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AXL kinase receptor belongs to the TAM family of receptor tyrosine kinases (RTKs). Different types of cancer namely 
breast cancer, osteosarcoma, acute myeloid leukemia, colorectal cancer and non-small cell lung cancer (NSCLC) 
manifest overexpression of AXL receptor. Moreover, AXL kinase overexpression leads to tumor angiogenesis 
& resistance to chemotherapeutic agents and reduces the antitumor immune response. Therefore, AXL kinase 
has emerged as the potential and attractive target for the treatment of cancer. The present study is based on the 
correlation between the structural parameter and biological activity of the compounds using the 3D-QSAR technique. 
In this technique, pyrimidine derivatives and their inhibitory activity against AXL kinase receptor were chosen as 
independent and dependent variables respectively. Based on the investigation, the structural requirements for AXL 
kinase inhibition were recognized. Here, CoMFA and CoMSIA analysis were used for the execution of the 3D-QSAR 
model. The training and the test set pyrimidine derivatives were used for the generation and validation of QSAR model 
respectively. Dataset alignment was performed using the lowest energy conformer of the most active compound. 
CoMFA, as well as CoMSIA, model have encouraging values of the cross-validation coefficient (q2) 0.700 and 0.622 
and conventional correlation coefficient (r2) 0.911 and 0.875 independently. Furthermore, values of r2

pred were obtained 
as 0.709 and 0.668 respectively. Outcomes of the QSAR models and contour maps may be used for discovery of new 
AXL kinase inhibitors as potent anticancer agents.
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INTRODUCTION
Receptor tyrosine kinases (RTKs) are the type of multi-

domain transmembrane proteins. These proteins are the sensor for 
extracellular ligands (O’Bryan et al., 1991). When ligands bind 
to the active site of the receptor, the receptor dimerization and 
activation of intracellular kinase domain were achieved. This 
biochemical process leads to the recruitment, phosphorylation, and 
activation of multiple downstream signaling cascades. The AXL 
tyrosine kinase receptor is a member of the TAM (TYRO3-AXL-
MER) group of RTKs and emerged as the promising therapeutic 
target for cancer therapy (Graham et al., 2014; Lai et al., 1994). 
Other than AXL kinase, TYRO-3 (also known as Brt, Dtk, Rse, 
Sky and Tif), and MER (also known as Eyk, Nym and Tyro12) 

receptors are also part of TAM receptor kinase. The overexpression 
of AXL has been reported in different types of cancer namely non-
small cell lung cancer (NSCLC), osteosarcoma, breast cancer, 
acute myeloid leukemia, prostate and colorectal cancer (Zhang et 
al., 2013; Paccez et al., 2013; Ou et al., 2011; Yuen et al., 2013). 
Further, epithelial-mesenchymal transition (EMT) because of 
AXL signaling mechanism in tumor cells leads to the development 
of drug resistance to targeted therapies and chemotherapy (Hong 
et al., 2008; Zhang et al., 2012; Zhou et al., 2016). Most of AXL 
kinase inhibitors were discovered due to the similarity in the kinase 
domain of AXL receptor with MET or MER receptors (Gay et al., 
2017). Bemcentinib (BGB324 or R428) is one of the most advance 
AXL selective inhibitor. It is an oral small molecule in the second 
phase of the clinical trial for NSCLC management (Ben-Batalla et 
al., 2013). Non-selective AXL kinase inhibitors include foretinib, 
carbozantinib, merestinib, amuvatinib, bosutinib, gilteritinib etc. 
(Eder et al., 2010; Hart et al., 2013; Lee et al., 2013; Yan et al., 
2013; Mahadevan et al., 2007; Mori et al., 2014). The structures of 
AXL kinase receptor inhibitors are depicted in Figure 1.

http://crossmark.crossref.org/dialog/?doi=10.7324/JAPS.2018.81103&domain=pdf
https://creativecommons.org/licenses/by-nc-sa/3.0/
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The selective and potent inhibitory activity of the series 
of novel pyrimidine derivatives towards AXL kinase has been 
reported (Mollard et al., 2011). The correlation of the structural 
parameter (independent variable) with the biological activity 
(dependent variable) of the derivatives was performed using the 
3D-QSAR technique. Here, CoMFA and CoMSIA methods were 
accomplished for 3D-QSAR model development. Comparative 
molecular field analysis (CoMFA) is the type of 3D-QSAR 
technique where, steric and electrostatic fields were used as an 
independent variable against the biological activity of compounds 
(Cramer et al., 1988). Whereas, CoMSIA is improved method of 
CoMFA in which other than steric and electrostatic, hydrophobic, 
hydrogen bond donor and hydrogen bond acceptor were used as 
an independent variable for the correlation with the biological 
activity of the compounds (Klebe et al., 1994). 

