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ABSTRACT 
The synthesis of novel compounds starting from 2-amino-8-(2-chlorobenzylidene)-4-(2-chlorophenyl)-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile 2 has been studied. Diarylidene cyclohexanone reacts with malononitrile to 
afford compound 2. Compound 2 reacts with benzoyl chloride to afford compound 3. N-(8-(2-chlorobenzylidene)-
4-(2-chlorophenyl)-3-cyano-5,6,7,8-tetrahydro-4H-chromen-2-yl)benzamide 3 reacts with acetic anhydride to afford 
compound 4. Compound 2 reacts with acetic anhydride to afford 9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-
methyl-3,5,6,7,8,9-hexahydro-4H-chromeno[2,3-d]pyrimidin-4-one 5. Chromene derivative 2 reacts with formic acid 
to give compound 6. Compounds 4–6 react with phosphorus oxychloride to give compounds 7a–c. Chromeno[2,3-d]
pyrimidine derivatives 7a–c react with hydrazine hydrate to afford compounds 8a–c. Chromeno[2,3-d]pyrimidine 
derivatives 8a,b react with xylose and glucose to give compounds 9a–d. Chromeno[2,3-d]pyrimidine derivatives 
9a–d react with acetic anhydride to give compounds 10a–d. Screening of most of the synthesized compounds against 
A-549, CaCo-2, and HT-29 cell lines were done. 2-Amino-8-(2-chlorobenzylidene)-4-(2-chlorophenyl)-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile 2 gives high cytotoxic activity against A-549 and HT-29 cancer cell lines as 
compared to doxorubicin as the reference drug. 

INTRODUCTION 
Chromenes have recently gained the attention of 

many researchers due to their various applications. Chromene 
derivatives have shown different remarkable biological activities 
against various targets. 4-Substituted-4H-chromenes have 
shown significant anticancer activity (Aridoss et al., 2012). 
Also, 4-substituted-4H-chromenes have anticoagulant activity 
(Bonsignore et al., 1993) and are used as regulators of the 
potassium cation channel (Jin et al., 2004). 2-Amino-6-bromo-
4-(nitromethyl)-4H-chromene-3-carbonitrile (Ia) and 2-amino-
6-bromo-4-(1-nitroethyl)-4H-chromene-3-carbonitrile (Ib) have 
afforded good cytotoxic activity with IC50<4 µg/ml and they 
have activity four times more than the standard drug Etoposide 
(Zonouzi et al., 2013).

In addition, 4H-chromene derivatives have shown 
spasmolytic, diuretic, anticoagulant, and antianaphylactic activities 
(Ghorbani-Vaghei et al., 2011). 4H-Chromene derivatives bind to 
the Bcl-2 protein and initiate apoptosis in cancer cells. The Bcl-
2 protein improves neoplastic cell proliferation by preventing 
normal cell turnover. Increasing Bcl-2 gene expressions are 
present in many types of human cancers and can result in cancer 
cell resistance to chemotherapy and radiotherapy. Therefore, 
Bcl-2 protein-binding compounds are promising compounds as 
anticancer agents (Ghorbani-Vaghei et al., 2011).
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Aminochromene derivatives have also shown 
antihypertensive and anti-ischemic behavior (Ghorbani-Vaghei et 
al., 2011). 

Chromenes are also used as food additives, cosmetic 
agents, and potent biodegradable agrochemical (Subbareddy et 
al., 2017). They are used as antifungal, anti-HIV, antimalarial, 
antibacterial, antioxidant, and anti-influenza virus agents 
(Subbareddy et al., 2017). The chromene derivative MX58151 
has been used in the treatment of drug-resistant cancers 
(Fig. 1) (Subbareddy et al., 2017). In addition, chromene 
derivative EPC2407 is used in phase I/II clinical trials as a vascular 
disrupting anti-tumoral drug for the treatment of advanced solid 
tumors (Fig. 1) (Subbareddy et al., 2017). Chromene derivative 
HA14-1 is used as an inhibitor of acute myeloid leukemia. Ethyl 
2-amino-4-(1H-indol-3-yl)-4H-chromene-3-carboxylate II is used 
as an anti-human immunodeficiency virus reverse transcriptase 
(anti-HIV-1 RT) (Fig. 1) (Subbareddy et al., 2017). N-(4-
Chlorophenyl)-8-methoxy-2-methyl-4-(2-methyl-1H-indol-3-yl)-
4H-chromene-3-carboxamide III has high antibacterial activity 
against Staphylococcus aureus, Bacillus subtilis, Micrococcus 
luteus, Escherichia coli, Klebsiella pneumonia, and Pseudomonas 
aeruginosa. Compound III has a minimum inhibitory concentration 
in the range of 9.3–18.7 mg/ml (Subbareddy et al., 2017).

The pyranopyrimidines have also shown various 
pharmacological activities, e.g., antibacterial activity, antifungal 
activity, antigenotoxic activity, antiplatelet activity, antithrombotic 
activity, and analgesic and anti-inflammatory activity (Chaker et 
al., 2017).

All the aforementioned biological activities and our 
previous work (El-Gazzar et al., 2008; Fayed and Yousif, 2019; 
Fayed et al., 2019a, 2019b; Nemr et al., 2019; Soliman et al., 
2014; Yousif et al., 2017; 2018, Yousif et al., 2019,; 2019a; 
2019b; 2019c; 2020; 2021)  directed us to prepare novel chromene 
derivatives and measure the cytotoxic activity of the prepared 
compounds.

