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ABSTRACT 
The human epidermal growth factor (hEGF) is widely used clinically as a wound healer, as it has a vital role in 
stimulating cell proliferation, differentiation, and migration. Consequently, the large-scale production of recombinant 
hEGF in E. coli has been developed to meet the high demand for hEGF clinically. However, intracellular proteins in 
E. coli, especially small proteins like hEGF, are degraded by proteases. To overcome this issue, hEGF was fused with 
CBD-Ssp DnaB to construct a fusion protein CBD-Ssp DnaB-hEGF. This study was conducted to obtain refolded 
hEGF from the inclusion bodies of CBD-Ssp DnaB-hEGF. The experiment was carried out using E. coli BL21(DE3) 
containing plasmid pD861-CBD-Ssp DnaB-hEGF. The CBD-Ssp DnaB-hEGF gene was constructed by fusing CBD-
Ssp DnaB and hEGF gene and then was optimized. The method was started with E. coli transformation, CBD-Ssp 
DnaB-hEGF expression, inclusion bodies solubilization, refolding, and simultaneous cleavage to release hEGF. The 
CBD-Ssp DnaB-hEGF was expressed as inclusion bodies, which can then be purified by washing with Triton X-100 
and 1 M urea. The inclusion bodies were solubilized in 8 M urea, the solubilized CBD-Ssp DnaB-hEGF was reformed 
by dialysis, and then hEGF was spliced by shifting the pH from 8.5 to 6.0 to yield a concentration of 0.163 mg/ml. 
Therefore, we concluded that hEGF was obtained from the solubilized CBD-Ssp DnaB-hEGF from inclusion bodies 
produced by E. coli BL21(DE3).

INTRODUCTION 
Human epidermal growth factor (hEGF) is a protein 

with 53 amino acid residues with 6.2 kDa of molecular weight. 
This polypeptide has three intramolecular disulfide bonds and heat 
resistance properties (Eissazadeh et al., 2017; Sriwidodo et al., 
2019; Tang et al., 2016). hEGF plays a role in stimulating cell 
proliferation, differentiation, and migration in the wound-healing 
process. This has led to the high demand for hEGF in the clinical 
field, thus encouraging efforts to increase hEGF production 
through recombinant DNA technology (Ma et al., 2016; Zheng 
et al., 2016).

E. coli was one of the most widely used hosts for 
recombinant protein expression (Hayat et al., 2018). It has a 

high rate of protein expression and rapid growth, is inexpensive, 
and produces culture in the high-density cell (Kaur et al., 2018; 
Kim et al., 2017; Maksum et al., 2019). There were previous 
studies on the extracellular expression of hEGF in E. coli using 
various signal peptides (Indriyani et al., 2019; Maksum et al., 
2017; Melati et al., 2019; Sriwidodo et al., 2017). Nevertheless, 
the extracellular expression system has a lower expression rate 
than the intracellular system (Su et al., 2006). To overcome this 
problem, the intracellular expression approach was currently used 
to increase hEGF expression. 

Intracellular protein expression in E. coli especially 
small protein such as hEGF mostly did not work well because the 
small protein was easily degraded by proteases from the host cell. 
This causes a significant loss in yields and made it difficult in the 
purification process. Alternatively, the protein was fused with a 
fusion partner so the target protein could avoid degradation by 
proteases (Sun et al., 2005; Zhang et al., 2015). Several fusion 
tags were commonly used in fusion protein expression systems 
such as glutathione S-transferase, small ubiquitin-related modifier, 
thioredoxin, and maltose-binding protein. However, there were 
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some difficulties in fusion tag removal such as unspecific cleavage 
site, the steric hindrance at the cleavage site, and the expensive 
cost of specific protease (Costa et al., 2014; Zheng et al., 2016).

The intein is a protein segment that can cleavage 
itself from protein precursors where it fuses two segments of 
flanking proteins or amino acids (Li, 2011). The intein-mediated 
expression system has been developed as a powerful tool for 
protein expression that utilized its ability to self-cleavage. Target 
protein synthesized in the fusion of intein form which has been 
genetically designed to do controllable cleavage from peptide 
bond at either N- or C-terminal of the intein. After protein 
cleavage by intein, the target protein was produced with the 
desired terminal amino acid (Jiang et al., 2015). Ssp DnaB mini-
intein derived from Synechocystis sp. was used in the commercial 
plasmid, such as IMPACTTM system (Ding et al., 2003). The 
release of the target protein can be induced simply by changing 
pH, giving the advantage of cleaving peptide bonds without using 
specific protease (Sun et al., 2005).