We have generated the quantitative structure-activity 
relationship (QSAR) model of pyrimidine derivatives for the 
prediction of biological activity. Based, on the QSAR model 
3D contour maps of steric, electrostatic, hydrophobic, H-bond 
donor and H-bond acceptor fields were generated and SAR was 

established. These details could be applied to modify the structure 
and improve the biological activity of pyrimidine derivatives 
against AXL kinase receptor.

MATERIALS AND METHODS

Dataset preparation 
We have collected the pyrimidine derivatives as AXL 

kinase inhibitors for this study from the literature (Mollard et al., 
2011). The pyrimidine derivatives were bifurcated into approximate 
70% of the training set (18 derivatives) and approximate 30% 
of the test set (7 derivatives). Compounds in the test set have a 
range of biological activity similar to the training set. Derivatives 
present in the training set and test set were used for the generation 
and validation of QSAR model respectively. The IC50 value of all 
derivatives was transformed into pIC50 (-logIC50) value. These 
transformed pIC50 values were utilized as a dependent variable 
for CoMFA and CoMSIA model generation (Table 1) (Liu et al., 
2011). Table 1 depicts the structure of all pyrimidine derivatives 
along with their biological activity against AXL kinase receptor.
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Fig. 1: Chemical structure of AXL tyrosine kinase inhibitors.

Computational study and alignment of database
SYBYL-X 2.0 from Tripos Inc. was used to perform the 

3D-QSAR study (SYBYL X Molecular Modeling Software). In the 
SYBYL software, SKETCH function was utilized for construction 
of the 3D structure of all pyrimidine derivatives. Gasteiger Huckel 
(GH) charges along with the TRIPOS force field was applied to all 
designed derivatives for structure optimization process. Further, 
minimization was carried out by Powell conjugated gradient 
algorithm method (Clark et al., 1989). Structure alignment is the 
utmost important step in QSAR study. Here, Distill alignment 
function was carried out. Alignment was executed by selecting 
highly potent pyrimidine derivative from the dataset as template 
structure (Raichurkar et al., 2003). Figure 2 and Figure 3 represent 

a common fragment of AXL kinase inhibitors and all aligned 
compounds respectively.

CoMFA and CoMSIA model 
Three-dimensional cubic lattice with 2 Å grid space, 

which was extended to 4 Å for the aligned dataset in X, Y, and 
Z three axis, was defined automatically to calculate the CoMFA 
and CoMSIA fields. Here, Sp3 carbon atom with the radius of 1.52 
Å and +1 charge was used as probe atom under CoMFA analysis 
(Sridhar et al., 2011). In CoMFA analysis, for the derivation of 
steric and electrostatic fields, interaction energy was calculated 
using the Tripos force field. ±30 kcal/mol cut-off value was used 
for the steric and electrostatic fields respectively. At the lattice 
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intersection, Lennard-Jones and Columbic potentials were used 
(Bush et al., 1993). 

In the CoMSIA, five descriptors namely steric, 
electrostatic, hydrophobic, H-bond donor and H-bond acceptor 
were used (Myint et al., 2010). For hydrophobic, H-bond donor 

and H-bond acceptor, probe atom with +1 charge was used by 
default. While all other parameters are similar as in the CoMFA 
model, only the value of attenuation factor (α) was set to 0.3 for 
ease of functioning (Buolamwini et al., 2002).

           

N

N
H
N

Fig. 2: The common fragment of AXL kinase inhibitors for alignment of the database to perform QSAR study.

Fig. 3: Dataset alignment for 3D-QSAR (CoMFA and CoMSIA) study.

