
Journal of Applied Pharmaceutical Science Vol. 8(10), pp 001-007, October, 2018
Available online at http://www.japsonline.com
DOI: 10.7324/JAPS.2018.81001
ISSN 2231-3354

Molecular modeling of 4-fluoropyrrolidine-2-carbonitrile and 
octahydrocyclopenta[b]pyrrole-2-carbonitrile as a dipeptidyl 
peptidase IV (DPP4) inhibitor 

Muhammad Arba1*, Ruslin Ruslin1, Nur Illiyyin Akib1, Yamin Yamin1, Sabarudin Ombe1, Jessi Jessi2, Muhammad Zakir 
Muzakkar2, Daryono Hadi Tjahjono3

1Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia.
2Department of Chemistry, Halu Oleo University, Kendari, Indonesia.
3School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.

ARTICLE INFO
Received on: 01/02/2018
Accepted on: 30/08/2018
Available online: 31/10/2018

Key words:
Dipeptidyl peptidase, 
carbonitrile, QSAR, 
docking, molecular dynamic 
simulation, MM-PBSA.

ABSTRACT
Research on the quantitative structure–activity relationship (QSAR) of the 4-fluoropyrrolidine-2-carbonitrile and 
octahydrocyclopenta[b]pyrrole-2-carbonitrile as dipeptidyl peptidase IV (DPP4) inhibitor was performed. The 
molecular descriptors were calculated and the best QSAR model was developed, which satisfied statistical parameters 
such as correlation coefficient R = 0.912 and leave-one-out validation coefficients q2 = 0.608. The predictive quality 
of the model was tested against test set compounds with R2pred value of 0.7057. A novel compound (ND1) was designed 
and its predicted IC50 was predicted, which was lower compared with that of the parent compound (S24). Molecular 
docking and molecular dynamics simulation of 40 ns showed the stability of binding orientation of ND1, the parent 
compound, and native ligand of DPP4. Prediction of affinity using molecular mechanics/Poisson-Boltzmann/surface 
area method revealed that the ND1 has a comparable affinity with the parent and natural ligands. 

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a chronic metabolic 

disease characterized by insulin resistance and insulin deficiency. 
It affects more than 400 million adults worldwide in 2014, and 
its global prevalence is estimated to reach 330 and 640 million in 
2030 and 2040, respectively (Ahren, 2009; Drucker et al., 2010; 
Reusch and Manson, 2017).

One of the molecular targets for curing T2DM is 
dipeptidyl peptidase IV (DPPIV/DPP4). DPP4 is a serine protease 
which deactivates intestinally derived hormones glucagon-
like peptide 1 (GLP-1) and glucose-dependent insulinotropic 
polypeptide (GIP). GLP-1 is an important incretin hormone that 

helps in insulin secretion and suppresses glucagon formation. 
However, its half-life is very short due to DPP4 catalytic activity. 
Therefore, inhibiting DPP4 is considered as a novel therapeutic 
strategy for restoring glucose homeostasis in diabetic patients by 
leaving more GLP-1 and GIP in the blood circulation (Chahal and 
Chowdhury, 2007; Demuth et al., 2005; Sneha and Doss, 2016).

Several DPP4 inhibitors have recently been approved by 
Food and Drug Administration (FDA), such as sitagliptin (Merck), 
vildagliptin (Novartis), saxagliptin (BMS), alogliptin (Takeda), and 
linagliptin (Lilly) (Cox et al., 2016). However, their use in the clinical 
application is not devoid of problems such as severe adverse effects, 
including hypoglycemia, edema, weight gain, and gastrointestinal 
distress (Li et al., 2016). Therefore, the need for novel and potent 
antidiabetic agents with minimum side effects is indispensable. Ji 
et al. (2014) designed and synthesized novel β-amino pyrrolo-2-
carbonitrile derivatives and found that compound 9l showed excellent 
DPP4 inhibitory activity resulting in decreased blood glucose in vivo.
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To further reveal and develop the structural features of 
novel derivatives of β-amino pyrrolo-2-carbonitrile having more 
potent DPP4 inhibitory activity, 2D-quantitative structure–activity 
relationship (QSAR) study was carried out to build a linear 
correlation between physicochemical properties (descriptors) 
and biological activity of the compounds. The molecular docking 
was employed to investigate the binding interaction of ligand to 
the DPP4 enzyme (Abdalsalam, 2017; Arba et al., 2018). The 
molecular dynamics (MD) simulation coupled with molecular 
mechanics/Poisson-Boltzmann/surface area (MM-PBSA) free 
energy prediction was applied to evaluate the ligand-enzyme 
dynamics during 40 ns and to predict the binding free energy of 
the ligand-enzyme complex (Ruslin et al., 2017).

