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ABSTRACT 
Chronic polymicrobial infections represent diagnostic challenges for both molecular and culture methods. Chronic 
wounds, inducing chronic pain and reducing the mobility of individuals, have a notable effect on the quality of life. 
At any given time, 1% of the population is usually affected and, therefore, multiple treatments are also required. 
Identification of the etiology of such infections facilitates the appropriate treatment. In this study, 20 wound samples 
were collected from 20 patients with suspected wound infection. The panel of the current assay targets 12 clinically 
relevant aerobic pathogens, commonly associated with chronic wound infection. Microbial wound infections were 
detected by both usual polymerase chain reaction (PCR) and subsequently testing using the DNA chip. In the current 
study, the results of culture-free bacterial identification using the two methods of DNA analyses were compared. 
By molecular detection using PCR, seven different bacterial species were identified: Citrobacter spp. (100%), 
Enterobacter spp. (100%), Klebsiella pneumoniae (100%), Pseudomonas aeruginosa (90%), Proteus spp. (80%), 
Escherichia coli (60%), and Staphylococcus aureus (10%). Mixed microbial infections were detected in all samples 
indicating four, five, or six different bacteria, identified in each sample. Microarray detection in comparison to PCR 
indicated 100% matching. These results demonstrate the possibility of fast identification of wound infection pathogens 
even in a mixed culture in a very short time, which in turn facilitates the proceeding steps for proper treatment.

INTRODUCTION
One of the most common health problems is usually 

associated with wound infection (Giacometti et al., 2000), 
commonly induced by the entry of the bacteria through 
contamination of breached skin. With the same importance as 
renal and cardiovascular disorders, wounds can also have a similar 
impact on the quality of life. The Global Wound Care Market 
report indicated that this sector has reached about 20 billion dollars 
and is estimated to exceed 25 billion dollars in 2023 worldwide 
(Weller et al., 2020). For this reason, and the pressure induced 
on both patients and the medical system, efforts have been made 
with the aim of managing wound infections and their associated 
pathological conditions, which in turn could improve the quality 
of life and increase life expectancy. In recent decades, different 

