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ABSTRACT 
A series of new aminomethyl derivatives of methyl-substituted asymmetrical curcumin mono-carbonyl was synthesized 
and evaluated for their anticancer potential by means of cytotoxicity and selectivity determination against MCF-7, 
WiDr, Hela, A549, PLC/PRF/5, and Chang Liver cells lines using the methyl thiazolyl tetrazolium proliferation assay 
method. All the synthesized compounds (3a–f) exhibited high cytotoxic against WiDr cells lines, but only 3a–e had 
high cytotoxic against MCF-7 cells lines, and only 3b showed high cytotoxic against HeLa, A549, and PLC/PRF/5 cell 
lines. However, 3b and 3c exhibited high cytotoxic against Chang Liver (normal liver) cells lines. Further evaluations 
showed that compounds 3d, 3e, and 3f exhibited a potent and selective cytotoxic agent (IC50 = 5.70, 5.55, and 2.97 
µM) against WiDr (colorectal carcinoma) cells lines with selectivity index (SI) = 4.43, 2.69, and 2.04, respectively. 
The compounds performed better cytotoxic activity than curcumin and 5-fluorouracil (IC50 = 8.29 and >100 µM and 
SI = 1.28 and <1). So, compounds 3d, 3e, and 3f were potential as an anticancer agent for colorectal carcinoma and 
should be further studied for investigating their mechanism of action and their effectivity in preclinical studies using 
an animal model..

INTRODUCTION
The prevalence of cancer worldwide continues to 

increase significantly. International Agency for Research Cancer 
estimated that in 2018 there are 18,100,000 new cancer patients 
and 9,600,000 cancer deaths. Lung cancer, breast cancer, and 
colorectal cancer are the types of cancer that have the most 
incidence (Press Release, 2018). For more than six decades, 
cancer chemotherapeutic agents have been developed and used 
as one approach for cancer treatment. Unfortunately, the use of 
chemotherapeutic agents generally may produce irreversible 
chronic and delayed toxicities against many vital organs, such as 
kidneys, heart, and lungs, because of low specificity for cancer 
cells (Roche, 2012). Moreover, some patients develop resistance 

to anticancer drugs, such as 5-fluorouracil (5-FU) (Chibaudel et 
al., 2008). Therefore, there is a significant need to develop a new 
anticancer agent with better efficacy and selectivity.

Curcumin was well known to possess many biological 
activities, such as anti-inflammatory inhibition, growth inhibition 
in various tumor cells, and chemopreventive effects on certain 
cancers with low toxicity (Anand et al., 2008). The curcumin’s 
antitumor mechanism is multiple, involving apoptosis induction, 
proliferation inhibitory, G1/S arrest, and the mitotic block 
(Kunnumakkara et al., 2017; Srivastava et al., 2007). Although 
curcumin has evidence as anti-cancer, its therapeutical usage of 
curcumin is restricted by low of water solubility, chemical and 
metabolical stability, and relatively poor in vivo bioavailability 
(Anand et al., 2008). The chemical structure of curcumin has been 
modified intensively to find the analogs had better physical and 
chemical properties, as well as better biological activity. New 
analogs that show an inhibitory activity of cancer cells growth 30 
times than curcumin and other drugs often used to treat cancer 
were identified (Ohori et al., 2006). Monocarbonyl analogs of 
curcumin (MACs) with cyclohexanone as central can inhibit 
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the growth of colon, ovarian, and breast cancer cells better than 
cisplatin (Adams et al., 2004; Liang et al., 2009; Yerdelen et al., 
2015). Recently, our research group reported that methoxy- and 
methyl-substituted of asymmetrical mono-carbonyl analogs of 
curcumin (AMACs) (Fig. 1) showed moderate cytotoxicity against 
MCF-7 (Prasetyaningrum et al., 2018). Aminomethylation is one 
of the feasible and cost-efficient procedures for drug development 
(Biersack et al., 2018). Several aminomethyl derivatives had been 
synthesized and reported to have better anticancer activity than 
the parent analogs, such as aminomethyl derivatives of chalcones, 
acetophenones, benzylidenecyclohexanones, carbazoles, 
4,11-dihydroxynaphthol[2,3-f]indole-5,10-dione, gatifloxacin, 
8-hydroxyquinoline, benzothiazoles, 2-propoxybenzylidene-
isonicotino hydrazide, fluoroquinolones, 6-(3-aryl-2-propenoyl)-
2(3H)-benzoxazolones, and MACs (Bala et al., 2014; Dimmock 
et al., 1992; Roman, 2015; Subramaniapillai, 2013; Yerdelen et 
al., 2015). The phenol derivatives having quaternary ammonium 
group are bioactive compounds. They act as DNA interstrand cross-
linking agent to inhibit transcription and furthermore the apoptosis 
of tumor cells (Song et al., 2006). Diethylaminomethyl derivatives 
of methyl-substituted of AMACs (Fig. 1) exhibited moderate 
cytotoxicity against MCF-7 but low selectivity against normal cells 
(Prasetyaningrum et al., 2018). Thereby, as continuation study of 
our research group, we synthesized a series of new aminomethyl 
derivatives of methyl-substituted asymmetrical curcumin mono-
carbonyl [2-(4-hydroxy-3-methoxy-benzylidene)-6-(4-methyl-
benzylidene)-cyclohexanone] and evaluated their anticancer 
potential.