The expression of recombinant protein in E. coli frequently 
leads to the formation of inclusion bodies. Inclusion bodies are 
protein aggregate that consists of partially folded and misfolded 
protein that interacts via hydrophobic interaction. Their formation 
is often undesirable because they generally lack biological activity 
(Gomes et al., 2016; Silaban et al., 2019; Singh and Panda, 2005). 
This approach can give the advantage by refolding the inactive 
protein in inclusion bodies into its active form (Upadhyay et al., 
2016). Moreover, inclusion bodies are produced in high amount 
and easy to separate because they were denser than the other 
cellular components (Singh and Panda, 2005; Singh et al., 2015). 
To recover active protein from inclusion bodies, inclusion bodies 
were solubilized in presence of chaotropic agents such as urea and 
guanidine chloride and afterward solubilized protein was refolded 
by decreasing the concentration of chaotropic agents (Singh et al., 
2015; Vallejo and Rinas, 2004). 

In this report, we construct fusion protein CBD-Ssp 
DnaB-hEGF by fused hEGF gene with the CBD-Ssp DnaB gene 
in pD861 plasmid. E. coli BL21(DE3) was transformed with 
recombinant plasmid. CBD-Ssp DnaB-hEGF was successfully 
expressed as inclusion bodies. Inclusion bodies were isolated, 
solubilized, and refolded. Ssp DnaB mini-intein splicing activity 
could be achieved by gradually shifting pH from 8.5 to 6.0. After 
Ssp DnaB mini-intein cleavage, hEGF protein was obtained with a 
concentration of 0.163 mg/ml. The result demonstrated that hEGF 
protein could be recovered by inclusion bodies obtained from 
intracellular expression in E. coli.

MATERIALS AND METHODS

Bacterial strain, plasmid, and materials
E. coli BL21(DE3) was taken from our laboratory stock. 

Plasmid pD861-CBD-Ssp DnaB-hEGF was constructed by fused 
CBD-Ssp DnaB gene [National Center for Biotechnology Information 
(NCBI) access code HG792069.1] and hEGF gene (NCBI access 
code GQ214314.1) into plasmid pD861 and synthesized by 
ATUM, Newark, CA. Citric acid, sodium chloride, urea, Tris 
base, β-mercaptoethanol, and calcium chloride were purchased 
from Merck, Kenilworth, NJ. Yeast extract was purchased from 
Oxoid, United Kingdom. Agar bacto, ethylenediaminetetraacetic 

acid (EDTA), tryptone, and glycerol were purchased from 1st 
base, Singapore. L-rhamnose, tricine, Triton X-100, kanamycin  
sulfate, and N,N,N’,N’-tetramethylethylenediamine (TEMED) 
were purchased from Sigma-Aldrich, Singapore. 

Expression of recombinant CBD-Ssp DnaB-hEGF fusion 
protein

To express CBD-Ssp DnaB-hEGF, CaCl2 competent E. 
coli BL21(DE3) cells were transformed with pD861-CBD-Ssp 
DnaB-hEGF plasmid using the heat shock method. Transformed 
cells were grown in LB agar plates supplemented with 50 μg/
ml kanamycin at 37°C for 16–18 hours. Single colonies were 
replicated and the selected replica was grown in 5 ml LB medium 
supplemented with 50 μg/ml kanamycin at 37°C for 16–18 hours. 
A total of 1 ml of starter culture was transferred into 100 ml LB 
medium and incubated at 37°C with shaking at 200 rpm until OD600 
0.6 was reached and then was induced by adding L-rhamnose until 
the final concentration of 4 mM and incubated for 5 hours. The 
culture was centrifuged at 6,000 g for 20 minutes at 4°C. The cell 
pellet was stored at −20°C for further analysis.

