preventive measures. The SARS-
CoV-2 pandemic has skyrocketed the demand for disinfectants 
globally, exposing human, environmental, and aquatic life to 
the toxic effects of these chemicals (Sefah et al., 2020). This 
could culminate in increasing secondary disasters detrimental 
to the fragile healthcare system (Rai et al., 2020). Residual 
chemicals left on the surfaces can be inhaled and cause serious 
health problems such as allergic reactions and asthma (Medina-
Ramón et al., 2005). The long-term effect of such substances 
could be harmful to health, causing chronic diseases like cancer 
and central nervous system (CNS) impairment. Other effects 
include oxidative damage and reproductive disorders (Choi 
et al., 2020). Most of these cleaning agents contain harmful 
materials and are corrosive to both humans and the environment; 
therefore, caution and strict adherence to safety and protocol 
measures must be exercised when applying disinfecting agents 
on both humans and the environment (Arevalo-Silva et al., 
2006; Nabi et al., 2020; Sawalha, 2007; Sharafi et al., 2020).

In humans, toxicity due to disinfectants is usually 
experienced upon long-term exposure to the agents through 
mouth, skin, and inhalation routes. The toxicological effects 

Figure 4. Processes of developing resistance by commonly used disinfectants and other antimicrobial agents.
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vary according to the course and the type of the disinfecting 
agent. For instance, alcohol-based disinfectants and sanitizers 
display short contact time on humans due to their volatility. 
They are considered less harmful than other less volatile 
agents with extended contact time. Therefore, alcohol-based 
disinfectants are mostly recommended for homes and hospitals 
(Li et al., 2020a). Other agents such as hypochlorous and 
peroxides are primarily used in dental clinics due to their 
ability to produce aerosols at a low cost to prevent contact 
with most patients (Scarano et al., 2020). It was reported that 
most chemical disinfectant by-products increased the risk of 
chronic obstructive pulmonary disease (COPD) like asthma 
and irritation of the eyes and skin, primarily when misused. 
Other hazards include cancers and reproductive and respiratory 
disorders (Chen et al., 2021; Rume and Islam, 2020; Sharafi 
et al., 2020). Children are the most affected when exposed to 
hazardous chemicals, with reported cases of dysbiosis in the 
infant gut leading to overweight and obesity (Chen et al., 2021). 
Excessive use of alcohol-based hand sanitizer as a protective 
measure for the current pandemic has caused alcohol toxicity 
(Ghafoor et al., 2021). It can also increase the risk of other 
viral infections such as norovirus outbreaks (Blaney et al., 
2011). Some ABHR or sanitizers contain nonvolatile biocides 
such as benzalkonium chloride, chlorhexidine digluconate, 
didecyldimethylammonium chloride, polihexanide, triclosan, 
or octenidine dihydrochloride (Kampf, 2016). Although they 
do not have any proven health benefit or superior bactericidal 
efficacy, they can raise AMR (Kampf, 2016; Kampf et al., 
2017; Palumbo et al., 2017). Chlorhexidine, povidone-iodine, 
benzalkonium chloride, or octenidine are used in some 
alcohol-based skin antiseptics (Kampf, 2016). Of these, only 
chlorhexidine and octenidine have proven health benefits in 
preventing infection despite some risks (Chaiyakunapruk et al., 
2002; Darouiche et al., 2010; Dettenkofer et al., 2010; Harnoss 
et al., 2018; Mimoz et al., 2015; Tuuli et al., 2016). Other agents 
such as glutaraldehyde and ethylene oxide were also reported 
to cause severe lung disease (Dumas et al., 2019). Therefore, 
caution should be exercised, especially when mixtures of 
disinfectants are preferred. For instance, the combination 
of bleach with an acid-based cleaner could release gaseous 
chlorine or hypochlorous acid. When inhaled, even in small 
amounts, it may cause acute severe lung injury (Bracco et al., 
2005). People are exposed to toxic effects of these chemicals 
with an increased risk of COPD, asthma, and eye irritation 
due to the knowledge gap in safe preparations of cleaning and 
disinfecting agents, even among adults. Therefore, discourage 
self-preparation without the requisite skills and knowledge 
(Casey et al., 2017; Dumas et al., 2019; Gharpure et al., 2020; 
Weinmann et al., 2019). Moreover, a study indicated that about 
5% of cancer in children and 30% of childhood asthma are 
linked to long-term chemical exposures due to the inability 
to handle or use the chemicals properly and subsequently 
damaging essential organs in the body (Landrigan et al., 2002). 
Another necessary caution is excessive, frequent, and vigorous 
hand rubbing when using alcohol-based antiseptics, which 
could be inhaled and may generate potential threats to eyes and 
skin and subsequently lead to contact and allergic dermatitis 
to mild or moderate inflammatory effects (Shetty et al., 2020).