MATERIAL AND METHODS

General procedures
The measurement of melting points was performed 

using analog melting point apparatus (Model SMP11, Stuart 
Scientific) and the values obtained are uncorrected. The purity 
of the compounds was checked by thin layer chromatography 
(TLC) on silica gel Si 60 F254 plates (Merck). Infrared spectral 
data were attained by an FT-IR spectrophotometer (8400S, 
Shimadzu). Proton Nuclear Magnetic Resonance (NMR) and 

Carbon NMR spectra were obtained on NMR spectrometer 
(Agilent), and Mass spectra were recorded in positive mode 
on High Resolution Mass Spectrometer (LCT Premier XE-
TOF) (Waters Corp.). The known compounds: 2-(4-methyl-
benzylidene)-cyclohexanone (1), 2-(4-hydroxy-3-methoxy-
benzylidene)-6-(4-methyl-benzylidene)-cyclohexanone (2), 
2-(3-diethylaminomethyl-4-hydroxy-5-methoxy-benzylidene)-6-
(4-methyl-benzylidene)-cyclohexanone (3e), and 2-(4-hydroxy-
3-methoxy-5-morpholin-4-ylmethyl-benzylidene)-6-(4-methyl-
benzylidene)-cyclohexanone (3f) were obtained from earlier 
reasearcher (Prasetyaningrum et al., 2018; Putri et al., 2018).

Synthesis of compounds 3a–d
The compounds were prepared according to the 

synthesis method of compound 3e and 3f reported earlier with little 
modifications (Prasetyaningrum et al., 2018; Putri et al., 2018). To 
a cold solution of compound 2 and appropriate secondary amine 
compound (2,6-dimethylmorpholine/diethylamine/pyrrolidine/1-
methylpiperazine) in ethanol, formaldehyde solution was added 
dropwise while stirring in an ice bath. After stirring for 30 minutes 
at r.t., the reaction mixture was refluxed for 7–11 hours (TLC 
monitoring). Upon completion, evaporation of the solvent and 
residue dissolution in methanol was done twice, then the solution 
warmed and poured gradually into cold distilled water (with 
constant stirring) to obtain the precipitate product. The product 
was separated by means of decantation, filtration, washing with 
cold distilled water, and drying at room temperature. Purification 
was done by column chromatography to obtain pure 3a–d.