PLS analysis
PLS (Partial Least Square) analysis is useful when so 

many highly colinear factors are present. It is an extension of 
multiple linear regression analysis (MLR) method. The 3D-QSAR 
model was built using PLS analysis. Here, the values of CoMFA 
and CoMSIA were used as an independent variable, while AXL 
kinase inhibitory activity was used as a dependent variable for the 
correlation of the structural parameters with its biological activity. 
If the QSAR model is developed using the optimum number of 
components with a high value of cross-validated coefficient (q2) 
and low standard errors, then chances of overfitted models are very 
less. In cross-validated coefficient (q2) method, one compound 
was removed from the set and by use of all other compounds, the 
model was generated. The activity of the elided compound was 
predicted using the developed QSAR model. If methods give a 
q2 value > 0.5 and r2 > 0.616, models are termed as acceptable 
(Golbraikh et al., 2002). It is estimated by the following equation:

( )
( )

predicted observed2

observed mean

 Y Y
q 1   

 Y Y−

∑ −
= −

∑
           

(1)

The optimum number of component (ONC) was used 
to calculate the value of r2

ncv (non-cross validated correlation 
coefficient). Further, the robustness of the developed model was 
checked by bootstrap analysis. In this method, from the entire 
dataset random compounds were selected. This method was 
undertaken many times (minimum 100 times for more accuracy). 
In each run, some compounds were elided from the dataset while 
some compounds were included in the dataset. The value of 
r2

bs from bootstrap analysis and r2
cv from cross-validation were 

determined (Lu et al., 2010).
Predictive correlation coefficient (r2

pred)
The compounds, which were not incorporated in the 

training set (7 test set compounds), were used for the calculation 
of predictability of generated QSAR model. Following equation 
was used to calculate the value of r2

pred:

( )2  –  
 pred

SD PRESS
r

SD
=                      (2)

where SD, is the sum of the squared deviations between the 
biological activity of the test set and mean activity of the training 
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set compounds, and PRESS is the sum of squared deviations 
between actual and predicted activity values for each compound 

in the test set (Makhija et al., 2002).

Table 1: Structure of pyrimidine derivatives, experimental activity and predicted inhibitory activity of training set and test set compounds using 3D-QSAR (CoMFA 
and CoMSIA) method.

Compound No. Compound IC50
i (µM) pIC50

ii
CoMFA CoMSIA

Prediii Resiv Predv Resvi

3#

N

N

N
H

F

N
N

F

Cl
2.80 5.552 5.623 -0.071 5.627 -0.075

4#

N

N

N
H

F

N
N

F

6.10 5.214 5.067 0.147 5.250 -0.036

5

N

N

N
H

F

Cl

N
N

0.73 6.136 6.233 -0.097 6.005 0.131

6

N

N

N
H

F

Cl
O

N
1.63 5.787 5.857 -0.07 5.973 -0.186

7

N
N

HN

F Cl

N

N

0.42 6.376 6.407 -0.031 6.589 -0.213
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Compound No. Compound IC50
i (µM) pIC50

ii
CoMFA CoMSIA

Prediii Resiv Predv Resvi

8#

N

N

N
H

Cl

N
N

0.44 6.356 6.498 -0.142 6.438 -0.082

9

N

N

N
H

N
N

CN

0.29 6.537 6.505 0.032 6.608 -0.071

10

N

N

N
H

O

N
N

F

Cl
1.40 5.853 5.883 -0.03 5.719 0.134

12#

N

N

N
H

N
N

F

Cl
3.40 5.468 5.372 0.096 5.250 0.218

13

N

N

N
H

HN

N
N

Cl

S
O

N

0.027 7.568 7.521 0.047 7.426 0.142

14

N

N

N
H

HN

N
N

Cl

C
O

N

0.088 7.055 7.164 -0.109 7.214 -0.159
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Compound No. Compound IC50
i (µM) pIC50

ii
CoMFA CoMSIA

Prediii Resiv Predv Resvi

15

N

N

N
H

N
N

S
O

FN

2.93 5.533 5.685 -0.152 5.607 -0.074

16

N

N

N
H

N
N

S
O

FN

F
1.15 5.939 5.887 0.052 5.848 0.091

18

N

N

N
H

HN

N
N

C
O

N

Cl
0.061 7.214 7.530 -0.316 7.622 -0.408

19#

N

N

N
H

HN

N
N

C
OH

N

Cl
0.032 8.494 8.653 -0.159 8.560 -0.066

20

N

N

N
H

HN

N
N

S
O

N

Cl
0.019 8.721 8.138 0.583 7.779 0.942
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Compound No. Compound IC50
i (µM) pIC50