During the COVID-19 pandemic, there was an increase 
in biomedical and untreated wastes (Wang et al., 2020b), which 
endangers both humans and the environment. Chlorine-based 
disinfectants are the most widely used agents on environments 
during the SARS-CoV-2 pandemic, thereby causing high residual 
concentrations in water bodies, soil, and the environment. 
Ultimately, these affect agricultural production due to excessive 
chlorine (Cl-), soil degradation, and ecosystem destruction. A high 
chlorine residue concentration on the soil affects the ecosystem 
by reacting with bromide in raw materials or soil and organic 
matter. This subsequently leads to disinfectants-by-products 
formations, especially trihalomethanes and bromides, toxic to the 
environment (soil), human, and aquatic animals (Srivastav et al., 
2020). Chlorine-based disinfectants are prone to the formation of 
carcinogenic chloramines and nitrosamines, observed in drinking 
water around Washington D.C (Montazeri et al., 2017; National 
Research Council, 1980). However, chlorine-based disinfectants’ 
toxic effects on plants are short-lived and quickly neutralized by 
some organic matters in the soil (Montazeri et al., 2017). The 
aquatic animals are also endangered due to exposure to toxic by-
products of the disinfecting chemicals (Nabi et al., 2020; Sharafi 
et al., 2020). Also, disinfecting water for consumption using 
chlorine produces products and, when used for the long-term, may 
be harmful to aquatic and human life, causing chronic diseases such 
as cancer (Agnelo et al., 2020; Srivastav et al., 2020). The excessive 
applications of disinfectants undoubtedly increase their presence 
within the ecosystem, causing air, water, and soil pollution.

In summary, even though some disinfectants are toxic 
to individuals and the environment, they are essential in curbing 
the spread of COVID-19. The vast majority of the disinfectants, 
such as alcohol and chlorine-based products, are mainly 
used on humans and the environment, respectively. Frequent 
exposure to disinfectants during the COVID-19 pandemic 
poses risks of chronic diseases such as cancers, respiratory, and 
reproductive disorders. Therefore, guidelines, procedures, and 
recommendations made by WHO, CDC, and other recognized 
health agencies should be followed to minimize the health risks 
associated with exposure to chemical disinfectants. Possible 
toxicity and other health hazards resulting from disinfectant 
use are demonstrated (Fig. 5). 

MITIGATING STRATEGIES TO REDUCE THE TOXIC 
EFFECTS OF INACTIVATING AGENTS

The COVID-19 pandemic posed several challenges and 
seemed unmanageable through current preventive measures and 
strategies (Habas et al., 2020; Rahman et al., 2021). Disinfectants 
are essential prophylactic agents; however, there is indiscriminate 
disinfectant use during the pandemic. Despite having a beneficial 
role in controlling and preventing SARS-CoV-2, there are 
concerns regarding the large-scale use of disinfectants, including 
the toxic effect on human health and the chance of developing 
drug resistance. Various national and international healthcare 
authorities, that is, WHO (2020) and CDC (Government, 2021), 
have developed recommendations for the appropriate utilization 
of suitable disinfectants to prevent the pandemic. 

The following essential mitigation strategies are 
recommended to reduce the toxic effects of disinfectants in 
humans and the environment (Chen, 2020; Dhama et al., 2021):
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1.  Use of natural disinfectants, for example, sunlight and plant-
based disinfectants.

2. Use only recommended dose of disinfection.
3.  Substitute cleaning and disinfectant sprays with liquid 

products that are manually applied with a cloth.
4. Increase ventilation during and following treatment.
5.  Follow label usage instructions and avoid mixing cleaning 

and disinfectant products.
6.  Avoid using cleaning and disinfectant products around 

children.
7.  Allow the area being treated to air out the following 

application.
8.  Clearly label disinfectants and store them away from children 

and pets.
9.  Avoid any accidental leakage of disinfectants into water.
10.  Development of nanomaterials or nanoparticles for surface 

decontamination.
11.  Improve personal protective equipment (PPE) worn by users.
12.  Incorporation of nanobiotechnology to develop PPEs and 

sanitization.
13.  Efficient disposal of PPEs and medical waste using techniques 

like incineration and vitrification.

