
Journal of Applied Pharmaceutical Science Vol. 11(04), pp 022-027, April, 2021
Available online at http://www.japsonline.com
DOI: 10.7324/JAPS.2021.110404
ISSN 2231-3354

QSAR modeling for predicting the antifungal activities of gemini 
imidazolium surfactants against Candida albicans using GA-MLR 
methods

Ely Setiawan1*, Karna Wijaya2, Mudasir Mudasir2 

1Department of Chemistry, Universitas Jenderal Soedirman, Purwokerto, Indonesia.
2Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia.

ARTICLE INFO
Received on: 25/11/2020
Accepted on: 02/02/2021
Available online: 05/04/2021

Key words:
Candida albicans, gemini 
imidazolium surfactant, 
genetic algorithm, Mordred, 
multiple linear regression, 
QSAR.

ABSTRACT 
This report presents a Quantitative Structure–-Activity Relationships (QSAR) analysis of gemini imidazolium 
surfactants against Candida albicans. Mordred software is used to calculate various types of molecular descriptors. 
The data set contains 70 structures of gemini imidazolium surfactants and is divided into training set (75%) and test set 
(25%) to perform cross-validation step. Genetic algorithm technique combined with multiple linear regression method 
(GA-MLR) was used to investigate the correlation between molecular descriptors and antifungal activity of gemini 
imidazolium surfactants. As a result, the best GA-MLR model consisting of two topological descriptors (GATS4se and 
BalabanJ) exhibits good fitting and internal validation with R2 = 0.9073, Q2

LOO = 0.8941, and Q2
LMO = 0.8908. Also, 

it was confirmed by the external validation procedure with R2
test = 0.8988 and RMSEtest = 0.3557, indicating that the 

obtained model was robust, reliable, and strong to predict the antifungal activity of gemini imidazolium surfactants. 
The GA-MLR-QSAR could be a useful tool for the initial development and design of novel gemini imidazolium 
surfactant as antifungal agents.

INTRODUCTION 

The genus Candida is responsible for about 80% of 
infectious fungi in a hospital environment and is a relevant cause 
of bloodstream infections (Kabir et al., 2012). The most invasive 
species, which are responsible for severe cases of candidiasis, 
include Candida albicans, Candida parapsilosis, Candida 
glabrata, and Candida krusei. The most reported clinical pictures 
related to candidiasis are cutaneous-mucous, visceral, and allergic 
(Fisher-Hoch and Hutwahner, 1995; Pfaller and Diekema, 2007). 

Antifungal agents are an option for treating oral 
candidiasis, but the availability of antifungal drugs is less than 
antibacterial agents because eukaryotic fungal organisms are 
the same as mammalian cells, which makes selecting suitable 
antifungal targets a problem (Mayer et al., 2013). In addition, 

several antifungal drugs become resistant, including fluconazole, 
ketoconazole, and itraconazole (Lewis et al., 2012). Therefore, the 
development of new antifungal drugs to treat cases of candidiasis 
is important.

In recent years, cationic gemini surfactants that contain 
two head groups with two aliphatic chains connected by spacers 
have been exploited (Menger and Keiper, 2000; Rosen and 
Tracy, 1998). They exhibit lower cytotoxicity, better surface 
properties, and better able to bind negatively charged substance 
correspond to the monomer surfactants in the same conditions 
(Brycki et al., 2017; Sharma et al., 2017; Shukla and Tyagi, 
2006). Cationic gemini surfactants also have good antimicrobial 
activity (Bao et al., 2017; Tatsumi et al., 2014). Several studies 
have shown that the antimicrobial activity of the cationic gemini 
surfactant imidazolium chloride depends on its structure, for 
example, the length of the alkyl groups (Rath and Bai, 2016). The 
hydrophobic portion (alkyl chains) of the imidazolium cationic 
gemini surfactant interacts with the cell membrane, inducing 
cell membrane damage leading to cell lysis and death (Dolezal 
et al., 2016). The results of the research by Palkowski et al. 
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(2014), Butorac et al. (2011), and Kamboj et al. (2012) show 
that imidazolium cationic gemini surfactant has potential as an 
antimicrobial agent.

The process of designing a new drug is a time-
consuming, expensive, and very complex process. This is a 
challenge for researchers to find strategies and efforts that 
are effective and economical in producing new drugs. One 
of the strategies developed to design new drug compounds is 
the computer-aided drug design (CADD) approach (Yu and 
MacKerell, 2017). The relatively low cost of CADD compared 
to traditional drug discovery methods makes the CADD method 
attractive to save costs and time required in the development of 
new drug compounds (Shim and MacKerell, 2011).