Inclusion bodies preparation
Cell pellet (approximately 2 g wet weight) were 

resuspended in 1:4 ratio with lysis buffer (20 mM Tris-Cl, 1 
mM EDTA, and pH 8.5); then, the suspension was sonicated 
for 1 minute (1 second on and 1 second off pulse). Sonication 
was performed on ice for 10 cycles with 1 minute gap for each 
cycle. The lysed cell suspension was centrifuged at 12,000 g for 
20 minutes at 4°C. The pellet obtained was washed twice using 
washing buffer I (20 mM Tris-Cl, 1 mM EDTA, 1% Triton X-100, 
1 M urea, and pH 8.5), once using washing buffer II (20 mM Tris-
Cl, 1 mM EDTA, 1% Triton X-100, and pH 8.5), and twice using 
washing buffer III (20 mM Tris-Cl and pH 8.5). Purified inclusion 
bodies were resuspended in 20 mM Tris-Cl and pH 8.5 and used 
for solubilization. 

Optimization of urea concentration for solubilization of 
inclusion bodies

Purified inclusion bodies’ suspension was solubilized 
with 20 mM Tris-Cl pH 8.5 containing different urea concentrations 
to optimize solubilization conditions for inclusion bodies of CBD-
Ssp DnaB-hEGF fusion protein. Inclusion bodies’ suspension 
was solubilized with 1:10 solubilizing buffer (20 mM Tris-Cl 
and pH 8.5) with different concentrations of urea (0–8 M urea). 
The mixture was incubated for 2 hours at room temperature with 
shaking at 150 rpm and after that centrifuged at 13,000 rpm for 20 
minutes at 4°C. Solubilized inclusion bodies were characterized 
by sodium dodecyl sulphate polyacrylamide gel electrophoresis 
(SDS-PAGE) and analyzed by ImageJ software.

Solubilization and refolding of solubilized CBD-Ssp DnaB-
hEGF

Purified inclusion bodies were solubilized with 25 ml 
solubilizing buffer (10 mM Tris-Cl, 5 mM β-mercaptoethanol, 
8 M urea, and pH 8.5) (Zhang et al., 2015) for 2 hours at room 
temperature with shaking at 150 rpm and centrifuged at 10,000 g 
for 30 minutes at 4°C. Solubilized inclusion bodies were refolded 
using the dialysis method according to Zhang et al. (2015) with 
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some modification. Solubilized inclusion bodies (10 ml) was 
dialyzed with 1 L refolding buffer I (10 mM Tris-Cl, 0.5 mM 
EDTA, 50 mM NaCl, 5 mM β-mercaptoethanol, 2 M urea, and pH 
8.5) for 24 hours at 4°C, followed by 1 L refolding buffer II (10 
mM Tris-Cl, 0.5 mM EDTA, 50 mM NaCl, and pH 8.5). Refolded 
protein was cleaved by incubating it in buffer with different pH 
(8.0, 7.5, 7.0, 6.5, 6.0, and 5.6) for 24 hours at 4°C, respectively. 
The refolded protein and cleaved protein were characterized by 
SDS-PAGE and analyzed by ImageJ software.

RESULTS  AND DISCUSSION

Construction CBD-Ssp DnaB-hEGF gene in recombinant 
plasmid

CBD-Ssp DnaB-hEGF gene was constructed from the 
sequence of the hEGF (GeneBank GQ214314.1) and CBD-Ssp 
DnaB (GeneBank HG792069.1). The first methionine from hEGF 
was eliminated and fused to asparagine at the end of the C-terminal 
of CBD-Ssp DnaB (Fig. 1). Asparagine residue on C-terminal of 
Ssp DnaB mini-intein was directly fused to alanine residue on 
N-terminal of hEGF. The expression rate of heterologous protein 
on E. coli was closely related to the codon usage bias phenomenon 
(Gomes et al., 2016). Bias codon could be avoided by optimizing 
the CBD-Ssp DnaB-hEGF gene to have high CAI value and GC 
content in the range of 30%–70% (Parret et al., 2016; Silaban et 
al., 2014; Sriwidodo et al., 2017). CBD-Ssp DnaB-hEGF gene 
was optimized by using E. coli preference codon to achieve better 
protein expression. The optimized CBD-Ssp DnaB-hEGF gene 
had a length of 843 bp. CAI value of gene was 1.00 with GC 
content of 51.89%. CBD-Ssp DnaB-hEGF gene was inserted into 
plasmid pD861 and synthesized by ATUM (Fig. 2). The promoter 
was a key component in protein expression because it plays a role 
in regulating the expression of the gene of interest. L-rhamnose 
promoters provide more tight regulation which will prevent 
leakage of protein (Kaur et al., 2018). Therefore, it is assumed 
to be able to increase protein acquisition after the addition of 
an inducer. The use of plasmid with high copy numbers and a 
strong ribosomal binding site can also increase the rate of protein 
expression (Hu et al., 2012; Marschall et al., 2016).