COMPUTATIONAL METHOD

Data set
The data set of 24 4-fluoropyrrolidine-2-carbonitrile 

and octahydrocyclopenta[b]pyrrole-2-carbonitrile derivatives 
(Table 1) as reported by Ji et al. (2014) were selected. The 
inhibition activity data (IC50) in negative logarithmic scale (pIC50) 

was used, which span from −1.6761 up to 2. Each compound 
was built and geometrically optimized on semi-empirical Austin 
Model-1 (AM1) method by using Gaussian 09 software (Frisch 
et al., 2009). The molecular descriptors were generated for each 
built structure using molecular operating environment (MOE, 
2009.10), which includes total energy (AM1_E), electronic 
energy (AM1_Eele), dipole moment (AM1_Dipol), formation 
heat (AM1_HF), highest occupied molecular orbital energy 
(AM1_HOMO), lowest unoccupied molecular orbital energy 
(AM1_LUMO), polarity (Apol), hydrophobic surface area 
(ASA_H), water solubility (Log S), partition coefficient (Log 
P), globularity (Glob), van der Waals volume (Vol), and molar 
refractivity (Mr).

Recognition of outlier
Outliers are defined as unrelated values in the normal 

distribution values. In the QSAR model, they must be eliminated 
to avoid invalid prediction (Zakariazadeh et al., 2015). In the 
present study, outliers were identified by calculating the value of 
$Z-SCORE, in which a compound is considered as an outlier when 
its $Z-SCORE value ≥2.5 (Hamerton et al., 2013). The remaining 

Table 1. The 4-fluoropyrrolidine-2-carbonitrile and octahydrocyclopenta[b]pyrrole-2-
carbonitrile derivatives in the data set.

No. Compound R IC50 (µM)

1 A1 H 0.45

2 A2 2-Cl 0.22

3 A3 2-Me 0.16

4 A4 3-F 0.22

5 A5 4-F 0.32

6 A6 4-I 0.43

7 A7 4-CF3 0.64

8 A8 4-OMe 0.77

9 A9 2,4-di-Cl 0.04

10 A10 3,4-di-Cl 0.53

11 A11 3,5-di-F 1.58

12 A12 2,4,5-tri-F 0.05

13 A13 H 1.94

14 B14 H 0.44

15 B15 2-Cl 0.07

16 B16 2-Me 0.36

17 B17 3-F 0.13

18 B18 4-F 0.27

19 B19 4-I 8.80

20 B20 4-CF3 1.98

21 B21 2,4-di-Cl 0.07

22 B22 3,4-di-Cl 47.44

23 B23 3,5-di-F 9.65

24 B24 2,4,5-tri-F 0.01
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compounds were then randomly grouped into a training set (18 
compounds) and a test set (five compounds) considering their 
structural diversity and biological activities.

QSAR model
The calculation of the QSAR model was achieved by 

using the multiple linear regression approach using the SPSS for 
Windows version 19 to establish the linear relationship between 
a set of descriptors and biological activity. The best QSAR 
model was identified using several statistical parameters, such as 
squared correlation coefficient (R2), Fischer’s value for statistical 
significance (F), adjusted squared correlation coefficient (Radj

2), 
and standard error of estimation (Arba et al., 2018; Dearden et al., 
2009). Besides, the QSAR equation was also validated by internal 
validation of leave-one-out (LOO) cross-validation coefficient (q2) 
(Golbraikh and Tropsha, 2002). The LOO cross-validation works 
by eliminating each compound in the training set and predicting the 
biological activity using the model of remaining compounds. The 
calculation of LOO cross-validation coefficient (q2) was described 
elsewhere (Arba et al., 2018), in which a value of q2 which is 
higher than 0.5 is necessary to assure the predictability of the built 
QSAR equation (Golbraikh et al., 2003; Tropsha et al., 2003). 
Furthermore, in addition to internal cross-validation, the reliability 
of the built model was also evaluated externally, in which the model 
was used to predict the biological activity of the test set compounds 
(Tropsha et al., 2003). In that scheme, the validity of the model was 
evaluated using the external cross-validation coefficient (R2pred), in 
which the R2pred value higher than 0.6 is necessary to assure the 
validity of the built model.