Ligand-based drug design and structure-based drug 
design are mainly two categories of CADD methods (Yu 
and MacKerell, 2017). The ligand-based drug design utilizes 
information on the physicochemical properties of several 
experimentally known active compounds as a basis for designing 
new compounds. Among these methods, there is a Quantitative 
Structure-Activity Relationships (QSAR) analysis that investigates 
the structures and molecular properties through chemoinformatic 
methods (Cherkasov et al., 2014; Kubinyi, 1995; Roy et al., 2015). 

Considering the above, this work aimed to conduct a 
QSAR study based on gemini imidazolium surfactants synthesized 
by Palkowski et al. (2014) as a potential antifungal agent against 
C. albicans. Thus, through the most important physical-chemical 
parameters (descriptors), the models can be obtained that help in 
planning the synthesis of new gemini imidazolium surfactant with 
better antifungal activity. 

MATERIALS AND METHODS

Dataset
Pałkowski et al. (2014) synthesized 70 gemini 

imidazolium chlorides, with antifungal activity against C. albicans. 
The antifungal activity values made available in [minimum 
inhibition concentration (MIC), the lowest concentration of 
surfactant which inhibits the growth of microorganisms, in mol/L] 
were converted into their respective pMIC (–log MIC). The total 
dataset of molecules was divided into training set of 75% and test 
set of 25% based on the diversity of antifungal activity (Table 1). 

Descriptors calculation
Initially, all geometries were drawn and optimized using 

the Hartree–Fock method (ab initio) with basis set 3–21G which 
is implemented in the Gaussian 09 software. As a next step, the 
Gaussian output files were used by Mordred software to calculate 
various classes of descriptors such as constitutional, topological, 
and WHIM (Weighted Holistic Invariant Molecular) descriptors 
(Moriwaki et al., 2018). Then filtering is done by eliminating 
descriptors that have constant and highly correlated values. The 
filtered descriptors are then used to build the QSAR models.

QSAR modeling and validation
The QSAR models were developed by a combination 

of genetic algorithms with multiple linear regression (GA-MLR) 
methods using the QSARINS software (Gramatica et al., 2013). 
The selection of variables was carried out using the GA technique; 

in this way, consistent models are obtained through an optimization 
process that considers the value of statistical parameters such as 
the correlation coefficient and standard deviation (Rogers and 
Hopfinger, 1994). Then, the descriptors generated based on these 
parameters were correlated with antifungal activity through the 
MLR method for the construction of the QSAR models.

The validation of statistical models is an important stage 
in the design of drugs based on QSAR techniques because it is 
guaranteed that the equations obtained have predictive power and 
are sufficiently reliable to be able to describe the structural changes 
associated with biological activity (Kiralj and Ferreira, 2009). In 
view of this, the model was evaluated by fitting criteria [R2, the 
squared correlation coefficient of training set; RMSEtrain, Root 
Mean Square Error in fitting; Friedman lack of fit (LOF)], internal 
validation (Q2

LOO, Leaving-One-Out (LOO) cross-validation 
coefficient; Q2

LMO, Leaving-Many-Out (LMO) cross-validation 
coefficient; RMSEcv, Root Mean Square Error of cross-validation), 
and external validation (R2

test, the squared correlation coefficient 
of test set; RMSEtest, Root Mean Square Error in test set; MAEtr, 
Mean Absolute Error in test set). Also, the applicability domain 
(AD) was assessed using the Williams plot (Gramatica, 2007).

RESULTS AND DISCUSSION
The aim of this study was to find the correlation between 

structural parameters of gemini imidazolium surfactants and 
the antifungal activity against C. albicans. Based on the basic 
principles of QSAR analysis, the structural parameters of a 
compound are expressed by the molecular descriptors. To obtain 
those molecular descriptors, first, we have drawn the 3D model 
of each gemini imidazolium surfactant and then optimized the 
geometry by employing Hartree–Fock (ab initio) method with 
3-21G basis set. We used the equilibrium geometry as input on 
Mordred software to calculate the molecular descriptors. As result, 
835 molecular descriptors were generated. 