2-[3-(2,6-Dimethylmorpholin-4-ylmethyl)-4-hydroxy-
5-methoxy-benzyl idene]-6-(4-methyl-benzyl idene)-
cyclohexanone (3a)

Yellow powder, yield 64.5%, mp 103°C–105°C. FT-IR 
(KBr) cm−1: 2,933–2,860 (C-H aliphatic), 1,737 (carbonyl), 1,662, 
1,600, 1,494 (C=C), 1,271 (C-N), and 1,157 (C-O-C). 1H-NMR 
(CDCl3, 500 MHz), δ: 1.17 ppm (6H, d, J = 6 Hz, two CH3CH-, 
2,6-dimethylmorpholine), 1.89 and 2.85 ppm (4H, t, J = 10 Hz, and 
d, J = 12 Hz, two CHCH2-N 2,6-dimethylmorpholine), 4.08 and 3.70 
ppm (2H, m, two N-CH2CH(CH3)-O 2,6-dimethylmorpholine), 
3.90 and 3,91 ppm (3H, s, 3-CH3-O) (Untung et al., 2017), 1.80 
ppm (2H, p, J = 7 Hz, CH2CH2CH2 cyclohexanone), 2.37 ppm 
(3H, s, 4-CH3Ar); 2.90 and 2.94 ppm (4H, t overlap, J = 8 Hz, two 
CH2CH2C cyclohexanone), 3.72 ppm (2H, s, ArCH2-N), 6.82 ppm 
(1H, d, J = 2 Hz, H phenyl), 6.99 ppm (1H, d, J = 2 Hz, H phenyl), 
7.20 ppm (2H, d, J = 8 Hz, two H phenyl), 7.38 ppm (2H, d, J = 
8 Hz, two H phenyl), 7.71 and 7.77 ppm (1H, s, and 1H, s, two H 
methylidene). 13C-NMR (CDCl3, 125 MHz), δ: 19.1 ppm (2C, two 
CH3-, 2,6-dimethylmorpholine), 21.5 ppm (1C, 4-CH3Ar), 23.2, 
28.6 and 29.8 ppm (3C, three CH2 cyclohexanone), 56.1 ppm (1C, 
CH2-N-), 58.5 (2C, CH2-N- 2,6-dimethylmorpholine), 61.6 ppm 
(1C, 4-CH3-O), 71.81 ppm (2C, CH2-O- 2,6-dimethylmorpholine), 
113.7, 120.8, 124.0, 127.3, 129.2, 130.6, 137.4, and 138.9 ppm 
(8C, CAr), 133.4, 133.9, 135.6, and 136.8 ppm (4C, -C=C 
methylidene), 147.8 and 148.3 ppm (2C, C-O), 190.2 ppm (1C, 
carbonyl) (Silverstein et al., 2005). Calcd masses for C29H35NO4 : 
461.5925, HR-ESI-MS (m/z) found 462.2637 ([M+H]+).

Figure 1. (A) Methoxy-substituted, (B) Methyl-substituted, and (C) 
Diethylaminomethyl derivatives of methyl-substituted of AMACs 
(Prasetyaningrum et al., 2018).
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2-(3-Dimethylaminomethyl -4-hydroxy-5-methoxy-
benzylidene)-6-(4-methyl- benzylidene)-cyclohexanone (3b)