Expression of recombinant CBD-Ssp DnaB-hEGF and 
inclusion bodies preparation

Recombinant CBD-Ssp DnaB-hEGF was successfully 
expressed as 31.2 kDa protein in E. coli. CBD-Ssp DnaB-hEGF 
was majorly expressed in inclusion bodies form compared to 
soluble form (Fig. 3a). Induction at mid-log phase (OD600 0.6) 
provides a high expression rate due to E. coli rapid growth which 
leads to a higher protein expression rate (Fazaeli et al., 2019; 
Kaur et al., 2018). In a previous study, the L-rhamnose promoter 

was successfully expressing recombinant protein extracellularly 
using signal peptide (Indriyani et al., 2019; Maksum et al., 2019). 
However, a recent study showed that the L-rhamnose promoter 

Figure 1. Scheme of CBD-Ssp DnaB-hEGF fusion protein assembly (modified 
from Király et al., 2006). 

Figure 2. Construction of plasmid pD861-CBD-Ssp DnaB-hEGF. The plasmid’s 
characteristics were rhamnose promoter, kanamycin selection marker, Ori pUC, 
and strong RBS.

Figure 3. Expression of CBD-Ssp DnaB-hEGF and inclusion bodies preparation. 
(a) Tricine SDS-PAGE analysis of CBD-Ssp DnaB-hEGF expression as inclusion 
bodies. Lane 1: soluble fraction, lane 2: insoluble fraction, and lane M: protein 
marker. (b) Tricine SDS-PAGE analysis of purified inclusion bodies after several 
washing steps. Lane 1: purified IB and lane M: protein marker (size of protein in 
kilodalton is shown on the left).
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can also be utilized for intracellular expression of CBD-Ssp 
DnaB-hEGF as well. Inclusion bodies were washed by detergent 
to remove contaminants such as cell membrane and cellular 
protein following aggregate with inclusion bodies. Triton-X100 
was used to wash cell membranes and also the addition of a 
low concentration of urea could help to remove cellular protein  
(Qi et al., 2015; Singh et al., 2015). Purified inclusion bodies were 
obtained after several washing steps (Fig. 3b) and it was used for 
solubilization and refolding. 

Optimization of urea concentration for solubilizing inclusion 
bodies

Different concentration of urea (0–8 M) was used to 
solubilize CBD-Ssp DnaB-hEGF from inclusion bodies. Urea 
would help to disrupt hydrophobic interaction between proteins 
in inclusion bodies resulting in solubilized CBD-Ssp DnaB-hEGF 
(Patra et al., 2000; Singh and Panda, 2005). CBD-Ssp DnaB-hEGF 
was slightly solubilized from inclusion bodies in the presence of 
2 M urea and conversely showed better solubility in the presence 

of 6–8 M urea. CBD-Ssp DnaB-hEGF solubility tended to 
increase when the concentration of urea was increased (Fig. 4a). 
The highest amount of solubilized CBD-Ssp DnaB-hEGF was 
achieved by using a solubilization buffer containing 8 M urea (Fig. 
4b). This result showed that the solubilization buffer containing 8 
M urea could give better solubilization of CBD-Ssp DnaB-hEGF 
from inclusion bodies. The use of higher concentration of urea 
will give more solubilized protein that would be in denatured 
state, so refolding was necessary to convert protein into its 
native conformation by removal of denaturant through dialysis 
(Yamaguchi et al., 2013). 