4-H-Chromene derivative (I) has been synthesized from 
aromatic aldehyde, malononitrile, and phenol derivatives in a one-
pot three-component reaction (El-Maghraby et al., 2014).

Experimental section 
The apparatus used was as in a previously reported study 

(Yousif et al., 2019b). Compound 1 (diarylidene cyclohexanone) 
was prepared according to previously known literature (Kumar et 
al., 2011).

2-Amino-8-(2-chlorobenzylidene)-4-(2-chlorophenyl)-5,6,7,8-
tetrahydro-4H-chromene-3-carbonitrile 2

A mixture of diarylidene cyclohexanone (0.01 mmol.), 
malononitrile (0.01), and 5-ml triethylamine in 50 ml absolute 
ethanol was refluxed for 8 hours. Then, the reaction mixture was 
cooled and filtered. The precipitate was crystalized from ethanol. 

Yield: 95%; m.p. 244–246°C; IR (KBr) cm−1, ν: 2,215 (CN), 3,210 
(NH2); 

1H NMR (DMSO) δ/ppm: 1.74 (t, 2H, J =7.1 Hz, CH2), 
2.04 (t, 2H, J =7.1 Hz, CH2), 2.10 (m, 2H, CH2), 2.46 (brs, 2H, 
NH2), 3.91 (s, 1H, CHAr), 5.23 (s, 1H, CH=), 7.27–7.51 (m, 8 H, 
Ar). 13C NMR (DMSO) δ/ppm: 22.19, 26.97, 27.06 (3CH2), 39.38 
(CH), 115.8, 119.8, 120.6, 127.3, 128.5, 129.24, 129.27, 129.7, 
129.9, 130.9, 131.4, 131.5 (12 aromatic C=), 132.8 (CN), 133.3, 
135.2, 135.4 (3 C=), 141.27 (=C-O), 160.6 (=CNH2). MS (m/z): 
409.3 (M+, 23%). Anal. calcd. for C30H22Cl2N2O2: C, 70.18; H, 
4.32; N, 5.46; Found: C, 70.43; H, 4.50; N, 5.67.

N-(8-(2-chlorobenzylidene)-4-(2-chlorophenyl)-3-cyano-
5,6,7,8-tetrahydro-4H-chromen-2-yl)benzamide 3

A mixture of compound 2 (0.01 mol) and benzoyl 
chloride (0.01 mol) in 50-ml pyridine was refluxed for 4 hours. 
The reaction mixture was cooled and filtered. The precipitate 
crystalized from ethanol. Yield: 50%; m.p. 184°C–186°C; IR 
(KBr) cm−1, ν: 1,660 (C=O), 2,215 (CN), 3,210 (NH); 1H NMR 
(DMSO) δ/ppm: 1.51 (t, 2H, J =7.1 Hz, CH2), 1.84 (t, 2H, J =7.1 
Hz, CH2), 1.93 (m, 2H, CH2), 2.34 (brs, 1H, NH), 4.10 (s, 1H, 
CHAr), 4.41 (s, 1H, CH=), 7.12–7.40 (m, 13H, Ar). 13C NMR 
(DMSO) δ/ppm: 21.0, 24.92, 26.02 (3CH2), 40.20 (CH), 110.10, 
116.20, 118.1,118.4, 118.40, 124.80, 125.3, 126.1, 126.48, 127.8, 
128.15, 129.57, 129.60, 129.91, 130.30, 130.9, 131.32, 131.40 (18 
aromatic C=), 131.6 (CN), 132.1, 133.2, 134.1 (3 aromatic C=), 
141.27 (=C-O), 160.6 (=CNH), 165.23 (C=O). MS (m/z): 513.4 
(M+, 17%). Anal. calcd. for C30H22Cl2N2O2: C, 70.18; H, 4.32; N, 
5.46; Found: C, 70.43; H, 4.50; N, 5,67.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-phenyl-
3,5,6,7,8,9-hexahydro-4H-chromeno[2,3-d]pyrimidin-4-one 4

A mixture of compound 3 (0.01) and 30-ml acetic anhydride 
was refluxed for 12 hours. The reaction mixture was cooled and 
filtered. The precipitated filtered crystallized from ethanol. Yield: 
56%; m.p. 270–272°C; IR (KBr) cm−1, ν: 1,675 (C=O), 1,620 (C=N); 
1H NMR (DMSO) δ/ppm: 1.21 (t, 2H, J =7.1 Hz, CH2), 1.64 (t, 2H, J 
=7.1 Hz, CH2), 1.73 (m, 2H, CH2), 2.51 (brs, 1H, NH), 4.10 (s, 1H, 
CHAr), 4.73 (s, 1H, CH=), 7.21–7.35 (m, 13H, Ar). MS (m/z): 513.4 
(M+, 29%). Anal. calcd. for C30H22Cl2N2O2: C, 70.18; H, 4.32; N, 
5.46; Found: C, 70.20; H, 4.42; N, 5.49.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-methyl-
3,5,6,7,8,9-hexahydro-4H-chromeno[2,3-d]pyrimidin-4-one 5