Red caramel-like solid, yield 63.2%, mp 96.97°C. FT-
IR (KBr) cm−1: 2,945–2,829 (C-H aliphatic), 1,662 (carbonyl), 
1,597, 1,489 (C=C), 1,255 (C-N), and 1,159 (C-O-C). 1H-NMR 
(CD3OD, 500 MHz), δ: 1.77 ppm (2H, p, J = 6 Hz, CH2CH2CH2 
cyclohexanone), 2.34 ppm (3H, s, 4-CH3Ar); 2.38 ppm (6H, s, 
two CH3-N), 2.86 and 2.92 ppm (4H, t, J = 6 Hz, two CH2CH2C 
cyclohexanone), 3.72 ppm (2H, s, Ar-CH2-N), 3.85 ppm (3H, s, 
3-CH3-O), 6.92 ppm (1H, s, H phenyl), 7.02 ppm (1H, d, J = 2 Hz, 
H phenyl), 7.21 ppm (2H, d, J = 8 Hz, two H phenyl), 7.34 ppm 
(2H, d, J = 6 Hz, two H phenyl), 7.64 and 7.65 ppm (1H, s, and 
1H, s, two H methylidene). 13C-NMR (CD3OD, 125 MHz), δ: 21.4 
ppm (1C, 4-CH3-Ar), 24.1, 29.4, and 29.6 ppm (3C, three CH2 
cyclohexanone), 44.4 ppm (2C, two CH3-N-, dimethylamine), 
56.5 ppm (1C, ArCH2-N), 61.5 ppm (1C, 3-CH3-O), 114.9, 123.0, 
126.6, 127.3. 130.2, 131.6, 139.3, and 140.2 ppm (8C, CAr), 134.3, 
134.5, 137.0, and 137.7 ppm (4C, -C=C- methylidene), 149.3 and 
151.2 ppm (2C, C-O), 191.8 ppm (1C, carbonyl) (Silverstein et 
al., 2005). Calcd masses for C25H29NO3 : 391.507, HR-ESI-MS 
(m/z) found 392.2222 ([M+H]+).

2-[4-Hydroxy-3-methoxy-5-(pyrrolidin-1-ylmethyl)-
benzylidene]-6-(4-methyl- benzylidene)-cyclohexanone (3c)

Red caramel-like solid, yield 52.08%, mp 82°C–84°C. 
FT-IR (KBr) cm−1: 2,937–2,833 (C-H aliphatic), 1,654 
(carbonyl), 1,566, 1,415 (C=C), 1,255 (C-N), and 1,155 (C-O-C). 
1H-NMR (CDCl3, 500 MHz), δ: 1.80 ppm (4H, t, J = 6 Hz, 
CH2CH2 pyrrolidine), 1.86 ppm (2H, p, J = 6 Hz, CH2CH2CH2 
cyclohexanone), 2.37 ppm (3H, s, 4-CH3Ar), 2.68 ppm (4H, 
t, J = 6 Hz, two CH2-N pyrrolidine), 2.89 and 2.95 ppm (4H, t 
overlap, J = 5 Hz, two CH2CH2C cyclohexanone), 3.88 ppm (3H, 
s, 3-CH3O), 3.90 ppm (2H, s, ArCH2-N), 6.82 ppm (1H, s, H 
phenyl), 6.98 ppm (1H, d, J = 2 Hz, H phenyl), 7.20 ppm (2H, d, J 
= 8 Hz, two H phenyl), 7.36 ppm (2H, d, J = 8 Hz, two H phenyl), 
7.72 and 7.76 ppm (1H, s, and 1H, s 2H methylidene). 13C-NMR 
(CDCl3, 125 MHz), δ: 21.5 ppm (1C, 4-CH3Ar), , 23.8 ppm (2C, 
CH2CH2 pyrrolidine), 23.2, 28.6, and 28.8 ppm (3C, three CH2 
cyclohexanone), 53.6 ppm (2C, CH2N- pyrrolidine), 56.1 ppm 
(1C, ArCH2N), 58.6 ppm (1C, 3-CH3-O), 113.5, 122.3, 123.6, 
126.7, 129.2, 130.5, 137.7, and 138.8 ppm (8C, CAr), 133.4, 
133.6, 135.7, and 136.6 ppm (4C, -C=C- methylidene), 147.8 and 
149.0 ppm (2C, C-O), 190.3 ppm (1C, carbonyl) (Silverstein et 
al., 2005). Calcd masses for C27H31NO3 : 417.2304, HR-ESI-MS 
(m/z) found 418.2379 ([M+H]+).