Design for new molecule and molecular docking
Based on built QSAR equation, a new compound (ND1) 

was proposed and its predicted biological activity (IC50pred) was 
calculated. The biological activity of the ND1 was then compared 
with that of the parent compound (S24), which has the lowest 
observed IC50 (IC50 = 0.01 μM). Furthermore, molecular docking 
of ND1 and S24 to DPP4 protein was performed to reveal the 
interaction mechanism of those compounds in the binding 
site of DPP4 by using AutoDock 4.2 (Morris et al., 1998). The 
crystallographic structure of DPP4 from the Protein Data Bank 
(PDB) with PDB code 2AJL and resolution 2.5 Å was selected 
(Qiao et al., 2006). The grid box was located following the 
catalytic cavity with the dimension of 50 in each xyz direction. 
The default values were used for other docking parameters (Arba 
et al., 2017a).

MD simulation and prediction of binding free energy
MD simulation was performed on each S24, ND1, 

and native ligand 1-[2-(s)-amino-3-biphenyl-4-yl-propionyl]-
pyrrolidine-2-(s)-carbonitrile (JNH), each complexed with DPP4 
using Amber 16 package (Case et al., 2015; Salomon-Ferrer et 
al., 2013). In the present study, the ff14SB force field was used 
to describe the protein, while GAFF (General Amber force field) 
and AM1-BCC were used to describe ligand (Jakalian et al., 2002; 
Maier et al., 2015; Wang et al., 2004). Each system was neutralized 
by the addition of Na+ ions and then solvated using the TIP3P box 
water model with a distance of 1 nm around the complex. The 
minimization, heating, and equilibration were performed with the 

aid of Sander module following our previous procedure (Arba et 
al., 2018). The production step was performed using GPU version 
of the PMEMD engine of Amber 16 package for 40 ns in NPT 
ensemble without restraint using Langevin thermostat at 1.0 ps−1 
random collision frequency to maintain the system in 300 K thermal 
bath. The SHAKE algorithm was used to restrain bonds involving 
hydrogen atoms (Ryckaert et al., 1977). The long-range electrostatic 
interactions were treated with the particle-mesh Ewald method with 
an integration step of 2 fs (Darden et al., 1993) by applying periodic 
boundary conditions with a cutoff distance of 9.0 Å. The CPPTRAJ 
module (Roe and Cheatham, 2013) was used to performed analysis, 
including root mean square deviations (RMSD) and root mean 
square fluctuation (RMSF), while visual molecular dynamics was 
used for visualization (Humphrey et al., 1996).

The prediction of free energy of binding was achieved 
by performing MM/PBSA following our previous protocol 
(Arba et al., 2017b; 2018; Kollman et al., 2000; Miller et al. 
2012).

RESULTS AND DISCUSSION
The QSAR study was performed to reveal structure–

activity relationship of β-amino pyrrolo-2-carbonitrile as a DPP4 
inhibitor. The outlier of the data set was first determined using 
$Z-SCORE. Calculation of the values of $Z-SCORE identified 
S22 and S24 as outliers with $Z-SCORE values of 3.10848 and 
2.7395, respectively. Theoretically, both compounds should be 
removed from the data set to improve the QSAR model. However, 
in the present study, only S22 was removed, while compound 
S24 was kept in the data set since it is the most active compound 
experimentally. Furthermore, 23 compounds of the data set were 
divided randomly into a training set (18 compounds), which was 
used to build QSAR model, and a test set (five compounds), which 
was used to test the predictive ability of the built model (Table 
2). The test set was selected by considering the distribution of 
biological activity in the whole data set.

Furthermore, multiple linear regression analysis was 
applied to build the QSAR models using 18 compounds of a 
training set. The resulted QSAR model contains five molecular 
descriptors, i.e., dipole moment (AM1_dipol), HOMO energy 
(AM1_HOMO), LUMO energy (AM1_LUMO), partition 
coefficient (Log P), and molar refractivity (Mr). The following 
equation shows the best QSAR model:

pIC50 = 75.842 − 0.579 (AM1_dipole) + 5.359 (AM1_
HOMO) − 5.297 (AM1_LUMO) + 2.278 (Log P) − 3.070 (Mr)

The above equation fulfills statistical criteria such as 
the correlation coefficient (R), determination coefficient (R2), and 
Fischer’s value (F) of 0.912, 0.831, and 11.820, respectively. The 
quality of the model was also indicated by the low standard error 
(SE) of 0.3290. The value of LOO cross-validation coefficient 
q2 of 0.608 indicated that the model was valid. Table 3 shows 
molecular descriptors and statistical parameters of the built QSAR 
model.