A mixture of compound 2 (0.01 mol) and 30-ml acetic 
anhydride was refluxed for 10 hours. The reaction mixture was 
cooled and filtered. The precipitate crystalized from ethanol. 
Yield: 55%; m.p. 260°C–262°C; IR (KBr) cm−1, ν: 1,655 (C=O), 
1,630 (C=N); 1H NMR (CDCl3) δ/ppm: 1.32 (t, 2H, J =7.1 Hz, 
CH2), 1.51 (t, 2H, J =7.1 Hz, CH2), 1.62 (m, 2H, CH2), 1.70 (s, 3H, 
CH3), 2.91 (brs, 1H, NH), 3.80 (s,1H, CHAr), 4.91 (s, 1H, CH=), 
7.32–7.45 (m, 8H, Ar); MS (m/z): 451.3 (M+, 31%). Anal. calcd. 
for C25H20Cl2N2O2: C, 66.53; H, 4.47; N, 6.21; Found: C, 66.63; 
H, 4.50; N, 6.29.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-3,5,6,7,8,9-
hexahydro-4H-chromeno[2,3-d]pyrimidin-4-one 6

A mixture of compound 2 (0.01 mol) and 30-ml formic 
acid was refluxed for 10 hours. The reaction mixture was cooled 
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and filtered. The precipitate crystalized from ethanol. Yield: 60%; 
m.p. 224°C–226°C; IR (KBr) cm−1, ν: 1,675 (C=O), 1,615 (C=N); 
1H NMR (CDCl3) δ/ppm: 1.41 (t, 2H, J =7.1 Hz, CH2), 1.62 (t, 
2H, J =7.1 Hz, CH2), 1.75 (m, 2H, CH2), 3.81(s, 1H, CHAr), 4.42 
(brs, 1H, NH), 5.23 (s, 1H, CH=), 7.13–7.25 (m, 8H, Ar), 8.43 (s, 
1H, NCH); 13C NMR (DMSO) δ/ppm: 23.6, 23.9, 25.9 (3 CH2), 
32.4 (CHAr), 124.0, 124.9  (2 C=), 126.1, 126.8, 126.9, 127.4, 
127.9, 128.3, 129.4, 130.1, 135.1, 137.2, 138.3, 139.8 (12 Ar C), 
140.1, 146.9, 147.9, 148.2(4 C=)150.4 (C=N), 162.3 (C=O). MS 
(m/z): 437.3 (M+, 41%). Anal. calcd. for C24H18Cl2N2O2: C, 65.92; 
H, 4.15; N, 6.41; Found: C, 66.03; H, 4.20; N, 6.49.

General procedure for the preparation of compounds 7a–c
A mixture of compounds 4–6 (0.01 mol), 30-ml 

phosphorus oxychloride, and 2 g phosphorous pentachloride was 
refluxed for 6 hours. Then, the reaction mixture was cooled and 
filtered. The precipitate was filtered and crystalized from ethanol 
to give compound 7a–c.  

4-chloro-9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-
phenyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 7a

Yield: 50%; m.p. 100°C–102°C; IR (KBr) cm−1, ν: 
1,635 (C=N); 1H NMR (CDCl3) δ/ppm: 1.34 (t, 2H, J =7.1 Hz, 
CH2), 1.71 (t, 2H, J =7.1 Hz, CH2), 1.78 (m, 2H, CH2), 4.20 
(brs, 1H, NH), 3.95 (s, 1H, CHAr), 5.12 (s, 1H, CH=), 7.21–
7.35 (m, 13H, Ar). MS (m/z): 531.8 (M+, 17%). Anal. calcd. for 
C30H21Cl3N2O: C, 67.75; H, 3.98; N, 5.27; Found: C, 67.80; H, 
4.01; N, 5.31.

4-chloro-9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-
methyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 7b

Yield: 55%; m.p. 140°C–142°C; IR (KBr) cm−1, ν: 1,615 
(C=N); 1H NMR (CDCl3) δ/ppm: 1.16 (t, 2H, J =7.1 Hz, CH2), 
1.45 (t, 2H, J =7.1 Hz, CH2), 1.73 (m, 2H, CH2), 1.70 (s, 3H, 
CH3), 4.01 (s, 1H, CHAr), 5.81 (brs, 1H, NH), 5.31 (s, 1H, CH=), 
7.21–7.35 (m, 8H, Ar); MS (m/z): 469.7 (M+, 31%). Anal. calcd. 
for C25H19Cl3N2O: C, 63.92; H, 4.08; N, 5.96; Found: C, 64.02; H, 
4.15; N, 6.02.

4-chloro-9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-6,7,8,9-
tetrahydro-5H-chromeno[2,3-d]pyrimidine 7c

Yield: 60%; m.p. 120°C–122°C; IR (KBr) cm−1, ν: 
1,628 (C=N); 1H NMR (CDCl3) δ/ppm: 1.20 (t, 2H, J =7.1 Hz, 
CH2), 1.71 (t, 2H, J =7.1 Hz, CH2), 1.95 (m, 2H, CH2), 3.82 
(brs, 1H, NH), 4.21 (s, 1H, CHAr), 5.43 (s, 1H, CH=), 7.21–7.45 
(m, 8H, Ar), 8.19 (s, 1H, NCH); 13C NMR (DMSO) δ/ppm: 23.4, 
23.6, 24.1 (3 CH2), 35.2 (CHAr), 123.0, 125.1  (2 C=), 127.2, 
127.3, 127.4, 127.9, 128.1, 128.3, 129.9, 131.2, 134.3, 136.1, 
137.1, 140.8, 145.6 (13 Ar C), 147.0, 147.1, 147.9, 148.2 (4 
C=), 151.4 (C=N). MS (m/z): 455.7 (M+, 35%). Anal. calcd. for 
C24H17Cl3N2O: C, 63.25; H, 3.76; N, 6.15; Found: C, 63.30; H, 
3.85; N, 6.21.