14.  Provide proper worker training in safe cleaning and 
disinfection practices.

15.  Strictly follow national health and safety guidelines for using 
disinfectants.

CONCLUSION AND RECOMMENDATIONS
COVID-19 is a highly infectious and transmissible 

disease. The inability to detect symptoms within a few days of 
getting infected by individuals further complicates its proper 
prevention and disinfection process, especially in a frequented 
indoor space. Initially, when the disease was declared a public 
healthcare emergency by the WHO, different nations adopted 
temporary confinement of people indoor to curb the disease 
spread. Nonetheless, this policy has negatively impacted the global 
economies, individuals’ psychological and mental health, and the 
overwhelming healthcare system. Briefly, this article highlighted 
the relevance of physical inactivation, such as temperature and 
humidity, controlling the viral survival on the surfaces, and 
ultimately reducing the virus’s transmission through droplets. 
Although the SARS-CoV-2 is highly stable at 4°C, it becomes 
inactive when exposed to high temperatures. The UV radiation, 
incredibly the UV-C light, has also proven to effectively reduce 

Figure 5. Demonstration of toxicity and health-related hazards by disinfecting agents.
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air transmission of several pathogenic diseases, including airborne 
viruses, hence essential in curbing the spread of SARS-CoV-2. 
However, due to the harmful effects of UV radiation on normal 
cells, especially at high wavelengths, its use is limited.

Consequently, the application of UV radiation for the 
control of SARS-CoV-2 infection requires specifications with lesser 
health-damaging effects on humans and animals. Furthermore, the 
literature review emphasized the commonly used disinfectants 
during the SARS-CoV-2 pandemic, such as alcohol- and iodine-
based products. The alcohol-based disinfectant represents the 
widest hand-rub antiseptics recommended by various health 
agencies and organizations, including the WHO and CDC, during 
the SARS-CoV-2 outbreak. The alcohol-based disinfectants are 
easily accessible and effective in preventing the spread of SARS-
CoV-2. The iodine-based counterpart has also proven efficacious 
against many pathogenic microorganisms over many years. 
Most of its preparations demonstrated efficient virucidal activity 
against SARS-CoV-1, MERS-CoV, and SARS-CoV-2, suggesting 
its broad applicability on many viral diseases. However, a high 
concentration of these disinfectants in wastewater and the soil 
leads to environmental and aquatic toxicity and, in some cases, 
resistance to viruses. Notably, the residual chemical remaining on 
the surfaces or inhaled by individuals may have long-term effects 
on public health, such as reproductive disorders, COPD, cancers, 
skin damage, and CNS impairment. Therefore, further research on 
long-term preventive alternatives such as formulating disinfectants 
with natural products as active ingredients is necessary to mitigate 
the effects of alcohol- and iodine-based chemicals on humans and 
the environment.

Additionally, effective technologies and strategies 
need to be developed for minimizing these toxic effects and 
drug resistance. Safe, eco-friendly technologies should be used 
to produce safe, effective, and affordable disinfectants using 
nanotechnology and nanomedicine. Comprehensive guidelines 
for rational disinfectants are also necessary at regional, national, 
and international levels to reduce the toxic effects on humans and 
the environment.

PROFESSIONAL ANNOTATION 
Disinfection pronounces a procedure that eradicates 

several or all infective microbes, excluding bacteriological spores, 
on nonliving objects (Baron et al., 1996; Basta and Annamaraju, 
2020; Council, 1977; Protano et al., 2019; Rutala and Weber, 
2008; Rutala and Weber, 2016). Nevertheless, sterilization labels 
a method that abolishes or exterminates all microbiological life 
forms and is regularly conducted in all sorts of healthcare facilities 
by physical or chemical approaches (Anderson et al., 2018; Ling 
et al., 2018; Protano et al., 2019; Rutala and Weber, 2008; Rutala 
and Weber, 2016). The disinfection of health professional hands 
is a significant avenue to transfer through healthcare providers. 
It was first noticed by the Hungarian Obstetrician Professor (Dr.) 
Ignaz Phillip Semmelweis in 1847 (Haque, 2020; Haque et al., 
2018). Dr. Ignaz Phillip Semmelweis is primarily known as the 
father of infection control (Flynn, 2020; Habboush et al., 2021 
a). The essential standing of hand sanitization and other issues 
in managing infection control has been similarly advocated by 
Florence Nightingale, Oliver Wendell Holmes, Louis Pasteur, 
Joseph Lister, and Robert Koch (Ataman et al., 2013; Gebel et al., 

2013; Görig et al., 2019; Glass, 2014; Haque et al., 2020; Hillier, 
2020; Kampf et al., 2009; La Rochelle and Julien, 2013; Lane 
et al., 2010; Pitt and Aubin, 2012; Smith et al., 2012; Tulchinsky 
and Varavikova, 2014; Tyagi and Barwal, 2020; Worboys, 2013). 