approaches have been developed to improve the rate and quality of 
chronic wound healing (Nosrati et al., 2021). Despite the multiple 
etiologies of wound infections, bacterial colonization usually 
characterizes their chronicity (Loesche et al., 2017). Multiple 
variable organisms concerning wound infection were documented 
in previous studies (Melling et al., 2001). Most wound culture 
isolation procedures implement swab cultures, the easiest trauma-
free way, which avoid hazards of complications on the wound bed 
(Meyers, 2008). A variety of microbes such as bacteria, fungi, 
and parasites are associated with wound infection (Bowler et al., 
2001). Wound microbiome composition could also be influenced 
by ecological processes, which in turn induces the emergence of 
polymicrobial infections exhibiting both synergistic effect and 
enhanced tolerance to antimicrobials (Baishya and Wakeman, 
2019; Kalan and Brennan, 2019). In addition, stable microbial 
communities are usually correlated with delayed healing (Loesche 
et al., 2017; Sloan et al., 2019). Moreover, genotypic effects could 
also be the possible way to explain the recently observed patient-
specific immunological responses to the same microbial exposure 
(Deusenbery et al., 2019). Both Gram-positive and Gram-negative 
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bacteria are usually detected including Escherichia coli, Proteus 
spp., and Klebsiella spp., in addition to Enterobacter spp. and 
Staphylococcus aureus, which was also identified (El-Saed et al., 
2020; Gupta et al., 2019). However, a challenging bacterium, 
Pseudomonas aeruginosa, exhibiting resistance to most 
antibacterial drugs, could also be detected (Bowler et al., 2001). In 
addition, the presence of anaerobic bacteria at baseline infection 
could also be associated with worse healing outcomes (Min et al., 
2020). In contrast to the intestinal microbiota, normal skin is 
mainly colonized by only a few taxa including Corynebacterium, 
coagulase-negative Staphylococci, and Propionibacterium 
(Scharschmidt and Fischbach, 2013) in which sebaceous sites 
are dominated by lipophilic Propionibacterium species, while 
Corynebacterium and Staphylococci are preferentially abundant 
in moist areas (Costello et al., 2009; Grice et al., 2009; Oh et al., 
2014). Wound infections are classified into two major classes, 
skin and soft tissue infections, which are usually undistinguished 
upon the progression of infection. In addition, in these infections 
when untreated, infecting bacteria affect healing and may also 
produce other signs and symptoms. Moreover, wound infections 
are considered among the most leading nosocomial infections 
and are associated with increased morbidity and other medical 
expenses (Cutting and White, 2004). For assessing and diagnosing 
infection, the most common signs usually include redness, 
swelling, increased drainage, and increased pain. Therefore, 
microbial etiology is one of the fundamental steps required before 
starting the treatment protocols. Most microbial identification 
is usually based on the bacterial separation by an enrichment 
culture, which favors the selection of some microbes, while 
excluding other species. For this reason, bacterial identification 
is now shifting away from metabolic biochemical testing toward 
genetic or molecular identification (Espy et al., 2006; Han et al., 
2011; Seng et al., 2010). Molecular technologies have provided 
worldwide researchers with more rapid and sensitive tools to 
examine human microbiota, in comparison with the old culture-
based testing (Bowler and Davies, 1999; Dowd et al., 2008a). 
In most studies, universal primers for 16S rRNA genes are used, 
followed by specific identification approaches such as polymerase 
chain reaction (PCR) (Hill et al., 2003) and denaturing gradient 
gel electrophoresis and sequencing (Dowd et al., 2008a, 2008b; 
Hill et al., 2003; Price et al., 2009). In addition, these methods 
exhibited successfulness in the detection of bacteria in burn wounds 
(Pirnay et al., 2000), blood (Rothman et al., 2002; Wellinghausen 
et al., 2004; Yang et al., 2002), cerebrospinal fluid (Poppert et al., 
2005), joint fluid (Yang et al., 2008), and heart tissue (Breitkopf 
et al., 2005). Moreover, in most cases, each experiment can be 
executed in not more than a few hours (Ecker et al., 2010). In 
the same respect, for developing new therapeutic strategies, the 
use of these techniques speeds up the early detection of infecting 
microorganisms assisting clinicians and pathologists to find out 
the appropriate treatment of hospitalized patients.

For the detection of pathogens, DNA probes are 
immobilized in microarray experiments, in which more than one 
copy of each target gene could be included (Cannon et al., 2010; 
Shen et al., 2015). However, the detection of wound-associated 
bacterial pathogens was rarely described in previous studies. The 
aim of this study is the detection of wound pathogens in mixed 
samples and their application in samples from Egyptian hospitals.

MATERIALS AND METHODS

Specimens collection and processing
Hospitalized immunocompetent symptomatic patients, 

almost all adults suffering from wound infection, were included 
in this study. Control samples were taken from nonhospitalized 
individuals and those free from any symptoms of wound 
infection. Samples were collected from 20 different patients 
admitted to one of the Mansoura hospitals in Egypt. This study 
was approved and funded by the Competitive Funding Projects 
Postgraduate Research and Cultural Affairs Sector, Mansoura 
University. The experimental protocol conducted in this study 
was approved by the Research Ethics Committee, Faculty of 
Pharmacy, Mansoura University, and conducted in accordance 
with the Declaration of Helsinki involving the use and handling 
of human subjects.

Extraction of genomic DNA and DNA from Standard 
Cultures

Different bacterial cultures obtained from wound samples 
were prepared in LB broth, followed by incubation aerobically at 
37°C and observation for the presence of visible microbial growth. 
Genomic DNAs were extracted from 37°C 24 hours cultures of 
wound samples using the genomic QIAamp DNA Mini Kit 
(QIAGEN, Hilden, Germany), according to the manufacturer’s 
instructions. By using a Nanodrop instrument (OPTIZEN NanoQ, 
Mecasys, Daejon, South Korea), the concentration of gDNA was 
determined. Purified DNAs were stored at −80°C. 