2-[4-Hydroxy-3-methoxy-5-(4-methylpiperazin-1-ylmethyl)-
benzylidene]-6-(4-methyl-benzylidene)-cyclohexanone (3d)

Orange powder, yield 67.76%, mp 134°C–136°C. FT{IR 
(KBr) cm−1: 2,937–2,837 (C-H aliphatic), 1,658 (carbonyl), 1,602, 
1,562, and 1,492 (C=C), 1,253 (C-N) and 1,157 (C-O-C). 1H-NMR 
(CDCl3, 500 MHz), δ: 1.79 ppm (2H, p, J = 6 Hz, CH2CH2CH2 
cyclohexanone), 2.29 ppm (3H, s, 4-CH3-N methylpiperazine), 
2.36 ppm (3H, s, 4-CH3-Ar); 2.60 ppm (8H, m, two -N-CH2CH2-N 
methylpiperazine), 2.89 and 2.92 ppm (4H, t, J = 6 Hz, CH2CH2C 

cyclohexanone), 3.75 ppm (2H, s, ArCH2-N), 3.89 ppm (3H, s, 
3-CH3-O), 6.81 ppm (1H, d, J = 2 Hz, H phenyl), 6.96 ppm (1H, 
d, J = 2 Hz, H phenyl); 7.20 ppm (2H, d, J = 8 Hz, two H phenyl); 
7.37 ppm (2H, d, J = 8 Hz, two H phenyl), 7.69 and 7.75 ppm 
(1H, s, and 1H, s, two H methylidene). 13C-NMR (CDCl3, 125 
MHz), δ: 21.5 ppm (1C, 4-CH3-Ar), 23.5, 28.5, and 28.8 ppm (3C, 
three CH2 cyclohexanone), 45.9 ppm (1C, 4-CH3-N-piperazine), 
52.5 and 54.9 ppm (4C, -N-CH2CH2-N- piperazine), 56.1 ppm 
(1C, ArCH2-N), 61.2 ppm (1C, 3-CH3-O), 113.7, 121.1, 123.9, 
127.2, 129.2, 130.5, 137.5, and 138.8 ppm (8C, CAr), 133.4, 
133.8, 135.6, and 136.7 ppm (4C, -C=C- methylidene), 147.8 and 
148.47 ppm (2C, C-O), 190.2 ppm (1C, carbonyl) (Silverstein et 
al., 2005). Calcd masses for C28H34N2O3 : 446.2569, HR-ESI-MS 
(m/z) found 447.2652 ([M+H]+).

Cytotoxicity evaluation

Screening
The synthesized compounds (3a–f) was screened for 

their cytotoxic activity against five cancer cell lines: estrogen-
dependent breast carcinoma (MCF-7), Colon carcinoma (WiDr), 
cervix carcinoma (HeLa), lung carcinoma (A549), and hepatoma 
(PLC/PRF/5) and one normal cell lines: normal liver (Chang 
Liver) using the methyl thiazolyl tetrazolium (MTT) method 
conducted according to the protocol of MTT Assay for cell 
viability reported earlier (Stockert et al., 2012). The cell lines 
were purchased from American Type Culture Collection, the cells 
were grown with a density of 5,000 cells in 100 µl growth media 
consisting of Roswell Park Memorial Institute 1640, Dulbecco's 
Modified Eagle's Medium (D-MEM), Fetal Bovine Serum (FBS) 
5%, Penicillin 100 U/ml, and Streptomycin 100 µg/ml. After 50% 
confluent cell (24 hours), the tested compounds and 5-fluorouracil 
(positive control) solutions were added to each well to the final 
concentration of 12.5 µg/ml. The MTT test was carried out on 
day 3. The culture medium was replaced by complete D-MEM 
and then added 10 µl of a fresh solution of MTT (5 mg/ml). 
After the cells were incubated for 4 hours at 37°C, the medium 
was removed and the culture was washed with phosphate buffer 
saline. The dissolved formazan product in ethanol was measured 
spectrophotometrically at 595 nm. The experiment was conducted 
in triplicate. The formula used to calculate the percentage of 
proliferation inhibition:

( )
( )(%) = 100 −

−
−

× 100Growth cells inhibition
At Ab

Ac Ab

At, Ab, and Ac = Absorbance of test, blank, and control 
solution

The compounds showed growth inhibition against cancer 
cells more than 80% and the ratio between the inhibition to cancer 
and normal cells more than 1.5 were continued to determine the 
IC50 values.