The QSAR model indicates that the biological activity 
would increase with more lipophilic groups as indicated by the 
positive sign of coefficient of Log P. On the other hand, less steric 
groups were favorable for increasing the biological activity as 
indicated by the negative sign of the coefficient of Mr. Meanwhile, 
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the negative contribution of AM1_Dipole and AMI_LUMO to 
biological activity was noted as implied by the negative sign of their 
coefficients. Compared to the other four descriptors, AM1_HOMO 
is the most influencing descriptor as indicated by the highest 
coefficient value.Furthermore, Tropsha et al. (2003) indicated that 

a QSAR model must be validated externally by test set compounds, 
in which R2pred value of training and test set must be higher than 0.6. 
Our QSAR analysis revealed the value of R2pred = 0.7057, indicating 
the validity of the built model. The relationship between observed 
and predicted pIC50 both training and test set is depicted in Figure 1.

The design of new compound and molecular docking
With the aim of finding the new potent β-amino pyrrolo-

2-carbonitrile derivative, a ND1 was designed by using the built 
QSAR model. Table 4 shows the structures of S24 and ND1. The 
results of predicting biological activity revealed that the predicted 

Table 3. Statistical parameters of best QSAR equation for β-amino pyrrole-2-
carbonitrile derivatives.

Descriptors q2 R R2 Adjusted 
R2 SE

AM1_Dipole, AM1_HOMO, 
AM1_LUMO, Log P(o/w), Mr 0.608 0.912 0.831 0.761 0.329

Table 2. The value of $Z-SCORE and data set division. Compounds assigned 
as * and ** are outlier and test set, respectively.

No. Compound Code pIC50 $Z-SCORE

1 A1 S1 0.34679 0.02637

2 A2 S2 0.65758 0.34277

3 A3 S3 0.79588 0.63559

4 A4 S4 0.65758 0.28256

5 A5 S5** 0.49485 0.05558

6 A6 S6 0.36653 0.06973

7 A7 S7 0.19382 0.6272

8 A8 S8 0.11351 0.3386

9 A9 S9 1.39794 1.288

10 A10 S10** 0.27572 0.25733

11 A11 S11 −0.1987 1.0489

12 A12 S12** 1.30103 1.14483

13 A13 S13** −0.2878 0.95978

14 B14 S14 0.35655 0.24665

15 B15 S15 1.1549 1.34364

16 B16 S16 0.4437 0.45808

17 B17 S17 0.88606 0.82957

18 B18 S18 0.56864 0.3929

19 B19 S19 −0.9445 1.69089

20 B20 S20 −0.2967 1.18939

21 B21 S21 1.1549 1.25829

22 B22 S22* −1.6761 3.10848

23 B23 S23** −0.9845 1.90469

24 B24 S24 2 2.7395

Table 4. The structures of S24 and ND1.

Compound Structure Predicted IC50 (µM)

Parent compound (S24) 0.015279802
(experiment)

Novel compound (ND1) 0.000340859
(calculation)
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IC50 of ND1 was lower (IC50pred = 0.000340859 µM) than that of 
S24 (IC50pred = 0.015279802 µM).

Next, molecular docking of S24 and ND1 on DPP4 
was performed to examine the preferred orientation of 
ligand to the protein. Molecular docking was commenced by 
redocking native ligand (JNH) on the protein to examine the 
reliability of docking protocol. In the docked conformation, 
JNH established hydrogen bonds (H-bonds) with Glu206 and 
Tyr547 as well as hydrophobic interactions with Phe357 and 
His740. The H-bond with Glu205 and hydrophobic interactions 
with Phe357 and His740 was also observed in the X-ray 
crystallographic conformation. Figure 2 shows the docked and 
X-ray crystallographic conformations of JNH with the RMSD 
of 1.21 Å, indicating that the docking protocol was valid (Jones 
et al., 1997; Morris et al., 1998).