PCR Amplification and Labeling to Get Hybridization 
Targets

By starting from isolated gDNA as a template, nearly 
full-length 16S rRNA was amplified in a PCR reaction. Two 
different biotin-labeled primers were used: forward primer 27F 
(5′-AGAGTTTGATCCTGGCTCAG) and reverse primer 1492R 
(5′-GGTTACCTTGTTACGACTT). Each PCR reaction is 
composed of 25 μl containing 2 μl of template DNA, 0.5 μM of 
each primer, 1.5 mM MgCl2, 0.2 mM dNTPs, 1 U Taq polymerase 
(Dream Taq Green DNA Polymerase, Fermentas), and to the final 
volume nuclease-free water. PCR reactions were carried out using 
Cycler 003 PCR Machine [A & E Lab (UK)] with 2 minutes initial 
denaturation at 94°C, followed by 35 cycles of heating at 94°C 
for 30 seconds, cooling to 52°C for 30 seconds in an annealing 
step, and heating at 72°C for 30 seconds in an extension step, 
and a final extension at 72°C for 10 minutes. The 1% agarose gel 
and electrophoresis-separated PCR products were visualized by 
staining with ethidium bromide and UV light exposure.

Strain-Specific Genes PCR Test
As described previously, amplification of both genomic 

DNA and standard DNA was carried out using primers (Biosearch 
Technologies) listed in Table 1. The diagnostic PCR screening 
consists of a panel of 12 taxa including S. aureus, Staphylococcus 
pyogenes, Mycobacterium spp., P. aeruginosa, Enterobacter 
spp., Klebsiella pneumoniae, Haemophilus influenzae, E. coli, 
Enterococcus faecalis, Citrobacter spp., Proteus spp., and 
Clostridium spp. PCR reactions began with heating at 94°C for 5 
minutes, followed by 35 cycles starting with heating at 94°C for 30 
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seconds, then cooling to annealing temp (as listed in Table 1) for 
30 seconds, and heating at 72°C for 30. Finally, each PCR reaction 
was ended with a final extension step at 72°C for 10 minutes.

Oligonucleotide Probes Design and synthesis
Segments of 20–30 mer oligonucleotides with similar 

lengths, melting, and GC content with the optimum BLAST hit 
were selected after comparison (http://www.ncbi.nlm.nih.gov/

BLAST/) with all available sequences in the GenBank database. 
All oligonucleotides used in this study were listed in Table 1.

Oligo Aarray Printing
In a 384-well printing plate, using ArrayIt spotting buffer, 

each printing oligo solution was prepared to a final concentration 
of 50 pmol μl−1. Spotting was carried out onto microarray slides 
in triplicate for each probe (Scienion, Berlin, Germany) using the 

Table 1. Different oligonucleotides used in this work to detect different species of bacteria.

Primer name Sequence Tm Citation

Proteus mirabilis Tuf F TCTACTTCACACGTAG 41 240 (Anbazhagan et al., 2010)

Tuf R TTCTAACAGCTCTTCA

Probe TGTGGCTTCTGGAGCTAACGCGTTA 62 (Mao et al., 2008)

Enterobacter spp. F CGAGAGCCTGGTGCTG 48 180 (Anbazhagan et al., 2010)

R GATTGGCTGACCCAAT

Probe ACTCTTGACATCCAGAGAACTT 52 This study

All bacteria F GAGTTTGATCCTGGCTCAG 51 312 (Ginige et al., 2013)

R GCTGCCTCCCGTAGGAGT

H. influenzae F ACTTTTGGCGGTTACTCTG 50 272 (van Ketel et al., 1990)

R TGTGCCTAATTTACCAGCAT

Probe GCGTATTATCGGAAGATGAAAGTGCG 59 This study

K. pneumoniae F TCTGGACCGCTGGGAGCTGG 59 399 (Cole et al., 2009)

R TGCCCGTTGACGCCCAATCC

Probe CACTTTCAGCGGGGAGGAAGGC 59 This study

E. coli TEcol553 TGGGAGCGAAAATCCTG 47 219 (Maheux et al., 2009)

TEcol754 CAGTACAGGTAGACTTCTG

Probe GGGAGTAAAGTTAATACCTTTGCTCAT 55 (Mao et al., 2008)