After that, the importance of hand hygiene practice was validated 
through multiple scientific works and remains essential and 
pertinent (Allegranzi and Pittet, 2009; Magiorakos et al., 2010; 
Mathur, 2011; Reichardt et al., 2013). 

Healthcare-associated infections (HCAIs) and 
community infections remain safety concerns for health 
professionals and patients (Monegro et al., 2021). Thereby, it 
increases considerable morbidity and mortality and prolongs 
the hospital stay and healthcare overhead length (Badia et al., 
2017; Grant et al., 2017; Jia et al., 2019; Zhou et al., 2019). 

Therefore, multiple studies revealed that efforts need to promote 
infection preventive strategies in all healthcare facilities and 
communities to avert infection and maximize healthcare benefits 
(Cheung et al., 2019; Schmid et al., 2018; Wagh and Sinha, 
2018; Worth et al., 2018). Infection management denotes the 
strategy and measures to be implemented to curb and curtail 
the spreading and propagation of HCAIs infections in different 
types of healthcare facilities that include ambulatory surgical 
centers, birth centers, blood banks, clinics, and medical offices, 
diabetes education centers, dialysis centers, hospice homes, 
hospitals, primary healthcare centers, imaging and radiology 
centers, mental health and addiction treatment centers, nursing 
homes, orthopedic and other rehabilitation centers, urgent care, 
telehealth, and communities (Boev and Kiss, 2017; Collins, 
2008; Gandra and Ellison, 2014; Guzman, 2021; Haque et al., 
2018; Hsu, 2014). The infection control strategy was reported 
as a well-established practice in US hospitals in the early 1950s 
(Dixon, 2011; Habboush et al., 2021a; Monegro et al., 2021). 

Additionally, multiple pieces of research revealed that efficient 
practice infection prevention program reduces morbidity, 
mortality, healthcare financial overhead, and disability-adjusted 
life years (DALYs) and maximizes proper utilization of 
healthcare (De la Rosa-Zamboni et al., 2018; Friedrich, 2019; 
La Rochelle and Julien, 2013; Zacher et al., 2019). The health 
management system progressively recognizes the importance 
of surface disinfection (Gebel et al., 2013). Notwithstanding, 
several unanswered questions remain to be determined (Gebel 
et al., 2013). 

Surface disinfection is an essential procedure in 
healthcare facilities and infectious diseases such as COVID-19. 
It is vital to curbing contagious diseases and reducing the risk of 
direct and indirect contact transmission from healthcare personnel 
to patients. This could decrease surfaces to act as reservoirs 
for various infectious diseases (Donskey, 2013). For many 
years, alcohol-based preparations have been used as low-level 
disinfectants in hospitals against bacteria. Recently, a combination 
of alcohol-based and QACs was used to disinfect surfaces 
against Ebola viruses and several coronaviruses. The antiseptic 
preparations are used due to their ability to evaporate rapidly and 
short contact time on the skin, therefore, less damaging the skin 
due to lesser exposure to the agents (Boyce, 2018). Most of these 
disinfectants, such as chlorine-based, are inexpensive and readily 
available in rural and urban areas (Gallandat et al., 2021). However, 
disinfections are necessary to inactive and reduce the viral load on 
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surfaces. However, many disadvantages follow. The high amount 
of surface disinfectants is corrosive to the environment, especially 
iodine-based disinfectants. Also, most of these disinfectants 
cause irritation when applied in high concentrations and on 
stain surfaces and can be quickly inactivated by organic matter 
(Gallandat et al., 2021).

Moreover, some disinfecting agents have antibacterial 
agents in their formulation; inappropriate exposure to bacteria 
could cause bacterial resistance development (Chen et al., 2021). In 
some cases, prolonged exposure to these disinfectants could cause 
serious health problems such as cancers, respiratory problems, and 
genetic defects in an unborn baby (Ahmed-Lecheheb et al., 2012; 
Choi et al., 2020). In most cases, not all disinfectants products 
eradicate the coronaviruses. Therefore, further investigation on 
individual disinfecting agents is required to validate their merit 
and demerit potentials further. 
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