General procedure for the preparation of compounds 8a–c
A mixture of compounds 7a–c (0.01 mol), 1-ml 

hydrazine hydrate in 30-ml dioxane was refluxed for 4 hours. 

Figure 1. Chemical structures of biological active chromenes.
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Then, the reaction mixture evaporated under reduced pressure. 
The residue was crystallized from ethanol to give compounds 
8a–c.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-2-
phenyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8a

Yield: 60%; m.p. 224°C–226°C; IR (KBr) cm−1, ν: 1,610 
(C=N); 1H NMR (CDCl3) δ/ppm: 1.20 (t, 2H, J =7.1 Hz, CH2), 
1.51 (t, 2H, J =7.1 Hz, CH2), 1.78 (m, 2H, CH2), 5.10 (brs, 3H, 
NH,NH2), 3.71 (s, 1H, CHAr), 5.53 (s, 1H, CH=), 7.17–7.35 
(m, 13H, Ar).  MS (m/z): 527.4 (M+, 20%). Anal. calcd. for 
C30H24Cl2N4O: C, 68.32; H, 4.59; N, 10.62; Found: C, 68.42; H, 
4.69; N, 10.74.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-2-
methyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8b

Yield: 55%; m.p. 170°C–172°C; IR (KBr) cm−1, ν: 1,615 
(C=N); 1H NMR (CDCl3) δ/ppm: 1.23 (t, 2H, J =7.1 Hz, CH2), 
1.35 (t, 2H, J =7.1 Hz, CH2), 1.53 (m, 2H, CH2), 1.80 (s, 3H, CH3), 
4.30 (s, 1H, CHAr), 5.84 (s, 1H, CH=), 7.10–7.43 (m, 8H, Ar), 
8.51 (brs, 3H, NH, NH2);  MS (m/z): 465.3(M+, 38%). Anal. calcd. 
for C25H22Cl2N4O: C, 64.52; H, 4.77; N, 12.04; Found: C, 64.61; 
H, 4.87; N, 12.21.

9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8c

Yield: 60%; m.p. 164°C–166°C; IR (KBr) cm−1, ν: 
1,627 (C=N); 1H NMR (CDCl3) δ/ppm: 1.31 (t, 2H, J =7.1 Hz, 
CH2), 1.54 (t, 2H, J =7.1 Hz, CH2), 1.78 (m, 2H, CH2), 4.10 (s, 
1H, CHAr), 4.32 (brs, 3H, NH, NH2), 5.81 (s, 1H, CH=), 7.12–
7.41 (m, 8H, Ar), 7.81 (s, 1H, NCH);  13C NMR (DMSO) δ/ppm: 
22.1, 23.4, 25.2 (3 CH2), 36.1 (CHAr), 124.1, 126.2  (2 C=), 
127.5, 127.7, 127.8, 128.0, 128.2, 128.5, 128.9, 131.9, 134.1, 
136.2, 137.2, 141.5, 146.4 (13 Ar C), 147.3, 147.7, 147.9, 148.1 
(4 C=), 152.4 (C=N). MS (m/z): 451.3 (M+, 29%). Anal. calcd. for 
C24H20Cl2N4O: C, 63.87; H, 4.47; N, 12.41; Found: C, 63.95; H, 
4.56; N, 12.59.

General procedure for the preparation of compounds 9a–d
A mixture of compounds 8a,b (0.01 mol), 40-ml ethanol, 

5-ml distilled water, 1-ml acetic acid, and glucose or xylose (0.01 
mol) was refluxed for 6 hours. The reaction mixture evaporated 
under reduced pressure. The residue crystallized from ethanol to 
give compounds 9a–d.

5-(2-(9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-phenyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidin-4-yl)
hydrazono)pentane-1,2,3,4-tetraol 9a

Yield: 60%; m.p. 170°C–172°C; IR (KBr) cm−1, ν: 
1,624 (C=N), 3,210 (NH), 3,345 (OH); 1H NMR (DMSO) δ/
ppm: 1.06 (t, 2H, J=7.1 Hz, CH2), 1.23 (brs, 4H, 4OH), 2.62 (t, 
2H, J=7.1 Hz, CH2), 2.91 (m, 2H, CH2), 3.06 (d, 1H, J=7.0 Hz 
CHO), 3.40 (q, 1H, J =7.0 Hz, CHO), 3.52 (t, 1H, J =7.0 Hz, 
CHO), 3.90 (s, 1H, CHAr), 4.18 (d, 2H, J =7.0 Hz, CH2OH), 
4.48 (brs, 1H, NH), 6.14 (s, 1H, CH=), 7.17 (d, 1H, J=6.2 Hz, 

NCH=), 7.25–7.34 (m, 13H, Ar). Anal. calcd. for C35H32Cl2N4O5: 
C, 63.74; H, 4.89; N, 8.49; Found: C, 63.90; H, 4.97; N, 8.70.