S. aureus F TGCTGGTGGTACATCAAA 49 96 (Ruimy et al., 2008)

R ACGGTCAATGCCATGATTTAA

Probe AACATATGTGTAAGTAACTGTGCACATCTTG 59 (Mao et al., 2008)

P. aeruginosa F CGAGTACAACATGGCTCTGG 53 116 (Feizabadi et al., 2010)

R ACCGGACGCTCTTTACCATA

Probe GGGAGGAAGGGCAGTAAGTTA 53 (Mao et al., 2008)

Mycobacterium spp. F GAACGGCTGATGACCAAACT 53 72 (Luo et al., 2010)

R ATCAGCGATCGTGGTCCTG

Probe CGATCCGAACTGAGACCGGCTTTTAAGG 64 (Jin et al., 2005)

E. faecalis F ATCAAGTACAGTTAGTCTT 44 940 (Rathnayake et al., 2011)

R ACGATTCAAAGCTAACTG

Probe AACTGAACGTCCCCTGACGGTATCT 59 (Mao et al., 2008)

Citrobacter spp. F GCTCAACCTGGGAACTGCATCCGA 62 529 (Anbazhagan et al., 2010)

R AGTTCCCGGCCTAACCGCTGGCAA

Probe GTACTTTCAGCGAGGAGGAAGG 56 This study

Clostridium spp. F CGGTACCTGACTAAGAAGC 50 429 (Bartosch et al., 2004)

R AGTTTGATTCTTGCGAACG

Probe TAAAGGGAGCGTAGGCGGATGATTA 60 (Mao et al., 2008)

S. pyogenes F GTCAACATGCAGCTACAGGA 49 256 (Louie et al., 1998)

R AATACCAACATCAGCATCA

Probe GCAGGTTTTGCCTCTCATATTAAAGTCTT 59 This study
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SpotBot microarrayer (ArrayIt, Sunnyvale, CA) spotting machine 
(Fig. 1).

Microarray Testing
Samples were labeled and then resuspended in a 

hybridization buffer (Scienion, Berlin, Germany). The method was 
carried out according to the recommendations of the manufacturer 
(Scienion, Berlin, Germany). In a final volume of 16, 8 μl of the 
PCR products was mixed with 8 μl of the hybridization buffer. 
The prehybridization step was carried out using 20 μl of the 
prehybridization solution (Scienion, Berlin, Germany). Labeled 
samples were then applied to a 42°C prewarmed microarray slide. 
Hybridizations were carried out in a hybridization station (ArrayIt, 
Sunnyvale, CA) using the hybridization mix, previously boiled for 
2 minutes and cooled on ice. Hybridization was carried out by 
incubation at 42°C for 12 hours. Finally, at room temperature, using 
buffers I, II, and III (Scienion, Berlin, Germany), washing was 
carried out. Microarray staining was carried out by a streptavidin 
biotin color development system (Fermentas, Waltham, MA) using 
the manufacturer’s instructions. For documentation of the results, 
images were acquired using the ArrayIt Microarray Scanner 
(ArrayIt, Sunnyvale, CA). Signal intensities were recorded using 
the Spotware software after subtracting the local background 
values from the per-sample median.

RESULTS

Results of bacterial identification
Twenty wound samples were analyzed by molecular 

testing. Overall, the most common organisms identified using 
molecular PCR testing were Citrobacter spp. (100%) in 20 
samples, Enterobacter spp. (100%) in 20 samples, and K. 
pneumoniae (100%) in 20 samples, followed by P. aeruginosa 
(90%) in 18 samples, Proteus spp. in 16 samples (80%), and 
E. coli (60%) in 12 samples. However, S. aureus was rarely 
identified in two samples (10%). Other bacterial taxa such as 
E. faecalis, H. influenzae, and Mycobacterium spp. could not be 
detected in any isolate. Control samples were free from the tested 
pathogens. Concerning a mixed microbial infection, a total of 
eight wounds were found to have five different bacterial taxa; 
in addition, 10 of the total samples (50%) had six bacterial taxa. 
However, two of the total wounds (10%) had only four bacterial 
taxa (Table 2).