The variable selection process using the GA technique 
followed by the MLR method led to a GA-MLR model which 
consists of two molecular descriptors. The obtained model is 
shown in Eq. 1. Table 2 shows the statistical parameters of the 
obtained model. The antifungal activity (pMIC) prediction results 
for gemini imidazolium surfactants of this model are summarized 
in Table 1. The correlation graph between the predicted and 
experimental antifungal activity (pMIC) shown in Figure 1 also 
shows a slope close to 1. This means that the resulting model can 
provide a good level of prediction.

pMIC = 23.1793 + 0.628 * GATS4se – 0.7791 * BalabanJ.  Eq. 1

The coefficients of the molecular descriptors in Eq. 
1 suggest that the 2D autocorrelation descriptor, namely, Geary 
coefficient of lag 4 weighted by Sanderson EN (GATS4se), and 
the topological of Balaban index (BalabanJ) are the most influence 
descriptors to the antifungal activity of imidazolium gemini 
surfactants. The positive coefficient of GATS4se descriptor 
indicates that an increase in GATS4se leads to an increase in 
the antifungal activity of gemini imidazolium surfactants. The 
topological of BalabanJ has a negative coefficient, which indicates 
that an increase in BalabanJ leads to a decrease in the antifungal 
activity of gemini imidazolium surfactants. 
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The correlation matrix between selected descriptors 
shows that the correlation between GATS4se and BalabanJ 
is very low (Table 3). This indicates that there is no significant 
intercorrelation among the descriptors used in the development of 
the model. Additionally, the residual predicted pMIC using Eq. 
1 versus the experimental value of pMIC is shown in Figure 2. 
All residual predicted pMIC values are located between 1 and 

−1, which indicates that Eq. 1 has good accuracy and reliability 
for predicting the antifungal activity of gemini imidazolium 
surfactants against C. albicans.

Based on the validation parameters of the model  
(Table 2), the model satisfies the requirements made by Golbraikh 
et al. (2002) and Roy et al. (2012). The values of R2 (0.9073) 
and Q2

LOO (0.8941) were reasonable, showing that the model was 

Table 1. Chemical structure and antifungal activities values (pMIC) of the gemini imidazolium surfactants against C. albicans (*test set 
compounds).

Comp. ID R n pMIC(exp) pMIC(pred) Comp. ID R n pMIC(exp) pMIC(pred)