6-(2-(9-(2-Chlorobenzylidene)-5-(2-chlorophenyl)-2-phenyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidin-4-yl)
hydrazono)hexane-1,2,3,4,5-pentaol 9b

Yield: 65%; m.p. 130°C–132°C; IR (KBr) cm−1, ν: 
1,635 (C=N), 3,140 (NH), 3,310 (OH); 1H NMR (DMSO) δ/
ppm: 1.02 (t, 2H, J=7.1 Hz, CH2), 1.13 (brs, 5H, 5OH), 2.82 
(t, 2H, J=7.1 Hz, CH2), 2.84 (m, 2H, CH2), 3.02 (d, 1H, J=7.0 
Hz, CHO), 3.33 (q, 1H, J =7.0 Hz, CHO), 3.49 (t, 1H, J =7.0 
Hz, CHO′), 3.49 (t, 1H, J =7.0 Hz, CHO), 3.82 (s, 1H, CHAr), 
4.20 (d, 2H, J =7.0 Hz, CH2OH), 4.50 (brs, 1H, NH), 6.10 (s, 
1H, CH=), 7.20 (d, 1H, J=6.2 Hz, NCH=), 7.30–7.36 (m, 13H, 
Ar). Anal. calcd. for C36H34Cl2N4O6: C, 62.70; H, 4.97; N, 8.12; 
Found: C, 62.89; H, 5.10; N, 8.21.

5-(2-(9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-methyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidin-4-yl)
hydrazono)pentane-1,2,3,4-tetraol 9c

Yield: 70%; m.p. 220°C–222°C; IR (KBr) cm−1, ν: 
1,642 (C=N), 3,240 (NH), 3,325 (OH); 1H NMR (DMSO) δ/
ppm: 1.12 (t, 2H, J=7.1 Hz, CH2), 1.54 (brs, 4H, 4OH), 2.21 (s, 
3H, CH3), 2.31 (t, 2H, J=7.1 Hz, CH2), 2.51 (m, 2H, CH2), 3.12 
(t, 1H, J=7.0 Hz, CHO), 3.40 (t, 1H, J =7.0 Hz, CHO), 3.52 
(q, 1H, J =7.0 Hz, CHO), 3.82 (s, 1H, CHAr), 4.18 (d, 2H, J 
=7.0 Hz, CH2OH), 4.78 (brs, 1H, NH), 6.14 (s, 1H, CH=), 7.17 
(d, 1H, J=6.2 Hz, NCH=), 7.25–7.34 (m, 8H, Ar). 13C NMR 
(DMSO) δ/ppm: 21.2, 22.1, 24.2 (3 CH2), 37.1 (CHAr), 38.1 
(CH3), 70.1, 71.3, 73.2 (3 CHOH), 75.1 (CH2OH), 123.1, 124.2 
(2 C=), 126.5, 127.1, 127.5, 128.1, 128.5, 128.7, 128.9, 130.9, 
131.1, 134.2, 136.2, 140.5, 145.4 (13 Ar C), 146.3, 146.7, 
147.1, 148.2 (4 C=), 152.3, 155.2 (2 C=N). Anal. calcd. for 
C30H29Cl2N4O5: C, 60.41; H, 4.90; N, 9.39; Found: C, 60.47; H, 
5.10; N, 9.50.

6-(2-(9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-methyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidin-4-yl)
hydrazono)hexane-1,2,3,4,5-pentaol 9d

Yield: 75%; m.p. 194°C–196°C; IR (KBr) cm−1, ν: 
1,617 (C=N), 3,140 (NH), 3,442 (OH); 1H NMR (DMSO) δ/
ppm: 1.02 (t, 2H, J=7.1 Hz, CH2), 1.64 (brs, 5H, 5 OH), 2.31 (s, 
3H, CH3), 2.40 (t, 2H, J=7.1 Hz, CH2), 2.57 (m, 2H, CH2), 3.02 
(t, 1H, J=7.0 Hz, CHO), 3.30 (t, 2H, J =7.0 Hz, 2CHO), 3.68 (q, 
1H, J =7.0 Hz, CHO), 4.12 (s, 1H, CHAr),  4.22 (d, 2H, J =7.0 
Hz, CH2OH), 4.61 (brs, 1H, NH), 6.01 (s, 1H, CH=), 7.09 (d, 
1H, J=6.2 Hz, NCH=), 7.16–7.49 (m, 8H, Ar). Anal. calcd. for 
C31H32Cl2N4O6: C, 59.34; H, 5.14; N, 8.93; Found: C, 59.45; H, 
5.20; N, 9.05.

General procedure for the preparation of compounds 10a–d
A mixture of compounds 9a–d (0.01 mol) and 10-ml 

acetic anhydride was refluxed for 20 hours. Then, the reaction 
mixture was poured into water and the solid formed filtered, dried, 
and crystallized from ethanol to give compounds 10a–d.
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1-(2-Acetyl-8-(2-chlorobenzylidene)-12-(2-chlorophenyl)-
5-phenyl-2,3,8,10,11,12-hexahydro-9H-chromeno[3,2-e]
[1,2,4]triazolo[4,3-c]pyrimidin-3-yl)butane-1,2,3,4-tetrayl 
tetraacetate 10a

Yield: 60%; m.p. 130°C–132°C; IR (KBr) cm−1, ν: 
1,644 (C=N), 1,744 (C=O); 1H NMR (CDCl3) δ/ppm: 1.12, 1.68 
(2s, 12H, 4CH3), 2.01 (s, 9H, 3CH3CO), 2.23 (t, 2H, J=7.1 Hz, 
CH2), 2.35 (t, 2H, J=7.1 Hz, CH2), 2.58 (m, 2H, CH2), 4.28 (s, 
1 H, CHAr), 4.97, 5.08, 5.14 (3 d, 3H, J=7 Hz, 3CHO), 5.27 
(s, 1H, CH=), 5.95 (d, 1H, J=7 Hz, CHN), 6.10 (m, 1H, CHO), 
7.19–7.47 (m, 13H, Ar). Anal. calcd. for C45H42Cl2N4O10: C, 
62.14; H, 4.87; N, 6.44; Found: C, 62.30; H, 4.96; N, 6.60.