Microarray Testing of clinical samples
In this study, by DNA microarray testing, the proportions 

of bacteria identified from the 20 positive samples were Citrobacter 
spp. (100%), Enterobacter spp. (100%), and K. pneumoniae 
(100%), followed by P. aeruginosa (90%), Proteus (80%), and 
E. coli (60%). However, S. aureus was rarely identified (10%). 
A mixed bacterial infection could be identified in all different 
samples as four, five, or six different bacteria were identified in 
each sample as shown in Figure 2. No difference could be observed 
when compared to the results obtained by PCR (Table 3).

DISCUSSION
Microbial molecular diagnostic tests, in comparison 

with traditional culture methods, enable more patient care 
improvement. However, it is also necessary to continue to include 
all these introduced newer methods. In addition, it has been 
proven that culture-based methodologies in bacterial detection 
are markedly less sensitive to DNA detection methodologies 
(Han et al., 2011). Moreover, the results obtained using these 
traditional culture-based methods are usually associated with 
misidentification reflecting overestimation of the relative presence 
of easily cultured and identifiable microbes (Davies et al., 2004).

Figure 1. Different ssDNA probes spotted in the schematic representation of each microarray slide.

Table 2. Comparison between PCR and microarray results.

Comparison of PCR with specific primers and Microarray results

Organism
No of samples positive Total number of patients 

with a positive resultPCR Microarrays

Mycobacterium spp. 0 0 0

S. aureus 2 2 2

P. aeruginosa 18 18 18

K. pneumoniae 20 20 20

H. influenzae 0 0 0

E. coli 12 12 12

E. faecalis 0 0 0

Proteus spp. 16 16 16

Enterobacter spp. 20 20 20

Citrobacter spp. 20 20 20

S. pyogenes 0 0 0

Clostridium spp. 0 0 0
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According to the recent reports, the results obtained using 
PCR and 16S sequencing commonly used have demonstrated the 
close correlation between most of these molecular methods. As 
previously documented, different molecular methods such as real-
time, uniplex, and multiplex PCR, especially in mixed samples, 
have enhanced both the speed and the sensitivity of microbial 
detection (Gebert et al., 2008; Lehmann et al., 2008). However, 
multiplex PCR, in each reaction, can only detect a limited number 
of pathogens (Edin et al., 2015; Gadsby et al., 2015). For these 
reasons, when dealing with samples containing a mixed culture 
or mostly environmental samples, a comprehensive view of 
microbial communities is required. In the same respect, a better 
solution is provided by DNA microarrays, especially in mixed 
microbial infections.

Microarray testing is usually based on the panel of taxa 
selection, detection capacity, and probe coverage, which may differ 
between sequence targets. Microarray-detecting oligonucleotides 
are mainly designed based on the available sequence data and the 
variation between target organisms exhibiting reduced power for 
identifying other different organisms (Cannon et al., 2010; Shen 
et al., 2015).

As previously reported (Costello et al., 2009; 
Grice and Segre, 2011; Grice et al., 2009; Oh et al., 2014), in 
sequencing surveys of healthy adults, dry, moist, and sebaceous 
microenvironmental changes usually affect the relative abundance 
of bacterial taxa. However, a lower bacterial diversity is usually 
detected (Scharschmidt and Fischbach, 2013), as the normal 
skin is usually dominated by only a few taxa, mainly lipophilic 
Propionibacterium species of the phylum Actinobacteria thriving 
sebaceous sites, while Staphylococcus and Corynebacterium 
species of the phyla Firmicutes and Actinobacteria are preferentially 
abundant in moist areas (Costello et al., 2009; Grice et al., 2009). 
Interestingly, some members of the skin microbiota such as 
Staphylococcus epidermidis are nonpathogenic; however, when 
reaching the blood circulation, serious systemic diseases in some 
individuals can be caused (Blum and Rodvold, 1987). In this study, 

to distinguish some major bacterial species, frequently causing 
wound-associated infections including E. faecalis, Enterobacter 
spp., K. pneumoniae, H. influenzae, E. coli, S. pyogenes, 
Clostridium spp., S. aureus, Mycobacterium spp., Citrobacter 
spp., P. aeruginosa, and Proteus spp., 12 oligonucleotide probes, 
complementary to 16S PCR products, were selected for detection 
based on several species-specific regions of each pathogen.