Refolding and simultaneous cleavage of solubilized CBD-Ssp 
DnaB-hEGF

Solubilized CBD-Ssp DnaB-hEGF was refolded by 
lowering the urea concentration using a stepwise dialysis method. 
The dialysis method could prevent protein loss because of the 
uncontrolled cleavage of Ssp DnaB mini-intein (Zhang et al., 
2015). The concentration of urea was lowered from 8 to 2 M then 

Figure 4. Optimization of solubilization condition of inclusion bodies in different concentrations of urea. (a) Tricine SDS-PAGE analysis of CBD-Ssp DnaB-hEGF 
inclusion bodies solubilized in different concentrations of urea. Lanes 0–8: CBD-Ssp DnaB-hEGF inclusion bodies solubilized in urea with a concentration of 0–8 M. 
Lane M: protein marker (size of protein in kilodalton is shown on the left). (b) Solubilized CBD-Ssp DnaB-hEGF quantification by using ImageJ software.

Figure 5. Refolding and cleavage of solubilized CBD-Ssp DnaB-hEGF using dialysis method. (a) Refolded CBD-Ssp DnaB-hEGF. Lane 1: refolded CBD-Ssp DnaB-
hEGF. Lane M: protein marker. (b) Optimization of pH condition for induced splicing of refolded CBD-Ssp DnaB-hEGF. Lane 1–5: induced splicing by lowering the 
pH to 8.0; 7.5; 7.0; 6.5; 6.0. Lane 6: induced splicing by unmodified cleavage buffer pH 6.0. Lane M: protein marker. (c) Supernatant of cleavage of refolded CBD-Ssp 
DnaB-hEGF. Lane 1: refolded CBD-Ssp DnaB-hEGF. Lane 2: cleavage result of CBD-Ssp DnaB-hEGF. Lane M: protein marker (size of protein in kilodalton is shown 
on the left).
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until approximately reaching 0 M. No aggregate was observed after 
dialysis; this showed that the refolding process was successful. 
Solubilized CBD-Ssp DnaB-hEGF started to refold as the urea 
concentration was decreasing (Singh et al., 2015; Yamaguchi and 
Miyazaki, 2014). On the other side, a proper disulfide bond was 
formed from reduced disulfide bond through disulfide shuffling 
while stepwise dialysis was performed (Yamaguchi et al., 
2013). Even stepwise dialysis was taking more time and “slow,” 
this method could give good results. There was no aggregation 
observed after dialysis was performed.

CBD-Ssp DnaB-hEGF shows Ssp DnaB splicing activity 
which is characterized by a band at 25 kDa; this band belonged 
to CBD-Ssp DnaB (Fig. 5a). The pH condition for splicing was 
investigated (pH 8.0-6.0) to ensure the pH optimum for splicing. 
Protein splicing occurred even at pH 8.0 and so did at the lower 
pH until pH 6.0 (Fig. 5b). This showed that gradually lowering 
pH until 6.0 could induce Ssp DnaB splicing activity. hEGF was 
released from CBD-Ssp DnaB-hEGF, which showed by a band at 
6.2 kDa (Fig. 5c). Splicing activity of Ssp DnaB intein involved 
charge relay between amino acid residues and was ended by 
asparagine cyclization at C-terminal of intein (Ding et al., 2003; 
Topilina and Mills, 2014). Uncontrolled splicing activity was 
caused by Ssp DnaB intein which was sensitive to pH changes 
(Chen et al., 2002) and the cleavage was observed even at pH 8.0. 
By gradually decreasing pH from 8.0 to 6.0, hEGF was obtained. 
hEGF was obtained with a concentration of 0.163 mg/ml which 
was quantified by the densitometry method. 

CONCLUSION
In summary, CBD-Ssp DnaB-hEGF was successfully 

expressed as inclusion bodies in E. coli BL21(DE3). Refolded 
hEGF was recovered from inclusion bodies after isolation, 
solubilization, and refolding steps with a concentration of 0.163 
mg/ml. The solubilization and refolding method presented in 
this study could be used for the recovery of refolded hEGF from 
CBD-Ssp DnaB-hEGF inclusion bodies. The result shows a great 
opportunity to produce large amounts of hEGF from bacterial 
inclusion bodies. This finding leads to the optimization and 
development method in the future for maximizing the recovery 
of refolded hEGF. So, it could be applicable for a larger scale, 
especially at the industrial scale.
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