1-(2-Acetyl-8-(2-chlorobenzylidene)-12-(2-chlorophenyl)-5-
phenyl-2,3,8,10,11,12-hexahydro-9H-chromeno[3,2-e][1,2,4]
triazolo[4,3-c]pyrimidin-3-yl)pentane-1,2,3,4,5-pentayl 
pentaacetate 10b

Yield: 65%; m.p. 105°C–107°C; IR (KBr) cm−1, ν: 1,631 
(C=N), 1,734 (C=O); 1H NMR (CDCl3) δ/ppm: 1.41, 1.72 (2s, 
12H, 4CH3CO), 2.12 (s, 9H, 2CH3CO), 2.31 (t, 2H, J=7.1 Hz, 
CH2), 2.41 (t, 2H, J=7.1 Hz, CH2), 2.49 (m, 2H, CH2), 4.31 (s, 
1 H, CHAr), 4.51, 5.19, 5.20 (3 d, 4H, J=7 Hz, 4CHO), 5.29 (m, 
1H, CHOAc), 5.31 (d, 2H, CH2OAc), 5.35 (s, 1H, CH=), 5.83 
(d, 1H, J=7 Hz, CHN), 7.19–7.47 (m, 13H, Ar). Anal. calcd. for 
C48H46Cl2N4O12: C, 61.21; H, 4.92; N, 5.95; Found: C, 61.36; H, 
5.0; N, 6.10.

1-(2-Acetyl-8-(2-chlorobenzylidene)-12-(2-chlorophenyl)-
5-methyl-2,3,8,10,11,12-hexahydro-9H-chromeno[3,2-e]
[1,2,4]triazolo[4,3-c]pyrimidin-3-yl)butane-1,2,3,4-tetrayl 
tetraacetate 10c

Yield: 70%; m.p. 152°C–154°C; IR (KBr) cm−1, ν: 1,614 
(C=N), 1,746 (C=O); 1H NMR (CDCl3) δ/ppm: 1.22, 1.35 (2s, 
12H, 4CH3CO), 2.01 (s, 3H, CH3CO), 2.10 (s, 3H, CH3C=N), 2.13 
(t, 2H, J=7.1 Hz, CH2), 2.23 (t, 2H, J=7.1 Hz, CH2), 2.41 (m, 2H, 
CH2), 4.14 (s, 1 H, CHAr), 4.86, 5.13 (2 d, 3H, J=7 Hz, 2CHO), 
5.19 (s, 1H, CH=), 5.81 (d, 1H, J=7 Hz, CHN), 6.10 (m, 1H, 
CHO), 7.13–7.32 (m, 8H, Ar).  13C NMR (DMSO) δ/ppm: 20.1, 
21.4, 25.7 (3 CH2), 36.7 (CHAr), 38.2, 38.3, 38.6, 39.3, 39.7, 50.9 
(6 CH3), 60.1, 60.9, 73.6 (3 CHOAc), 74.3 (CH2OH), 121.1, 122.4 
(2 C=), 124.8, 126.2, 126.7, 127.2, 127.7, 128.2, 128.1, 130.1, 
130.9, 134.7, 135.1, 139.4, 145.9 (13 Ar C), 146.1, 146.4, 147.3, 
148.1 (4 C=), 151.3, 154.1 (2 C=N), 161.2 (C=O). Anal. calcd. for 
C40H40Cl2N4O10: C, 59.48; H, 4.99; N, 6.94; Found: C, 59.60; H, 
5.10; N, 7.16.

1-(2-Acetyl-8-(2-chlorobenzylidene)-12-(2-chlorophenyl)-5-
methyl-2,3,8,10,11,12-hexahydro-9H-chromeno[3,2-e][1,2,4]
triazolo[4,3-c]pyrimidin-3-yl)pentane-1,2,3,4,5-pentayl 
pentaacetate 10d

Yield: 75%; m.p. 120°C–122°C; IR (KBr) cm−1, ν: 1,632 
(C=N), 1,748 (C=O); 1H NMR (CDCl3) δ/ppm: 1.11, 1.28 (2s, 
12H, 4CH3CO), 2.05 (s, 3H, 2CH3CO), 2.12 (s, 3H, CH3C=N), 
2.14 (t, 2H, J=7.1 Hz, CH2), 2.35 (t, 2H, J=7.1 Hz, CH2), 2.48 (m, 
2H, CH2), 4.30 (s, 1 H, CHAr), 4.39 (d, 2H, CH2OAc), 4.86, 5.13, 
5.24 (3 d, 3H, J=7 Hz, 2CHO), 5.28 (s, 1H, CH=), 5.62 (d, 1H, J=7 
Hz, CHN), 6.10 (m, 1H, CHOAc), 7.24–7.46 (m, 8H, Ar). Anal. 

calcd. for C43H44Cl2N4O12: C, 58.71; H, 5.04; N, 6.37; Found: C, 
58.90; H, 5.19; N, 6.50.