IC50 determination
The selected cancer cells and Chang cells were grown 

with a density of 5,000 cells in 100 µl growing media consisting 
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of D-MEM, FBS 5%, Penicillin 100 U/ml, and Streptomycin 
100 µg/ml. After the cell reaches 50% confluent (24 hours), a 
series of concentrations of selected compounds, 5-fluorouracil 
and curcumin solutions was added to each well to the final 
concentration of 1.56–100 µg/ml. Furthermore, the MTT test was 
carried out as described in the screening.

 The IC50 values were obtained by analyzing the 
relationship between the concentrations of the tested compounds 
and their percent (%) inhibitions using GraphPad Prism 7 (La 
Jolla, CA, www.graphpad.com). The ratio between the IC50 value 
of the compounds in normal cells and selected cancer cells shows 
the value of the selectivity index (SI).

RESULTS AND DISCUSSION

Chemistry
A series of new aminomethyl derivatives of methyl-

substituted asymmetrical curcumin mono-carbonyl (3a–d) were 
synthesized stepwise summarized in Scheme 1 in a good yield. 
The FTIR spectra of 3a–d showed the appearance of C-O-C and 
C-N bands at 1,155–1,271 cm−1 and the disappearance of OH 
phenolic group. In the 1H-NMR spectra, the two singlet peaks 
at 2.34–2.37 and 3.85–3.90 ppm (3H) correspond to protons of 
methyl groups of Ar-CH3 and Ar-OCH3, respectively. While the 
protons of methylene group linking the amine to the phenyl ring 
appeared as a singlet peak at 3.72–3.90 ppm. The two protons 
of the two methylidene chain (1H, respectively) appeared as 
two singlet peaks and more downfield in range of 7.64–7.71 
ppm indicated that the structures of the synthesized compounds 

are asymmetrical and E-configuration (Silverstein et al., 2005). 
Furthermore, the structures were completed with 13C-NMR and 
HR-MS data, which showed the full conformity of the structures 
assigned.

Cytotoxicity and selectivity
The synthesized compounds were screened against 

five cancer cell lines: MCF-7, WiDr, HeLa, A549, and PLC/
PRF/5 and one normal cell lines: Chang Liver using MTT assay 
at a final concentration of 12.5 µg/ml. The results showed that 
all the synthesized compounds (3a–f) exhibited high cells 
growth inhibition (more than 80%) against WiDr cells lines, 
but only compounds 3a–e had high cytotoxic activity against 
MCF-7 cells lines, and only compound 3b showed high 
cytotoxic activity against HeLa, A549, and PLC/PRF/5 cell 
lines. Unfortunately, compound 3b and 3c exhibited high cells 
growth inhibition against Chang Liver (normal liver) cells lines 
(Table 1). Based on the above screening’s results, then further 
anticancer potential evaluation only performed for compounds 
3a, 3d, 3e, and 3f by IC50 values determination. Compounds 3a, 
3d, and 3e were evaluated against MCF-7 and WiDr cells lines, 
while compound 3f was evaluated against WiDr cells lines. 
Curcumin and 5-fluorouracil were used as compared and positive 
control. The compounds also were tested against Chang Liver 
cell lines to evaluate their selectivity. The results showed that 
all the compounds possessed better cytotoxic activity against 
MCF-7 and WiDr cells lines than curcumin and 5-fluorouracil 
(Table 2, Fig. 2). The low cytotoxic activity of 5-fluorouracil 
indicated that MCF-7 and WiDr cells lines have been resistance 

Scheme 1. Synthesis of the target compounds
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Table 1. The percentage of growth inhibition (% GI) of the various cell lines due to the synthesized compounds (3a–f) at 12,5 µg/ml.