ii
CoMFA CoMSIA

Prediii Resiv Predv Resvi

21

N

N

N
H

HN

N
N

S
O

N

Cl

O F

0.240 6.619 6.429 0.19 6.650 -0.031

22#

N

N

N
H

HN

N
N

S
O

N

Cl

F

0.037 7.431 6.707 0.724 6.985 0.446

23

N

N

N
H

HN

N
N

S
O

N

Cl

Cl

1.08 5.966 6.574 -0.608 6.993 -1.027

24

N

N

N
H

HN

N
N

S
O

N

Cl

OH

1.32 5.879 6.396 -0.517 5.939 -0.06

25

N

N

N
H

N

N
N

S
O

N

Cl

F

3.91 5.407 5.268 0.139 5.275 0.132
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Compound No. Compound IC50
i (µM) pIC50

ii
CoMFA CoMSIA

Prediii Resiv Predv Resvi

26

N

N

N
H

N
N

S
O

N

Cl

F

0.082 7.086 7.248 -0.162 7.180 -0.094

27

N

N

N
H

N
N

S
O

N

Cl

F

0.091 7.040 6.984 0.056 7.021 0.019

28#

N

N

N
H

HN
N

N

S
O

N

Cl
0.056 7.251 7.058 0.193 6.984 0.267

29

N

N

N
H

HN

S
O

N

Cl N
N 1.73 5.761 5.569 0.192 5.716 0.045

#Test set compounds, iAXL kinase inhibitory activity IC50 (µM), iipIC50 values (-logIC50), 
iiiPredicted values based on CoMFA analysis, ivResidual values based on 

CoMFA analysis (predicted value- experimental value), vPredicted values based on CoMSIA analysis, viResidual values based on CoMSIA analysis (predicted value- 
experimental value). 

RESULTS AND DISCUSSION

Results of CoMFA model
CoMFA model was developed using steric and 

electrostatic fields. As the first step, the partial least square analysis 
was undertaken using “leave-one-out (LOO)”. The value of q2 was 
found to be 0.700 with 5 optimum numbers of components. The same 
5 components along with column filtering set to 2.0 were used to 
calculate the value of the conventional correlation coefficient (r2

ncv). 
The value of r2

ncv was found to be 0.911; the value of F was found to 

be 38.856; the value of SEE (Standard Error of Estimate) was found 
to be 0.316. The steric and electrostatic field values were found 
to be 2.605 and 3.030 respectively. Table 2 depicts the statistical 
parameters obtained by development of the CoMFA model. The 
results of cross-validation coefficient r2

cv (0.641) and bootstrap 
analysis r2

bs (0.957) supported the reliability of the developed 
QSAR model. Experimental and predicted activities of training 
set compounds and test set compounds are already represented in 
Table 1. Figure 4 (A, B) depicts the correlation of experimental and 
predicted activities of training and test set compounds.
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Fig. 4: Plot of experimental and predicted activities of the training and the test set compounds based on CoMFA model.

Fig. 5: Plot of experimental and predicted activities of the training and the test set compounds based on CoMSIA model.

Results of CoMSIA model
CoMSIA provides information of steric, electrostatic, 

hydrophobic, H-bond donor and H-bond acceptor fields. 
Comparative molecular field similarity indices analysis was 
undertaken by similar training and test set compounds as that of 
CoMFA following the successful results of CoMFA. The value of 
q2 was found to be 0.622 with 6 optimum numbers of components. 
To calculate the conventional correlation coefficient, same 6 
components and column filtering as 2.0 were used. The value of 
r2

ncv was found to be 0.875. The contribution of steric, electrostatic, 
hydrophobic, H-bond donor and H-bond acceptor were found to 
be 0.666, 1.571, 0.985, 1.015 and 0.884 respectively. Further, 
bootstrap analysis (r2

bs= 0.948) supported the quality of the 
developed CoMSIA model. To check internal reliability within the 
dataset, cross-validation by two groups (leave half out method) 
was undertaken. The r2

cv was found to be 0.595. The values of 
r2

bs and SEEbs were found to be 0.948 and 0.256 respectively. 
Statistical parameters based on CoMFA and CoMSIA model 
were depicted in Table 2. Experimental and predicted activities of 
training and test set compounds are represented in Table 1. Figure 
5(A, B) depicts the correlation of experimental and predicted 
activities of the training and the test set compounds.