Cytotoxic activity
The cytotoxic activity was carried out based on a 

previously reported procedure (Yousif et al., 2019c).

RESULTS AND DISCUSSION 
Diarylidene cyclohexanone 1 reacts with malononitrile 

in triethylamine to produce 2-Amino-8-(2-chlorobenzylidene)-
4-(2-chlorophenyl)-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile 2. Compound 2 has been previously reported (Wang 
et al., 2004a; Jin et al., 2005; Wang et al., 2004b; Kumar et 
al., 2011). The method of preparation of compound 2 was a 
modified method, by using triethylamine as a weak base instead 
of sodium methoxide in a solvent-free reaction. The proposed 
structure is in agreement with spectral data. The IR of compound 
2 shows the absorption band for CN group and NH2 group and 
shows the disappearance of carbonyl group absorption band. 
Mass spectroscopy for compound 2 shows a molecular ion peak 
at m/z 409.

2-amino-8-(2-chlorobenzylidene)-4-(2-chlorophenyl)-
5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile 2 reacts with 
benzoyl chloride to afford N-(8-(2-chlorobenzylidene)-4-(2-
chlorophenyl)-3-cyano-5,6,7,8-tetrahydro-4H-chromen-2-yl)
benzamide 3. Compound 3 is heated under reflux in acetic 
anhydride to give 9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-
2-phenyl-3 ,5 ,6 ,7 ,8 ,9-hexahydro-4H -chromeno[2,3-d ]
pyrimidin-4-one 4. Also, 2-amino-8-(2-chlorobenzylidene)-
4-(2-chlorophenyl)-5,6,7,8-tetrahydro-4H-chromene-3-
carbonitrile 2 is heated under reflux in acetic anhydride to 
give 9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-methyl-
3,5,6,7,8,9-hexahydro-4H-chromeno[2,3-d]pyrimidin-
4-one 5. Compound 2 reacts with formic acid to afford 
9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-3,5,6,7,8,9-
hexahydro-4H-chromeno[2,3-d]pyrimidin-4-one 6. The spectral 
data of compounds 3–6 are compatible with the proposed 
structure. The IR spectrum of compound 3 shows the absorption 
band for carbonyl group. The 13C NMR of compound 3 shows 
a characteristic signal for carbonyl group at δ 165.23 ppm. The 
IR of compound 4 shows the disappearance of the absorption 
band for cyano group (CN). The mass spectrum for compound 
4 shows a molecular ion peak at m/z 513. The IR spectrum of 
compounds 5,6 shows the disappearance of the absorption band 
of cyano functional group. The mass spectrum of compound 
5 shows a molecular ion peak at m/z 451. The 13C NMR of 
compound 6 shows a signal at δ 162.3 ppm characteristic for 
carbonyl group.

Chlorination of compounds 4–6 using phosphorous 
pentachloride and phosphorus oxychloride affords 4-chloro-9-
(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-phenyl-6,7,8,9-
tetrahydro-5H-chromeno[2,3-d]pyrimidine 7a, 4-chloro-
9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-2-methyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 7b, and 
4-chloro-9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-6,7,8,9-
tetrahydro-5H-chromeno[2,3-d]pyrimidine 7c respectively. 
Also, compounds 7a–c react with hydrazine hydrate to give 
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9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-2-
phenyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8a, 
9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-2-
methyl-6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8b, 
and 9-(2-chlorobenzylidene)-5-(2-chlorophenyl)-4-hydrazinyl-
6,7,8,9-tetrahydro-5H-chromeno[2,3-d]pyrimidine 8c, 
respectively. The structures of compounds 7a–c and 8a–c were 
elucidated from 1H NMR, IR, and mass spectral data. The IR 
of compounds 7a–c shows the disappearance of the absorption 
band of carbonyl function group. The 13C NMR of compound 7c 
shows the disappearance of signal for carbonyl group. Also, the 
IR of compounds 8a–c shows the appearance of the absorption 
band of NH, NH2 groups. The mass spectrum of compound 8a 
shows a molecular ion peak at m/z 527. 

Compounds 8a–b react with xylose and 
glucose to afford 5-(2-(9-(2-chlorobenzylidene)-
5 - ( 2 - c h l o r o p h e n y l ) - 2 - p h e n y l - 6 , 7 , 8 , 9 - t e t r a h y d r o -
5 H - c h r o m e n o [ 2 , 3 - d ] p y r i m i d i n - 4 - y l ) h y d r a z o n o )
pentane-1,2,3,4-tetraol 9a, 6-(2-(9-(2-chlorobenzylidene)-
5 - ( 2 - c h l o r o p h e n y l ) - 2 - p h e n y l - 6 , 7 , 8 , 9 - t e t r a h y d r o -
5 H - c h r o m e n o [ 2 , 3 - d ] p y r i m i d i n - 4 - y l ) h y d r a z o n o )
hexane-1,2,3,4,5-pentaol 9b, 5-(2-(9-(2-chlorobenzylidene)-
5 - ( 2 - c h l o r o p h e n y l ) - 2 - m e t h y l - 6 , 7 , 8 , 9 - t e t r a h y d r o -
5 H - c h r o m e n o [ 2 , 3 - d ] p y r i m i d i n - 4 - y l ) h y d r a z o n o )
pentane-1,2,3,4-tetraol 9c, and 6-(2-(9-(2-chlorobenzylidene)-
5- (2-chlorophenyl ) -2-methyl -6 ,7 ,8 ,9- te t rahydro-5H -
chromeno[2,3-d]pyrimidin-4-yl)hydrazono)hexane-1,2,3,4,5-
pentaol 9d, respectively. In addition, compounds 9a–d were 
acetylated using acetic anhydride to afford acetylated sugar 
derivatives 10a–d. The spectral data of compounds 9a–d and 10a–
d are compatible with the proposed structure. The IR spectrum 
of compounds 9a–d shows the absorption band for hydroxyl 
group. Also, the IR of compounds 10a–d shows the absorption 
band for carbonyl group and disappearance of absorption band 
for hydroxyl group, indicating acetylation of hydroxyl groups 
of compounds 9a–d. The 13C NMR of compound 10c shows a 
signal at δ 161.2 ppm indicating carbonyl function group.