1 CH3 2 1.5279 1.6895 36 C8H17 4 4.0915 4.3753

2 C2H5 2 1.5626 1.3544 37 C9H19 4 4.1487 4.5123

3* C3H7 2 1.7712 1.8827 38 C10H21 4 4.2676 4.5832

4 C4H9 2 2.1477 1.6895 39* C11H23 4 4.4202 4.5172

5 C5H11 2 2.1647 1.6944 40 C12H25 4 4.4685 4.6542

6 C6H13 2 2.1968 1.9090 41 C14H29 4 4.5229 4.9282

7* C7H15 2 2.2267 1.9799 42 C16H33 4 4.5229 5.0651

8 C8H17 2 2.4488 2.0773 43* CH3 5 4.5686 4.9036

9 C9H19 2 2.4821 2.3975 44 C2H5 5 4.6990 4.6346

10 C10H21 2 2.4821 2.5279 45 C3H7 5 4.7696 4.9598

11* C11H23 2 2.4821 2.6715 46 C4H9 5 4.7696 4.5636

12 C12H25 2 2.4978 2.8283 47* C5H11 5 4.7959 4.5685

13 C14H29 2 2.7867 3.1551 48 C6H13 5 4.8239 4.5734

14 C16H33 2 2.7867 3.5017 49 C7H15 5 4.8539 4.4413

15* CH3 3 2.7867 3.5583 50 C8H17 5 5.0000 4.5783

16 C2H5 3 2.8604 3.2892 51* C9H19 5 5.0000 4.6493

17 C3H7 3 3.1331 3.5485 52 C10H21 5 5.0000 4.7863

18 C4H9 3 3.1475 3.3552 53 C11H23 5 5.0458 4.9233

19* C5H11 3 3.1475 3.2941 54 C12H25 5 5.0458 4.8572

20 C6H13 3 3.1475 3.2990 55* C14H29 5 5.0458 5.1312

21 C7H15 3 3.1612 3.3700 56 C16H33 5 5.0969 5.2682

22 C8H17 3 3.4622 3.4409 57 CH3 6 5.0969 5.1116

23* C9H19 3 3.7620 3.5779 58 C2H5 6 5.0969 4.9085

24 C10H21 3 3.7747 3.6489 59* C3H7 6 5.0969 5.2338

25 C11H23 3 3.8013 3.7858 60 C4H9 6 5.0969 4.8376

26 C12H25 3 3.8013 3.9228 61 C5H11 6 5.0969 4.9085

27* C14H29 3 3.9355 4.2628 62 C6H13 6 5.0969 4.7104

28 C16H33 3 3.9666 4.5368 63* C7H15 6 5.1549 4.7814

29 CH3 4 3.9747 4.6957 64 C8H17 6 5.3010 4.7153

30 C2H5 4 3.9830 4.2236 65 C9H19 6 5.3010 4.7863

31* C3H7 4 3.9914 4.6859 66 C10H21 6 5.3979 4.9233

32 C4H9 4 4.0000 4.2896 67* C11H23 6 5.3979 4.8572

33 C5H11 4 4.0269 4.2285 68 C12H25 6 5.6990 4.9942

34 C6H13 4 4.0655 4.2994 69 C14H29 6 5.6990 5.3342

35* C7H15 4 4.0862 4.3044 70 C16H33 6 5.6990 5.4052

N

N

R

O O N N R

n
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significant and robust to predict the antifungal activity of gemini 
imidazole surfactants. Consider that the values of the difference 
between R2 and Q2

LOO (R2–Q2
LOO = 0.0132) are within the limit 

suggested by Kiralj and Ferreria (2009) which is an indication that 
the model does not have data overfitting. The low value of the 
LOF parameter (LOF = 0.1397) implies a good fit model with no 
current overfitting in the model. 

Validation of the final model consists mainly of internal 
and external validation. The LOO and LMO cross-validation 
procedures were used for internal validation. According to 
Table 2, the model was stable and internally good for predictive 
results, because the values of Q2

LOO and Q2
LMO are comparable to 

R2. To validate the accuracy of the prediction model, it has been 
confirmed that the statistical parameters contribute to the external 
validity of the model. The coefficient of determination value (R2

test 
= 0.8988) and error parameters value (RMSEtest = 0.3557 and 
MAEtest = 0.2963) of the test set showed that the obtained model 
is good and reliable. 

After generating and evaluating the model, AD was 
employed to confirm that the obtained model can be considered 

reliable. Williams plot or leverage approach was used to measure 
the influence of descriptors on the model (Gramatica, 2007). The 
leverage value (hi) shows the distance of a compound from the 
centroid of X, which is defined as

hi = Xi (X T X )−1 X T,

where X is the characteristic matrix of the training set. The critical 
leverage value (h*) is defined as

h* = 3 
( p+1)

n ,

where p is the number of descriptors in the model and n 
is the total number of compounds in the training set. As shown in 
Figure 3, all compounds lied within the domain of applicability 
which lower than the threshold leverage (h* = 0.170). This 
indicated that no compounds in the dataset fell outside of the AD 
as an outlier. 

The Y-scrambling method was employed as 
randomization tests to confirm that there was no random 
correlation between antifungal activity and selected descriptors 
(Rücker et al., 2007). This criterion is shown by the average 
value of R2Yscr and Q2Yscr, which are both lower than R2 and Q2 
of the model. In this work as shown in Figure 4, the values of R2 
and Q2 of the model are higher than the R2Yscr and Q2Yscr values, 
which indicates that the model is not derived from random 
correlation.

i

Table 2. Validation parameters of model.

Fitting criteria Internal validation External validation

R2 0.9073 Q2
LOO 0.8941 R2

test 0.8988

RMSEtrain 0.3455 Q2
LMO 0.8908 RMSEtest 0.3557

LOF 0.1397 RMSEcv 0.3694 MAEtest 0.2963

Figure 1. Plot of experimental and predicted value of pMIC for training and 
test set.

Figure 2. Plot of residuals of predicted pMIC determined using Eq. 1 versus 
experimental pMIC.

Table 3. Variable correlation matrix of model.

Descriptor GATS4se BalabanJ

GATS4se 1

BalabanJ 0.0988 1
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CONCLUSION
It is concluded, through this work, that the GA-MLR 

analysis showed that the two highlighted descriptors play the role 
of antifungal activity of gemini imidazolium surfactants, namely, 
GATS4se (Geary coefficient of lag 4 weighted by Sanderson 
EN) and BalabanJ (topological of Balaban index). The obtained 
QSAR model is significant and robust, does not show random 
correlation, and has a strong predictive ability (R2 = 0.9073, 
Q2

LOO= 0.8941, and R2
test = 0.8988). The AD indicates that most 

structures are adequately represented by the chemical space of 
the model. Thus, the values of the predicted activities can be 
considered reliable. 
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