QSAR visualization 
3D contour maps are the important features of the 

comparative molecular field analysis (CoMFA) and comparative 
molecular similarity indices analysis (CoMSIA). These contour 

maps are derived when there are changes in molecular fields. The 
3D space contour maps surrounding the compounds were derived 
for CoMFA as well as CoMSIA model. Based on the contour maps 
study, changes can be carried out to improve the biological activity 
and to optimize pyrimidine derivatives as AXL kinase inhibitors. 
Most active compound 20 was bifurcated into three equal parts 
to understand the effect of various fields on biological activity, 
(Figure 6A-C).

Table 2: Statistical parameters based on CoMFA and CoMSIA model.

PLS analysis parameters CoMFA CoMSIA

r2
LOO (q

2) 0.700 0.622

r2
ncv 0.911 0.875

SEE 0.316 0.384

ONC 5 6

F value 38.865 21.067

Steric field contribution 2.605 0.066

Electrostatic field contribution 3.030 1.571

Hydrophobic field contribution - 0.985

H-bond donor field contribution - 1.015

H-bond acceptor field contribution - 0.884

r2
bs 0.957 0.948

SEEbs 0.200 0.256

r2
CV 0.641 0.595

Test set r2 (r2
pred) 0.709 0.668
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Fig. 6: Compound 20 bifurcated into three parts (A), (B) and (C).

Fig. 7: CoMFA (StDev*Coeff) Contour maps of steric field (a, c) and electrostatic fields (b, d) for compound 20 (a, b) and the compound 4 (c, d) respectively.

CoMFA contour maps
Most active compound 20 (IC50 = 0.019 µM) was 

selected from the series for the examination of CoMFA contour 
maps. Contour maps were generated surrounding the molecule. 
Here, style of contour map was set as transparent for visualization 
of contours nearby the molecule. Green and yellow contour maps 
(80% and 20% contributions) represent the steric field. The green 
area indicates the favorable steric groups, and the inhibitory activity 
can be improved against AXL kinase receptor by incorporating the 
bulky groups. While, a yellow contour indicates the non-favorable 
steric groups for the activity, so the presence of bulky groups near 
this area can reduce biological activity. The electrostatic field with 
blue contours depicts positively charged groups. The electrostatic 
field with red contours depicts negatively charged groups. 

Green contour near “C” region, in Figure 7(a), at 
piperazine ring, suggests that the bulky groups are favorable 
for the activity. Therefore, N-substituted piperazine ring may 
increase the biological activity. Green contour near “C” region 
at the C-4 place of phenyl ring indicates that bulky groups 

are favored for inhibitory effect. This is apparent from actual 
biological activity values of compound 3 (IC50 = 2.80 µM), 4 
(IC50 = 6.10 µM) and 29 (IC50 = 1.73 µM). These compounds have 
1-methylpiperazine ring directly attached to C-4 atom of phenyl 
ring as compared to other compounds such as 8 (IC50 = 0.44 µM), 
14 (IC50 = 2.80 µM), 18 (IC50 = 0.061 µM), 19 (IC50 = 0.032 µM, 
and 28 (IC50 = 0.056 µM) in which 1,4-dimethylpiperazine ring 
was present. This leads to the difference in inhibitory activity 
values of compounds. This is also evident from the comparison 
of compound 28’s (IC50 = 0.056 µM) and 29’s (IC50 = 1.73 µM) 
activities. Additionally, green contour at phenyl ring (C-5) in 
“A” region indicates that the bulky groups at this position results 
in increased inhibition. As seen in Figure 7(a), yellow contour 
are seen at the C-4 position in phenyl ring at “A” region, which 
suggests that incorporation of bulky groups are not favored. The 
bulky groups at C-5 position indicate increased inhibitory effect. 
This is apparent from the actual biological activity values of 
compounds 13, 14, 18, 19, 20, 28 in which no substitution was 
present at the C-5 position so, they have very potent activity, 
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while those compound with –F as substituent has minimal 
activity.

The electrostatic field represents blue and red contour 
maps. Blue contour favors positively charged groups and red 
contour map favors negatively charged groups. Most potent 
compound 20 was chosen as reference compound from the series. 

The blue contour around phenyl ring at C-4 and C-5 position in 
“A” region suggests that addition of positively charged substituent 
results in an increase in the biological effect. (Figure 7(b)) This is 
apparent from relatively more active un-substituted phenyl ring in 
compounds 13, 14, 18, 19, 20 as compared with the presence of 
negatively charged substituent in compounds 15, 16, 21, and 25.

 

 

   

(a) (b)

(c) (d)

(e)

Fig. 8: CoMSIA (stDev*Coeff) contour maps of (a) steric, (b) Electrostatic (c) Hydrophobic (d) Hydrogen bond donor and (e) Hydrogen bond acceptor fields for 
compound 20.