Compounds R
% Growth inhibition (mean, n = 3)1

MCF7 WiDr HeLa A549 PLC/PRF/5 Chang Liver

3a 85.78 80.89 40.25 31.07 58.05 50.95

3b (CH3)2NCH2 96.64 94.17 97.58 88.40 94.63 94.05

3c 80.91 87.13 55.88 35.10 78.53 80.48

3d 89.48 83.32 54.75 35.50 72.03 50.53

3e (CH3CH2)2NCH2 85.63 81.86 30.70 8.65 58.19 41.78

3f 49.64 80.24 20.74 28.52 62.85 43.32

5-Fluorouracil - 54.36 50.93 14.09 41.30 27.26 29.25

1Mean, n = 3: mean of three experiments.

Table 2. The cytotoxicity (IC50 values) of compound 3a, 3d, 3e, 3f, curcumin, and 5-fluorouracil against MCF-7, WiDr, and Chang Liver 
cells

Compounds
IC50 (μM) (mean, n = 3)1 SI2

MCF-7 WiDr Chang Liver MCF-7 WiDr

3a 4.18 3.98 1.79 0.43 0.45

3d 18.29 5.70 25.27 1.38 4.43

3e 15.85 5.55 14.91 0.94 2.69

3f - 2.97 6.05 - 2.04

Curcumin 51.06 8.29 10.60 0.21 1.28

5-Fluorouracil 64.31 >100 17.53 0.27 0.04

1Mean, n = 3: mean of experiment. 2SI = Selectivity index = ratio of IC50 value in normal cell (Chang) and cancer cell.
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to the compound (Chibaudel et al., 2008). Compounds 3a, 3d, 
and 3e exhibited moderate-to-high cytotoxicity against MCF-
7 cells lines, (IC50 values = 4.18, 18.29, and 15.85 µM), but 
no one of the compounds showed high selectivity index (SI= 
0.43, 1.38, and 0.94). These results were consistent to reported 
previously (Prasetyaningrum et al., 2018). Compounds 3a, 3d, 
3e, and 3f exhibited high cytotoxicity against WiDr cells lines 
(IC50 values = 3.98, 5.70, 5.55, and 2.97 µM), but compound 
3a was not selective (SI = 0.45), while compounds 3d, 3e, and 
3f showed moderate-to-high selectivity index (SI = 4.43, 2.69, 
and 2.04). 

The standard used previously for pure compounds 
considered to be further tested as anticancer agents in preclinical 
tests using experimental animals should possess IC50 values equal 
or less than 10 µM (4 ppm) in cell cultures with SI value more 
than 2 (Burger and Fiebig, 2004). Therefore, compounds 3d, 
3e, and 3f were potential as an anticancer agent for colorectal 
carcinoma and fulfilled the requirements for further evaluated in 
vivo pre-clinical studies. The compounds should also be further 
study to explore their mechanism action for justifying their 
cytotoxic activity.

CONCLUSION
A series of new aminomethyl derivatives of methyl-

substituted asymetrical curcumin mono-carbonyl was successfully 
synthesized. The synthesized compounds exhibited low to high 
cytotoxicity against MCF-7, WiDr, HeLa, A549, and PLC/PRF/5 
cells. Further evaluations showed that compound 3d, 3e, and 3f 
exhibited a potent and selective cytotoxic agent (IC50 < 10 µM, SI 
> 2) against colorectal carcinoma (WiDr) cells. The compounds 
should be considered for further evaluation for investigating their 
mechanism of action and their effectivity in vivo pre-clinical 
studies.
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