In samples obtained in the current study, by DNA 
microarray testing, all samples (100%) were found to be positive 
and identified mainly as Gram-negative bacteria, which is 
consistent with some previous studies in Saudi Arabia (Alkaaki 
et al., 2019; Al-Mulhim et al., 2014) and other countries 
(Allegranzi et al., 2011). The percentages of identified bacteria 
were Citrobacter spp. (100%), Enterobacter spp., (100%), and K. 
pneumoniae (100%), followed by P. aeruginosa (90%), Proteus 
(80%), and E. coli (60%). Similarly, in a previous study, the same 
bacterial taxa were detected, but at lower percentages, 56.7%, 
6.7%, and 3.3% for E. coli, Klebsiella spp., and Enterobacter spp., 
respectively (Adwan et al., 2016). In addition, an increased level 
of Pseudomonas species (43%) was detected in a previous study 
(Gupta et al., 2019), compared to K. pneumoniae and Acinetobacter 
baumannii, which were detected at the lower prevalence of 28% 
and 14.83%, respectively. Moreover, other studies in a tertiary 
care hospital in India reported the predominance of P. aeruginosa, 
followed by K. pneumoniae and A. baumannii (Dash et al., 2013; 
Singh et al., 2003). Interestingly, the wound microbiome, in which 
Pseudomonas dominates, exhibited increased temporal stability 
against multiantibiotic therapy in comparison to staphylococcal 
infections (Tipton et al., 2017). However, other different results 
were obtained in another study on surgical site infections (Negi 
et al., 2015), as the commonest organism identified was S. aureus 
(50.4%), followed by E. coli (23.02%), P. aeruginosa (7.9%), and 
Citrobacter spp. (7.9%). In addition, in another study (Be et al., 
2014), in wound samples, A. baumannii was mainly detected 
(23%) in 28 samples. In this current study, S. aureus was rarely 
identified in 10% of total isolates. A similar observation was 

Figure 2. Results of hybridization with the target wound sample DNAs from Mansoura Hospital.
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previously reported, as S. aureus was rarely detected (two wound 
samples) in one study using a microarray (Be et al., 2014) and in 
another study on combat wound colonization (Brown et al., 2011). 
On the contrary, a higher prevalence of S. aureus (30%) could be 
detected in one previous study (Adwan et al., 2016). In addition, 
in another study, the most commonly isolated organism was S. 
aureus, followed by coagulase-negative Staphylococci (CNS), 
Enterococcus spp., and E. coli, while the pathogen detection was 
mainly dependent on the surgical procedure (Owens and Stoessel, 
2008). Moreover, in another study, S. aureus was the most frequent 
pathogen detected (22.8%), while other pathogens, namely, P. 
aeruginosa (20.1%), E. coli (12.2%), Klebsiella spp., (12.2%), 

Enterobacter spp., (7.7%), and Enterococcus spp. (5.9%), were 
identified at lower percentages (El-Saed et al., 2020).

Interestingly, in previous studies, not so much data were 
found concerning the detection of mixed wound infection. In this 
current study, four, five, or six different bacteria were identified 
in each sample, representing mixed microbial infections. K. 
pneumoniae, P. aeruginosa, Enterobacter spp., Proteus spp., and 
Citrobacter spp. were the most identified mixed infections.

CONCLUSION
In the present study, by PCR detection, Citrobacter spp., 

Enterobacter spp., K. pneumoniae, P. aeruginosa, Proteus spp., 
and E. coli were mainly detected. In addition, pathogen detection 
with both PCR and the DNA chip indicated 100% matching. 
Moreover, the use of a DNA chip in a mixed culture facilitates the 
fast identification of wound-infecting pathogens and the proper 
treatments strategies.
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