CoMSIA contour maps 
Steric field and electrostatic field contour maps observed 

in the comparative molecular field similarity indices analysis 
(CoMSIA) are homogenous to those observed in CoMFA. In 
CoMSIA steric maps, the yellow contour at the C-2 position in 
phenyl ring and at pyrrolidine ring in “A” region suggests that 
incorporation of bulky groups are not favored. This is apparent 
from the comparison of the biological effect of moderately active 
compound 21 (IC50 = 0.240 µM) and compound 26 (IC50 = 0.082 
µM).

As it appears in Figure 8(b), red contour near piperazine 
ring in the C region, suggests that substituent with negative charge 
leads to enhancement of the inhibitory effect of compounds. So, 
an introduction of -F, -Cl or –CF3 groups may lead to a significant 
change in the inhibitory activity of compounds.

In Figure 8(c), white contour at the C-4 of phenyl 
scaffold in “A” region suggests that the hydrophilic substitution 
in this region results in increased biological activity. This is clear 

from the contour maps of the molecule, where bulky substitution 
such as -F and -Cl are present, leading to a reduction in activity. 
Further, yellow contours near the pyrimidine ring indicates the 
hydrophobic substitution, which leads to an increase in activity. 

Cyan and purple contour maps represent the CoMSIA 
donor fields. H-bond donor substituents are favored in the region 
where the cyan contour map is present. While purple contour 
suggests that H-bond donor reduces the biological activity. Small 
cyan contour map in Figure 8(d), was observed at the C-2 position 
in phenyl ring which suggests that the presence of H-bond donor 
in this region results in increased biological activity. Acceptor 
field represents magenta and red contour maps. H-bond acceptor 
substituents are favored in a region where the magenta contour 
is present. While H-bond acceptor substituents are not favored 
where the red contour is present. In Figure 8(e), the pyrrolidine 
ring in “A” region contains magenta contour map which suggests 
that the H-bond acceptor are favored for the activity. Important 
finding of QSAR study are depicted in Figure 9.
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CoMFA and CoMSIA
Bulky groups not favored 

CoMSIA
Hydrophobic groups 

favored

CoMSIA
H-bond acceptor groups favored  

CoMFA
Bulky groups along 
with electronegative 

groups favored 

CoMFA
Bulky groups favored

CoMSIA
Bulky and H-bond acceptor groups not favored; 
Hydrophilic and electropositive groups favored 

Fig. 9: Important structure finding and SAR from QSAR study.

CONCLUSION
Currently, AXL tyrosine kinase receptor is an emerging 

target for anti-cancer drug development. We undertook the 
quantitative structure-activity relationship analysis using CoMFA 
and CoMSIA to build the correlation between pyrimidine 
derivatives and their biological activity as AXL kinase inhibitors. 
To achieve CoMFA and CoMSIA, PLS analysis was undertaken 
to correlate the descriptor with biological activity. The cross-
validation coefficient (q2) value of 0.700 and 0.622 for CoMFA 
and CoMSIA model along with all the statistical parameters 
and generated contour maps strongly reveal that the developed 
models are satisfactory. Contour maps indicate the important 
structural features such as incorporation of bulky groups along 
with negatively charged substituents at “C” region in phenyl 
ring and the positively charged substituent at “A” region. These 
features lead to the significant enhancement of the biological 
activity. CoMFA and CoMSIA analysis strongly suggest that 
steric, electrostatic and hydrophobic fields play a crucial role in 
biological activity. 3D-QSAR analysis discussed in this study can 
be used further for the discovery of novel pyrimidine analogs as 
AXL kinase inhibitors as anti-cancer agents with a high degree of 
selectivity and specificity.

ABBREVIATIONS

RTK Receptor Tyrosine Kinase
QSAR Quantitative Structure Activity Relationships
NSCLC Non-Small Cell Lung Cancer
CoMFA Comparative Molecular Field Analysis
CoMSIA Comparative Molecular Similarity Indices Analysis
PLS Partial Least Square Analysis
LOO Leave One Out
ONC Optimum Number of Components
GH Gasteiger Huckel
r2

ncv Non-cross validation correlation coefficient

r2
pred Predictive correlation coefficient

q2 Cross-validation correlation coefficient
SEE Standard Error of Estimate
F value Fisher’s value
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