Cytotoxic activity
The cytotoxic activity of the new synthesized 

compounds was carried out against three different cancer cell 
lines, namely adenocarcinomic human alveolar basal epithelial 
cells A-549, human epithelial colorectal adenocarcinoma cells 
CaCo-2, and human colorectal adenocarcinoma cell line HT-29, 
using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide assay (Yousif et al., 2019c). The results are presented 
in Table 1 as cytotoxic activity of the synthesized compounds at 
100 μM on the three cell lines. The results show that compounds 
9b,d and 10b,d have moderate cytotoxic activity toward A-549 
cell lines when compared to doxorubicin as the reference drug. 
Compounds 3–6, 7b, and 8a–b have a weak cytotoxic activity 
toward A-549 cell lines. Compound 2 has high cytotoxic activity 
toward CaCo-2 cell lines when compared to doxorubicin as 
the reference drug. Compounds 5, 6, 9b, and 10b have a weak 
cytotoxic activity toward CaCo-2 cell lines. Compound 2 shows 
high cytotoxic activity toward HT-29 cell lines. Compounds 
3, 5, 6, 7a–b, 8a–b, 9b,d, and 10b,d show a weak cytotoxic 
activity toward HT-29 cell lines.

From the aforementioned biological activity, we can 
deduce the structural activity relationship. The presence of the 
amino group at position 2 and the cyano group at position 3 in 
compound 2 increases the cytotoxic activity toward CaCo-2 and 
HT-29 cell lines. The presence of the hydrazine group linked to 
glucose in compounds 9b,d makes the cytotoxic activity moderate 
toward A-540 cell lines. The presence of the triazolo ring linked 
to acetylated glucose in compound 10b,d makes the cytotoxic 
activity moderate toward A-549 cell lines. The disappearance of 
the amino group in compound 3 and the presence of the pyrimidine 
ring linked to chromene afford a weak cytotoxic activity toward 
A-549 cell lines. The presence of the pyrimidine ring linked to 
chromene and chlorine atom at position 4 in compound 7b makes 
cytotoxic activity weak toward A-549 cell lines. Also, the presence 
of the pyrimidine ring linked to chromene and hydrazine function 
group at position 4 in compound 8a,b makes the cytotoxic activity 
weak toward A-549 cell lines. The presence of the pyrimidine 
ring linked to chromene in compounds 5,6 makes the cytotoxic 
activity toward CaCo-2 cell lines weak. Also, the presence of the 
pyrimidine ring linked to the chromene and hyrazino function 
group and linked to glucose in compound 9b makes cytotoxic 
activity weak towards CaCo-2 cell lines. In addition, the presence 
of the pyrimidine ring and triazolo ring linked to chromene and 
acetylated glucose in compound 10b makes the cytotoxic activity 
weak toward CaCo-2 cell lines.

CONCLUSION
Novel compounds derived from chromene have been 

synthesized and structurally elucidated using mass spectroscopy, 
infrared, and nuclear magnetic resonance spectroscopy. Screening 
of most of the synthesized compounds against A-549, CaCo-2, 
and HT-29 cell lines has been made.
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Table 1. Percentage cytotoxicity of compounds on human tumor cancer cell 
lines at 100 µM.

Compound A-549 CaCo-2 HT-29

2 – 88.3 ±1.3 76.4 ± 1.6

3 16.6 ± 4.6 – 33.1 ± 4.1

4 17.3 ± 10.6 0 0

5 27.4 ± 6.9 0.7 ± 0.9 2.0 ± 1.4

6 37.4 ± 8.8 24.6 ±4.1 20.4 ± 2.9

7a – – 5.1 ± 3.8

7b 21.0 ± 2.5 0 3.3 ± 1.7

8a 10.2 ± 6.5 – 10.3 ± 8.1

8b 25.3 ± 1.5 0 9.9 ± 3.5

9b 45.9 ± 5.7 7.5 ± 2.2 0.5 ± 0.9

9d 47.8 ± 0.3 – 32.9 ± 6.6

10b 44.8 ± 10.1 7.0 ± 4.2 8.7 ± 11.8

10d 52.5 ± 21 0 3.0 ± 2.2

Doxorubicin 100 100 100

p ≤ 0.01, n = 3.
*Results are shown as average percentage cytotoxicity ± standard deviation.
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