The molecular docking poses showed that both S24 
and ND1 were able to interact with active site residues of DPP4. 
Several H-bonds were formed with Glu205, Glu206, and Arg669 
in the binding of ND1. Interestingly, fluor atom interacted through 
H-bonds with Arg125, Tyr631, Asn710, and His740. Moreover, 
pi-pi stacking interactions between ND1 with Tyr662 and Tyr666 
were also established. On the other hand, binding of S24 was 

maintained by H-bonds with Glu205, Glu206, and Asn710, as 
well as by pi-pi stacking interactions with Tyr662 and Tyr666. It 
is noted that H-bonds with Glu205 and Asn710 were also detected 
in X-ray crystallographic pose. The hydrophobic interaction 
including with Phe357 was also observed. It was clear from the 
docked poses that ND1 established more interactions that that of 
S24. Figure 3 depicts the binding mode of S24 and ND1 in the 
binding cavity of DPP4.

Figure 1. The plot for observed pIC50(X) and predicted pIC50(Y) of β-amino pyrrole-2-carbonitrile derivatives.

Figure 2. The docked (green) and experimental (blue) poses of JNH and the 
interaction of JNH in the binding site of DPP4.

Figure 3. The docked conformation of (a) S24 and (b) ND1. The hydrogen bond 
and pi-pi stacking interactions are represented in green and pink colored dashed 
lines, respectively.

Figure 4. The RMSD plot of each JNH (red), S24 (green), and ND1 (blue) 
complexed to DPP4.
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Molecular dynamics simulation
The docked conformation of each S24, ND1, and JNH 

was monitored for their conformational stability through MD 
simulation of 40 ns. The conformation stability was checked by 
using the values of RMSD. Figure 4 shows the RMSD plot of 
heavy atoms of DPP4 with respect to simulation time for each 
complex. As Figure 4 shows, JNH and ND1 reached stability 
after about 7 ns. On the other hand, the complex of the parent 
compound (S24) shows slight fluctuation after 20 ns. However, 
considering its fluctuation, which is about 3 Å, it can be inferred 
that the complex was sufficiently stable.The dynamics simulation 
was also used to monitor the fluctuation of amino acid residues 
due to ligand binding during 40 ns. Figure 5 shows the RMSF 
of protein versus residue number. All complexes show a similar 
pattern of RMSF, which indicates the similar binding mode. The 
highest fluctuation was recorded in the amino acid residue Ser205 
(Ser245) which was due to beta helix end.

Binding energy prediction by MM/PBSA
Table 5 shows the calculated binding free energy of 

each S24, ND1, and JNH bound to the DPP4. The MM-PBSA 
prediction showed that the binding free energy is slightly lower 
in parent compound (S24) (ΔGPBTOT = −26.73 kcal/mol) and 
ND1 (ΔGPBTOT = −22.14 kcal/mol) compared to JNH (ΔGPBTOT 
= −19.96 kcal/mol). The better affinities of S24 and ND1 were 
also reflected by the total number of nonbond interactions during 
simulation period of 40 ns (Fig. 6), in which both S24 and ND1 
have more number of interactions than that of JNH. The S24-
DPP4 complex also displayed a slightly lower electrostatic 
energy (ΔEELE = −20.44 kcal/mol) compared to the ND1 and JNH 
complexes (ΔEELE = −17.92 and −2.17 kcal/mol, respectively). 
However, van der Waals energy was slightly lower in ND1 
(ΔEVDW= −41.46 kcal/mol) compared to S24 and JNH (ΔEVDW 
= −38.39 and −35.03 kcal/mol, respectively). Meanwhile, the 
contribution of the nonpolar energy of desolvation (ΔEPBSUR) was 
almost the same for all complexes. The contribution of the polar 

energy of desolvation is higher in ND1 (ΔEPBCAL = 41.04 kcal/mol) 
compared to S24 and JNH (ΔEPBCAL = 37.48 and 21.84 kcal/mol, 
respectively). In the meantime, the total electrostatic contribution 
was lower in S24 (ΔEPBELE = 17.04 kcal/mol) compared to the 
ND1 and JNH (ΔEPBELE = 23.12 and 19.67 kcal/mol, respectively), 
resulting in the lowest total binding free energy in S24 compared 
to those in ND1 and JNH.

CONCLUSION
In the present study, a QSAR model of five descriptors 

which correlate structure and inhibitory activity of DPP4 of 
β-amino pyrrolo-2-carbonitrile derivatives was developed. It was 
then used to design ND1 which has lower predicted IC50 than the 
parent compound. The ND1 interacted with the active site of the 
DPP4 protein and its complex with DPP4 protein was stabilized 
during 40 ns MD simulation. This study identifies ND1, with 
binding affinity amenable to the further study of the discovery of 
DPP4 inhibitor.
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